Properties

Label 531.2.d.a.530.5
Level $531$
Weight $2$
Character 531.530
Analytic conductor $4.240$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(530,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.530"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 530.5
Root \(1.45273 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 531.530
Dual form 531.2.d.a.530.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45273 q^{2} +0.110435 q^{4} -2.26259i q^{5} -4.85531 q^{7} +2.74503 q^{8} +3.28694i q^{10} -2.57169 q^{11} +6.45604i q^{13} +7.05347 q^{14} -4.20867 q^{16} -3.42694i q^{17} +4.08935 q^{19} -0.249870i q^{20} +3.73598 q^{22} +7.50414 q^{23} -0.119321 q^{25} -9.37890i q^{26} -0.536196 q^{28} +5.85827i q^{29} -2.76745i q^{31} +0.624014 q^{32} +4.97842i q^{34} +10.9856i q^{35} +7.57065i q^{37} -5.94074 q^{38} -6.21089i q^{40} +0.574794i q^{41} -5.57355i q^{43} -0.284005 q^{44} -10.9015 q^{46} +3.35614 q^{47} +16.5740 q^{49} +0.173342 q^{50} +0.712973i q^{52} +11.6451i q^{53} +5.81869i q^{55} -13.3280 q^{56} -8.51051i q^{58} +(-7.67748 - 0.237302i) q^{59} +11.3254i q^{61} +4.02037i q^{62} +7.51082 q^{64} +14.6074 q^{65} +7.40114i q^{67} -0.378454i q^{68} -15.9591i q^{70} -12.1262i q^{71} +14.3250i q^{73} -10.9981i q^{74} +0.451608 q^{76} +12.4864 q^{77} +3.61237 q^{79} +9.52251i q^{80} -0.835023i q^{82} -0.284005 q^{83} -7.75376 q^{85} +8.09688i q^{86} -7.05938 q^{88} -7.67125 q^{89} -31.3460i q^{91} +0.828720 q^{92} -4.87558 q^{94} -9.25254i q^{95} +5.10048i q^{97} -24.0776 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} - 8 q^{7} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 8 q^{28} + 44 q^{49} + 36 q^{64} - 96 q^{76} - 24 q^{85} + 16 q^{88} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45273 −1.02724 −0.513619 0.858018i \(-0.671695\pi\)
−0.513619 + 0.858018i \(0.671695\pi\)
\(3\) 0 0
\(4\) 0.110435 0.0552175
\(5\) 2.26259i 1.01186i −0.862574 0.505931i \(-0.831149\pi\)
0.862574 0.505931i \(-0.168851\pi\)
\(6\) 0 0
\(7\) −4.85531 −1.83513 −0.917566 0.397582i \(-0.869849\pi\)
−0.917566 + 0.397582i \(0.869849\pi\)
\(8\) 2.74503 0.970516
\(9\) 0 0
\(10\) 3.28694i 1.03942i
\(11\) −2.57169 −0.775394 −0.387697 0.921787i \(-0.626729\pi\)
−0.387697 + 0.921787i \(0.626729\pi\)
\(12\) 0 0
\(13\) 6.45604i 1.79058i 0.445482 + 0.895291i \(0.353032\pi\)
−0.445482 + 0.895291i \(0.646968\pi\)
\(14\) 7.05347 1.88512
\(15\) 0 0
\(16\) −4.20867 −1.05217
\(17\) 3.42694i 0.831154i −0.909558 0.415577i \(-0.863580\pi\)
0.909558 0.415577i \(-0.136420\pi\)
\(18\) 0 0
\(19\) 4.08935 0.938162 0.469081 0.883155i \(-0.344585\pi\)
0.469081 + 0.883155i \(0.344585\pi\)
\(20\) 0.249870i 0.0558725i
\(21\) 0 0
\(22\) 3.73598 0.796514
\(23\) 7.50414 1.56472 0.782360 0.622826i \(-0.214016\pi\)
0.782360 + 0.622826i \(0.214016\pi\)
\(24\) 0 0
\(25\) −0.119321 −0.0238643
\(26\) 9.37890i 1.83935i
\(27\) 0 0
\(28\) −0.536196 −0.101332
\(29\) 5.85827i 1.08785i 0.839133 + 0.543927i \(0.183063\pi\)
−0.839133 + 0.543927i \(0.816937\pi\)
\(30\) 0 0
\(31\) 2.76745i 0.497048i −0.968626 0.248524i \(-0.920054\pi\)
0.968626 0.248524i \(-0.0799456\pi\)
\(32\) 0.624014 0.110311
\(33\) 0 0
\(34\) 4.97842i 0.853793i
\(35\) 10.9856i 1.85690i
\(36\) 0 0
\(37\) 7.57065i 1.24461i 0.782776 + 0.622304i \(0.213803\pi\)
−0.782776 + 0.622304i \(0.786197\pi\)
\(38\) −5.94074 −0.963715
\(39\) 0 0
\(40\) 6.21089i 0.982028i
\(41\) 0.574794i 0.0897678i 0.998992 + 0.0448839i \(0.0142918\pi\)
−0.998992 + 0.0448839i \(0.985708\pi\)
\(42\) 0 0
\(43\) 5.57355i 0.849958i −0.905203 0.424979i \(-0.860281\pi\)
0.905203 0.424979i \(-0.139719\pi\)
\(44\) −0.284005 −0.0428154
\(45\) 0 0
\(46\) −10.9015 −1.60734
\(47\) 3.35614 0.489543 0.244772 0.969581i \(-0.421287\pi\)
0.244772 + 0.969581i \(0.421287\pi\)
\(48\) 0 0
\(49\) 16.5740 2.36771
\(50\) 0.173342 0.0245143
\(51\) 0 0
\(52\) 0.712973i 0.0988715i
\(53\) 11.6451i 1.59958i 0.600282 + 0.799789i \(0.295055\pi\)
−0.600282 + 0.799789i \(0.704945\pi\)
\(54\) 0 0
\(55\) 5.81869i 0.784592i
\(56\) −13.3280 −1.78103
\(57\) 0 0
\(58\) 8.51051i 1.11748i
\(59\) −7.67748 0.237302i −0.999523 0.0308941i
\(60\) 0 0
\(61\) 11.3254i 1.45007i 0.688711 + 0.725036i \(0.258177\pi\)
−0.688711 + 0.725036i \(0.741823\pi\)
\(62\) 4.02037i 0.510587i
\(63\) 0 0
\(64\) 7.51082 0.938853
\(65\) 14.6074 1.81182
\(66\) 0 0
\(67\) 7.40114i 0.904193i 0.891969 + 0.452096i \(0.149324\pi\)
−0.891969 + 0.452096i \(0.850676\pi\)
\(68\) 0.378454i 0.0458943i
\(69\) 0 0
\(70\) 15.9591i 1.90748i
\(71\) 12.1262i 1.43912i −0.694433 0.719558i \(-0.744345\pi\)
0.694433 0.719558i \(-0.255655\pi\)
\(72\) 0 0
\(73\) 14.3250i 1.67661i 0.545198 + 0.838307i \(0.316454\pi\)
−0.545198 + 0.838307i \(0.683546\pi\)
\(74\) 10.9981i 1.27851i
\(75\) 0 0
\(76\) 0.451608 0.0518030
\(77\) 12.4864 1.42295
\(78\) 0 0
\(79\) 3.61237 0.406424 0.203212 0.979135i \(-0.434862\pi\)
0.203212 + 0.979135i \(0.434862\pi\)
\(80\) 9.52251i 1.06465i
\(81\) 0 0
\(82\) 0.835023i 0.0922129i
\(83\) −0.284005 −0.0311736 −0.0155868 0.999879i \(-0.504962\pi\)
−0.0155868 + 0.999879i \(0.504962\pi\)
\(84\) 0 0
\(85\) −7.75376 −0.841013
\(86\) 8.09688i 0.873109i
\(87\) 0 0
\(88\) −7.05938 −0.752533
\(89\) −7.67125 −0.813150 −0.406575 0.913617i \(-0.633277\pi\)
−0.406575 + 0.913617i \(0.633277\pi\)
\(90\) 0 0
\(91\) 31.3460i 3.28596i
\(92\) 0.828720 0.0864000
\(93\) 0 0
\(94\) −4.87558 −0.502877
\(95\) 9.25254i 0.949290i
\(96\) 0 0
\(97\) 5.10048i 0.517875i 0.965894 + 0.258937i \(0.0833723\pi\)
−0.965894 + 0.258937i \(0.916628\pi\)
\(98\) −24.0776 −2.43220
\(99\) 0 0
\(100\) −0.0131773 −0.00131773
\(101\) −3.07213 −0.305689 −0.152844 0.988250i \(-0.548843\pi\)
−0.152844 + 0.988250i \(0.548843\pi\)
\(102\) 0 0
\(103\) 3.09347i 0.304808i −0.988318 0.152404i \(-0.951298\pi\)
0.988318 0.152404i \(-0.0487015\pi\)
\(104\) 17.7220i 1.73779i
\(105\) 0 0
\(106\) 16.9172i 1.64315i
\(107\) 5.27987i 0.510424i 0.966885 + 0.255212i \(0.0821453\pi\)
−0.966885 + 0.255212i \(0.917855\pi\)
\(108\) 0 0
\(109\) 7.08037i 0.678176i −0.940755 0.339088i \(-0.889882\pi\)
0.940755 0.339088i \(-0.110118\pi\)
\(110\) 8.45301i 0.805963i
\(111\) 0 0
\(112\) 20.4344 1.93087
\(113\) 7.40015 0.696148 0.348074 0.937467i \(-0.386836\pi\)
0.348074 + 0.937467i \(0.386836\pi\)
\(114\) 0 0
\(115\) 16.9788i 1.58328i
\(116\) 0.646959i 0.0600686i
\(117\) 0 0
\(118\) 11.1533 + 0.344737i 1.02675 + 0.0317356i
\(119\) 16.6388i 1.52528i
\(120\) 0 0
\(121\) −4.38640 −0.398764
\(122\) 16.4528i 1.48957i
\(123\) 0 0
\(124\) 0.305623i 0.0274458i
\(125\) 11.0430i 0.987714i
\(126\) 0 0
\(127\) −5.34019 −0.473865 −0.236933 0.971526i \(-0.576142\pi\)
−0.236933 + 0.971526i \(0.576142\pi\)
\(128\) −12.1593 −1.07474
\(129\) 0 0
\(130\) −21.2206 −1.86117
\(131\) −1.90964 −0.166846 −0.0834230 0.996514i \(-0.526585\pi\)
−0.0834230 + 0.996514i \(0.526585\pi\)
\(132\) 0 0
\(133\) −19.8551 −1.72165
\(134\) 10.7519i 0.928821i
\(135\) 0 0
\(136\) 9.40706i 0.806648i
\(137\) 8.62207i 0.736634i −0.929700 0.368317i \(-0.879934\pi\)
0.929700 0.368317i \(-0.120066\pi\)
\(138\) 0 0
\(139\) −7.90580 −0.670561 −0.335281 0.942118i \(-0.608831\pi\)
−0.335281 + 0.942118i \(0.608831\pi\)
\(140\) 1.21319i 0.102534i
\(141\) 0 0
\(142\) 17.6161i 1.47831i
\(143\) 16.6029i 1.38841i
\(144\) 0 0
\(145\) 13.2549 1.10076
\(146\) 20.8104i 1.72228i
\(147\) 0 0
\(148\) 0.836066i 0.0687242i
\(149\) −4.29181 −0.351599 −0.175799 0.984426i \(-0.556251\pi\)
−0.175799 + 0.984426i \(0.556251\pi\)
\(150\) 0 0
\(151\) 18.8965i 1.53778i 0.639382 + 0.768889i \(0.279190\pi\)
−0.639382 + 0.768889i \(0.720810\pi\)
\(152\) 11.2254 0.910501
\(153\) 0 0
\(154\) −18.1393 −1.46171
\(155\) −6.26161 −0.502944
\(156\) 0 0
\(157\) 2.55047i 0.203549i −0.994807 0.101775i \(-0.967548\pi\)
0.994807 0.101775i \(-0.0324521\pi\)
\(158\) −5.24781 −0.417494
\(159\) 0 0
\(160\) 1.41189i 0.111620i
\(161\) −36.4349 −2.87147
\(162\) 0 0
\(163\) 19.7606 1.54777 0.773885 0.633326i \(-0.218311\pi\)
0.773885 + 0.633326i \(0.218311\pi\)
\(164\) 0.0634775i 0.00495676i
\(165\) 0 0
\(166\) 0.412584 0.0320227
\(167\) 11.5091i 0.890598i 0.895382 + 0.445299i \(0.146903\pi\)
−0.895382 + 0.445299i \(0.853097\pi\)
\(168\) 0 0
\(169\) −28.6804 −2.20618
\(170\) 11.2641 0.863920
\(171\) 0 0
\(172\) 0.615515i 0.0469326i
\(173\) 17.2417 1.31087 0.655433 0.755254i \(-0.272486\pi\)
0.655433 + 0.755254i \(0.272486\pi\)
\(174\) 0 0
\(175\) 0.579342 0.0437941
\(176\) 10.8234 0.815846
\(177\) 0 0
\(178\) 11.1443 0.835299
\(179\) −10.7120 −0.800654 −0.400327 0.916372i \(-0.631103\pi\)
−0.400327 + 0.916372i \(0.631103\pi\)
\(180\) 0 0
\(181\) 11.4631 0.852044 0.426022 0.904713i \(-0.359915\pi\)
0.426022 + 0.904713i \(0.359915\pi\)
\(182\) 45.5374i 3.37546i
\(183\) 0 0
\(184\) 20.5991 1.51859
\(185\) 17.1293 1.25937
\(186\) 0 0
\(187\) 8.81302i 0.644472i
\(188\) 0.370635 0.0270314
\(189\) 0 0
\(190\) 13.4415i 0.975147i
\(191\) 13.5518 0.980576 0.490288 0.871560i \(-0.336892\pi\)
0.490288 + 0.871560i \(0.336892\pi\)
\(192\) 0 0
\(193\) −1.83044 −0.131758 −0.0658790 0.997828i \(-0.520985\pi\)
−0.0658790 + 0.997828i \(0.520985\pi\)
\(194\) 7.40963i 0.531981i
\(195\) 0 0
\(196\) 1.83035 0.130739
\(197\) 11.3856i 0.811187i 0.914054 + 0.405594i \(0.132935\pi\)
−0.914054 + 0.405594i \(0.867065\pi\)
\(198\) 0 0
\(199\) 4.29374 0.304375 0.152187 0.988352i \(-0.451368\pi\)
0.152187 + 0.988352i \(0.451368\pi\)
\(200\) −0.327541 −0.0231607
\(201\) 0 0
\(202\) 4.46299 0.314015
\(203\) 28.4437i 1.99636i
\(204\) 0 0
\(205\) 1.30052 0.0908326
\(206\) 4.49398i 0.313110i
\(207\) 0 0
\(208\) 27.1714i 1.88399i
\(209\) −10.5166 −0.727445
\(210\) 0 0
\(211\) 7.86792i 0.541650i 0.962629 + 0.270825i \(0.0872965\pi\)
−0.962629 + 0.270825i \(0.912703\pi\)
\(212\) 1.28603i 0.0883247i
\(213\) 0 0
\(214\) 7.67025i 0.524327i
\(215\) −12.6107 −0.860040
\(216\) 0 0
\(217\) 13.4368i 0.912150i
\(218\) 10.2859i 0.696648i
\(219\) 0 0
\(220\) 0.642588i 0.0433232i
\(221\) 22.1244 1.48825
\(222\) 0 0
\(223\) 3.43086 0.229748 0.114874 0.993380i \(-0.463354\pi\)
0.114874 + 0.993380i \(0.463354\pi\)
\(224\) −3.02978 −0.202435
\(225\) 0 0
\(226\) −10.7504 −0.715109
\(227\) 9.17998 0.609297 0.304648 0.952465i \(-0.401461\pi\)
0.304648 + 0.952465i \(0.401461\pi\)
\(228\) 0 0
\(229\) 7.03290i 0.464747i −0.972627 0.232374i \(-0.925351\pi\)
0.972627 0.232374i \(-0.0746492\pi\)
\(230\) 24.6657i 1.62641i
\(231\) 0 0
\(232\) 16.0812i 1.05578i
\(233\) −7.81506 −0.511982 −0.255991 0.966679i \(-0.582402\pi\)
−0.255991 + 0.966679i \(0.582402\pi\)
\(234\) 0 0
\(235\) 7.59357i 0.495350i
\(236\) −0.847863 0.0262065i −0.0551912 0.00170590i
\(237\) 0 0
\(238\) 24.1718i 1.56682i
\(239\) 4.92949i 0.318862i 0.987209 + 0.159431i \(0.0509660\pi\)
−0.987209 + 0.159431i \(0.949034\pi\)
\(240\) 0 0
\(241\) −10.1051 −0.650926 −0.325463 0.945555i \(-0.605520\pi\)
−0.325463 + 0.945555i \(0.605520\pi\)
\(242\) 6.37227 0.409625
\(243\) 0 0
\(244\) 1.25072i 0.0800694i
\(245\) 37.5002i 2.39580i
\(246\) 0 0
\(247\) 26.4010i 1.67986i
\(248\) 7.59674i 0.482394i
\(249\) 0 0
\(250\) 16.0425i 1.01462i
\(251\) 10.2721i 0.648370i 0.945994 + 0.324185i \(0.105090\pi\)
−0.945994 + 0.324185i \(0.894910\pi\)
\(252\) 0 0
\(253\) −19.2983 −1.21328
\(254\) 7.75788 0.486772
\(255\) 0 0
\(256\) 2.64251 0.165157
\(257\) 20.3096i 1.26688i 0.773794 + 0.633438i \(0.218357\pi\)
−0.773794 + 0.633438i \(0.781643\pi\)
\(258\) 0 0
\(259\) 36.7578i 2.28402i
\(260\) 1.61317 0.100044
\(261\) 0 0
\(262\) 2.77420 0.171390
\(263\) 3.30806i 0.203984i 0.994785 + 0.101992i \(0.0325216\pi\)
−0.994785 + 0.101992i \(0.967478\pi\)
\(264\) 0 0
\(265\) 26.3481 1.61855
\(266\) 28.8441 1.76855
\(267\) 0 0
\(268\) 0.817345i 0.0499273i
\(269\) 8.21596 0.500936 0.250468 0.968125i \(-0.419416\pi\)
0.250468 + 0.968125i \(0.419416\pi\)
\(270\) 0 0
\(271\) 11.6941 0.710367 0.355184 0.934797i \(-0.384418\pi\)
0.355184 + 0.934797i \(0.384418\pi\)
\(272\) 14.4229i 0.874514i
\(273\) 0 0
\(274\) 12.5256i 0.756698i
\(275\) 0.306858 0.0185042
\(276\) 0 0
\(277\) 21.3391 1.28214 0.641072 0.767481i \(-0.278490\pi\)
0.641072 + 0.767481i \(0.278490\pi\)
\(278\) 11.4850 0.688826
\(279\) 0 0
\(280\) 30.1558i 1.80215i
\(281\) 26.5150i 1.58175i −0.611978 0.790875i \(-0.709626\pi\)
0.611978 0.790875i \(-0.290374\pi\)
\(282\) 0 0
\(283\) 29.0605i 1.72747i 0.503948 + 0.863734i \(0.331880\pi\)
−0.503948 + 0.863734i \(0.668120\pi\)
\(284\) 1.33916i 0.0794644i
\(285\) 0 0
\(286\) 24.1196i 1.42622i
\(287\) 2.79080i 0.164736i
\(288\) 0 0
\(289\) 5.25611 0.309183
\(290\) −19.2558 −1.13074
\(291\) 0 0
\(292\) 1.58198i 0.0925785i
\(293\) 12.3707i 0.722705i 0.932429 + 0.361353i \(0.117685\pi\)
−0.932429 + 0.361353i \(0.882315\pi\)
\(294\) 0 0
\(295\) −0.536918 + 17.3710i −0.0312606 + 1.01138i
\(296\) 20.7817i 1.20791i
\(297\) 0 0
\(298\) 6.23486 0.361176
\(299\) 48.4470i 2.80176i
\(300\) 0 0
\(301\) 27.0613i 1.55979i
\(302\) 27.4516i 1.57966i
\(303\) 0 0
\(304\) −17.2108 −0.987104
\(305\) 25.6248 1.46727
\(306\) 0 0
\(307\) −12.5057 −0.713739 −0.356870 0.934154i \(-0.616156\pi\)
−0.356870 + 0.934154i \(0.616156\pi\)
\(308\) 1.37893 0.0785719
\(309\) 0 0
\(310\) 9.09645 0.516643
\(311\) 16.8176i 0.953641i −0.879001 0.476820i \(-0.841789\pi\)
0.879001 0.476820i \(-0.158211\pi\)
\(312\) 0 0
\(313\) 5.41180i 0.305893i 0.988234 + 0.152947i \(0.0488763\pi\)
−0.988234 + 0.152947i \(0.951124\pi\)
\(314\) 3.70515i 0.209094i
\(315\) 0 0
\(316\) 0.398933 0.0224417
\(317\) 15.9111i 0.893658i 0.894619 + 0.446829i \(0.147447\pi\)
−0.894619 + 0.446829i \(0.852553\pi\)
\(318\) 0 0
\(319\) 15.0657i 0.843516i
\(320\) 16.9939i 0.949989i
\(321\) 0 0
\(322\) 52.9302 2.94968
\(323\) 14.0139i 0.779757i
\(324\) 0 0
\(325\) 0.770343i 0.0427310i
\(326\) −28.7069 −1.58993
\(327\) 0 0
\(328\) 1.57783i 0.0871211i
\(329\) −16.2951 −0.898377
\(330\) 0 0
\(331\) −24.0924 −1.32424 −0.662119 0.749398i \(-0.730343\pi\)
−0.662119 + 0.749398i \(0.730343\pi\)
\(332\) −0.0313641 −0.00172133
\(333\) 0 0
\(334\) 16.7196i 0.914856i
\(335\) 16.7458 0.914918
\(336\) 0 0
\(337\) 11.8126i 0.643473i −0.946829 0.321737i \(-0.895733\pi\)
0.946829 0.321737i \(-0.104267\pi\)
\(338\) 41.6650 2.26628
\(339\) 0 0
\(340\) −0.856287 −0.0464387
\(341\) 7.11703i 0.385409i
\(342\) 0 0
\(343\) −46.4846 −2.50994
\(344\) 15.2996i 0.824898i
\(345\) 0 0
\(346\) −25.0477 −1.34657
\(347\) −17.2964 −0.928520 −0.464260 0.885699i \(-0.653680\pi\)
−0.464260 + 0.885699i \(0.653680\pi\)
\(348\) 0 0
\(349\) 13.3289i 0.713478i 0.934204 + 0.356739i \(0.116111\pi\)
−0.934204 + 0.356739i \(0.883889\pi\)
\(350\) −0.841629 −0.0449870
\(351\) 0 0
\(352\) −1.60477 −0.0855346
\(353\) −33.2513 −1.76979 −0.884895 0.465790i \(-0.845770\pi\)
−0.884895 + 0.465790i \(0.845770\pi\)
\(354\) 0 0
\(355\) −27.4366 −1.45619
\(356\) −0.847175 −0.0449002
\(357\) 0 0
\(358\) 15.5617 0.822462
\(359\) 10.0929i 0.532685i 0.963878 + 0.266343i \(0.0858153\pi\)
−0.963878 + 0.266343i \(0.914185\pi\)
\(360\) 0 0
\(361\) −2.27719 −0.119852
\(362\) −16.6528 −0.875252
\(363\) 0 0
\(364\) 3.46170i 0.181442i
\(365\) 32.4116 1.69650
\(366\) 0 0
\(367\) 12.4787i 0.651382i −0.945476 0.325691i \(-0.894403\pi\)
0.945476 0.325691i \(-0.105597\pi\)
\(368\) −31.5825 −1.64635
\(369\) 0 0
\(370\) −24.8843 −1.29367
\(371\) 56.5405i 2.93544i
\(372\) 0 0
\(373\) 21.9482 1.13644 0.568218 0.822878i \(-0.307633\pi\)
0.568218 + 0.822878i \(0.307633\pi\)
\(374\) 12.8030i 0.662026i
\(375\) 0 0
\(376\) 9.21272 0.475110
\(377\) −37.8212 −1.94789
\(378\) 0 0
\(379\) 11.8951 0.611012 0.305506 0.952190i \(-0.401174\pi\)
0.305506 + 0.952190i \(0.401174\pi\)
\(380\) 1.02180i 0.0524175i
\(381\) 0 0
\(382\) −19.6872 −1.00728
\(383\) 29.6662i 1.51587i 0.652329 + 0.757936i \(0.273792\pi\)
−0.652329 + 0.757936i \(0.726208\pi\)
\(384\) 0 0
\(385\) 28.2515i 1.43983i
\(386\) 2.65914 0.135347
\(387\) 0 0
\(388\) 0.563271i 0.0285958i
\(389\) 4.61602i 0.234041i −0.993129 0.117021i \(-0.962666\pi\)
0.993129 0.117021i \(-0.0373344\pi\)
\(390\) 0 0
\(391\) 25.7162i 1.30052i
\(392\) 45.4962 2.29790
\(393\) 0 0
\(394\) 16.5402i 0.833282i
\(395\) 8.17332i 0.411244i
\(396\) 0 0
\(397\) 15.8459i 0.795284i −0.917541 0.397642i \(-0.869829\pi\)
0.917541 0.397642i \(-0.130171\pi\)
\(398\) −6.23766 −0.312665
\(399\) 0 0
\(400\) 0.502185 0.0251092
\(401\) 27.6101 1.37878 0.689391 0.724389i \(-0.257878\pi\)
0.689391 + 0.724389i \(0.257878\pi\)
\(402\) 0 0
\(403\) 17.8667 0.890006
\(404\) −0.339271 −0.0168794
\(405\) 0 0
\(406\) 41.3211i 2.05073i
\(407\) 19.4694i 0.965062i
\(408\) 0 0
\(409\) 20.2371i 1.00066i −0.865835 0.500331i \(-0.833212\pi\)
0.865835 0.500331i \(-0.166788\pi\)
\(410\) −1.88932 −0.0933067
\(411\) 0 0
\(412\) 0.341627i 0.0168308i
\(413\) 37.2765 + 1.15218i 1.83426 + 0.0566948i
\(414\) 0 0
\(415\) 0.642588i 0.0315434i
\(416\) 4.02865i 0.197521i
\(417\) 0 0
\(418\) 15.2778 0.747260
\(419\) −19.2363 −0.939755 −0.469878 0.882732i \(-0.655702\pi\)
−0.469878 + 0.882732i \(0.655702\pi\)
\(420\) 0 0
\(421\) 2.56453i 0.124988i 0.998045 + 0.0624938i \(0.0199054\pi\)
−0.998045 + 0.0624938i \(0.980095\pi\)
\(422\) 11.4300i 0.556404i
\(423\) 0 0
\(424\) 31.9662i 1.55242i
\(425\) 0.408907i 0.0198349i
\(426\) 0 0
\(427\) 54.9884i 2.66108i
\(428\) 0.583083i 0.0281844i
\(429\) 0 0
\(430\) 18.3199 0.883466
\(431\) −18.7842 −0.904801 −0.452401 0.891815i \(-0.649432\pi\)
−0.452401 + 0.891815i \(0.649432\pi\)
\(432\) 0 0
\(433\) 14.7190 0.707350 0.353675 0.935368i \(-0.384932\pi\)
0.353675 + 0.935368i \(0.384932\pi\)
\(434\) 19.5201i 0.936995i
\(435\) 0 0
\(436\) 0.781921i 0.0374472i
\(437\) 30.6871 1.46796
\(438\) 0 0
\(439\) 0.352951 0.0168454 0.00842272 0.999965i \(-0.497319\pi\)
0.00842272 + 0.999965i \(0.497319\pi\)
\(440\) 15.9725i 0.761459i
\(441\) 0 0
\(442\) −32.1409 −1.52879
\(443\) −31.8432 −1.51292 −0.756458 0.654043i \(-0.773072\pi\)
−0.756458 + 0.654043i \(0.773072\pi\)
\(444\) 0 0
\(445\) 17.3569i 0.822796i
\(446\) −4.98413 −0.236005
\(447\) 0 0
\(448\) −36.4673 −1.72292
\(449\) 24.9989i 1.17977i −0.807487 0.589885i \(-0.799173\pi\)
0.807487 0.589885i \(-0.200827\pi\)
\(450\) 0 0
\(451\) 1.47819i 0.0696054i
\(452\) 0.817236 0.0384396
\(453\) 0 0
\(454\) −13.3361 −0.625893
\(455\) −70.9233 −3.32493
\(456\) 0 0
\(457\) 3.58018i 0.167474i 0.996488 + 0.0837368i \(0.0266855\pi\)
−0.996488 + 0.0837368i \(0.973314\pi\)
\(458\) 10.2169i 0.477406i
\(459\) 0 0
\(460\) 1.87506i 0.0874249i
\(461\) 18.7859i 0.874945i −0.899232 0.437473i \(-0.855874\pi\)
0.899232 0.437473i \(-0.144126\pi\)
\(462\) 0 0
\(463\) 1.10207i 0.0512173i 0.999672 + 0.0256087i \(0.00815238\pi\)
−0.999672 + 0.0256087i \(0.991848\pi\)
\(464\) 24.6556i 1.14461i
\(465\) 0 0
\(466\) 11.3532 0.525927
\(467\) 14.6881 0.679683 0.339841 0.940483i \(-0.389627\pi\)
0.339841 + 0.940483i \(0.389627\pi\)
\(468\) 0 0
\(469\) 35.9348i 1.65931i
\(470\) 11.0314i 0.508842i
\(471\) 0 0
\(472\) −21.0749 0.651403i −0.970053 0.0299833i
\(473\) 14.3334i 0.659053i
\(474\) 0 0
\(475\) −0.487947 −0.0223886
\(476\) 1.83751i 0.0842221i
\(477\) 0 0
\(478\) 7.16124i 0.327547i
\(479\) 16.8642i 0.770546i 0.922803 + 0.385273i \(0.125893\pi\)
−0.922803 + 0.385273i \(0.874107\pi\)
\(480\) 0 0
\(481\) −48.8764 −2.22857
\(482\) 14.6800 0.668655
\(483\) 0 0
\(484\) −0.484412 −0.0220187
\(485\) 11.5403 0.524018
\(486\) 0 0
\(487\) 33.9330 1.53765 0.768826 0.639458i \(-0.220841\pi\)
0.768826 + 0.639458i \(0.220841\pi\)
\(488\) 31.0887i 1.40732i
\(489\) 0 0
\(490\) 54.4778i 2.46105i
\(491\) 13.9181i 0.628116i 0.949404 + 0.314058i \(0.101689\pi\)
−0.949404 + 0.314058i \(0.898311\pi\)
\(492\) 0 0
\(493\) 20.0759 0.904174
\(494\) 38.3536i 1.72561i
\(495\) 0 0
\(496\) 11.6473i 0.522979i
\(497\) 58.8764i 2.64097i
\(498\) 0 0
\(499\) −11.7860 −0.527613 −0.263806 0.964576i \(-0.584978\pi\)
−0.263806 + 0.964576i \(0.584978\pi\)
\(500\) 1.21953i 0.0545392i
\(501\) 0 0
\(502\) 14.9227i 0.666031i
\(503\) 4.02516 0.179473 0.0897366 0.995966i \(-0.471397\pi\)
0.0897366 + 0.995966i \(0.471397\pi\)
\(504\) 0 0
\(505\) 6.95098i 0.309315i
\(506\) 28.0353 1.24632
\(507\) 0 0
\(508\) −0.589745 −0.0261657
\(509\) −30.1921 −1.33824 −0.669121 0.743153i \(-0.733329\pi\)
−0.669121 + 0.743153i \(0.733329\pi\)
\(510\) 0 0
\(511\) 69.5523i 3.07681i
\(512\) 20.4796 0.905081
\(513\) 0 0
\(514\) 29.5044i 1.30138i
\(515\) −6.99925 −0.308424
\(516\) 0 0
\(517\) −8.63096 −0.379589
\(518\) 53.3993i 2.34623i
\(519\) 0 0
\(520\) 40.0977 1.75840
\(521\) 18.7607i 0.821919i −0.911654 0.410960i \(-0.865194\pi\)
0.911654 0.410960i \(-0.134806\pi\)
\(522\) 0 0
\(523\) 22.1115 0.966867 0.483434 0.875381i \(-0.339389\pi\)
0.483434 + 0.875381i \(0.339389\pi\)
\(524\) −0.210891 −0.00921282
\(525\) 0 0
\(526\) 4.80573i 0.209540i
\(527\) −9.48387 −0.413124
\(528\) 0 0
\(529\) 33.3121 1.44835
\(530\) −38.2768 −1.66264
\(531\) 0 0
\(532\) −2.19269 −0.0950654
\(533\) −3.71089 −0.160737
\(534\) 0 0
\(535\) 11.9462 0.516479
\(536\) 20.3164i 0.877534i
\(537\) 0 0
\(538\) −11.9356 −0.514580
\(539\) −42.6232 −1.83591
\(540\) 0 0
\(541\) 31.0576i 1.33527i 0.744488 + 0.667636i \(0.232694\pi\)
−0.744488 + 0.667636i \(0.767306\pi\)
\(542\) −16.9884 −0.729716
\(543\) 0 0
\(544\) 2.13845i 0.0916855i
\(545\) −16.0200 −0.686220
\(546\) 0 0
\(547\) 19.9270 0.852016 0.426008 0.904719i \(-0.359920\pi\)
0.426008 + 0.904719i \(0.359920\pi\)
\(548\) 0.952180i 0.0406751i
\(549\) 0 0
\(550\) −0.445783 −0.0190082
\(551\) 23.9565i 1.02058i
\(552\) 0 0
\(553\) −17.5392 −0.745841
\(554\) −31.0001 −1.31707
\(555\) 0 0
\(556\) −0.873078 −0.0370268
\(557\) 3.35263i 0.142056i −0.997474 0.0710278i \(-0.977372\pi\)
0.997474 0.0710278i \(-0.0226279\pi\)
\(558\) 0 0
\(559\) 35.9830 1.52192
\(560\) 46.2347i 1.95377i
\(561\) 0 0
\(562\) 38.5192i 1.62483i
\(563\) −43.0536 −1.81449 −0.907245 0.420602i \(-0.861819\pi\)
−0.907245 + 0.420602i \(0.861819\pi\)
\(564\) 0 0
\(565\) 16.7435i 0.704405i
\(566\) 42.2172i 1.77452i
\(567\) 0 0
\(568\) 33.2868i 1.39669i
\(569\) 40.9929 1.71851 0.859256 0.511546i \(-0.170927\pi\)
0.859256 + 0.511546i \(0.170927\pi\)
\(570\) 0 0
\(571\) 4.00831i 0.167743i −0.996477 0.0838714i \(-0.973272\pi\)
0.996477 0.0838714i \(-0.0267285\pi\)
\(572\) 1.83355i 0.0766644i
\(573\) 0 0
\(574\) 4.05429i 0.169223i
\(575\) −0.895404 −0.0373409
\(576\) 0 0
\(577\) −17.9896 −0.748918 −0.374459 0.927243i \(-0.622172\pi\)
−0.374459 + 0.927243i \(0.622172\pi\)
\(578\) −7.63573 −0.317604
\(579\) 0 0
\(580\) 1.46380 0.0607812
\(581\) 1.37893 0.0572077
\(582\) 0 0
\(583\) 29.9476i 1.24030i
\(584\) 39.3226i 1.62718i
\(585\) 0 0
\(586\) 17.9714i 0.742390i
\(587\) 14.0726 0.580838 0.290419 0.956900i \(-0.406205\pi\)
0.290419 + 0.956900i \(0.406205\pi\)
\(588\) 0 0
\(589\) 11.3171i 0.466312i
\(590\) 0.779999 25.2354i 0.0321121 1.03893i
\(591\) 0 0
\(592\) 31.8624i 1.30954i
\(593\) 29.9437i 1.22964i 0.788668 + 0.614820i \(0.210771\pi\)
−0.788668 + 0.614820i \(0.789229\pi\)
\(594\) 0 0
\(595\) 37.6469 1.54337
\(596\) −0.473967 −0.0194144
\(597\) 0 0
\(598\) 70.3806i 2.87807i
\(599\) 1.71365i 0.0700180i 0.999387 + 0.0350090i \(0.0111460\pi\)
−0.999387 + 0.0350090i \(0.988854\pi\)
\(600\) 0 0
\(601\) 35.2521i 1.43796i 0.695030 + 0.718981i \(0.255391\pi\)
−0.695030 + 0.718981i \(0.744609\pi\)
\(602\) 39.3128i 1.60227i
\(603\) 0 0
\(604\) 2.08684i 0.0849124i
\(605\) 9.92463i 0.403494i
\(606\) 0 0
\(607\) 0.194178 0.00788142 0.00394071 0.999992i \(-0.498746\pi\)
0.00394071 + 0.999992i \(0.498746\pi\)
\(608\) 2.55181 0.103490
\(609\) 0 0
\(610\) −37.2260 −1.50724
\(611\) 21.6674i 0.876567i
\(612\) 0 0
\(613\) 20.1353i 0.813259i −0.913593 0.406629i \(-0.866704\pi\)
0.913593 0.406629i \(-0.133296\pi\)
\(614\) 18.1675 0.733180
\(615\) 0 0
\(616\) 34.2755 1.38100
\(617\) 2.68078i 0.107924i 0.998543 + 0.0539620i \(0.0171850\pi\)
−0.998543 + 0.0539620i \(0.982815\pi\)
\(618\) 0 0
\(619\) −34.3618 −1.38112 −0.690559 0.723277i \(-0.742635\pi\)
−0.690559 + 0.723277i \(0.742635\pi\)
\(620\) −0.691501 −0.0277713
\(621\) 0 0
\(622\) 24.4316i 0.979616i
\(623\) 37.2462 1.49224
\(624\) 0 0
\(625\) −25.5824 −1.02329
\(626\) 7.86191i 0.314225i
\(627\) 0 0
\(628\) 0.281661i 0.0112395i
\(629\) 25.9441 1.03446
\(630\) 0 0
\(631\) −37.7495 −1.50278 −0.751391 0.659857i \(-0.770617\pi\)
−0.751391 + 0.659857i \(0.770617\pi\)
\(632\) 9.91608 0.394441
\(633\) 0 0
\(634\) 23.1146i 0.918000i
\(635\) 12.0827i 0.479486i
\(636\) 0 0
\(637\) 107.002i 4.23958i
\(638\) 21.8864i 0.866492i
\(639\) 0 0
\(640\) 27.5114i 1.08748i
\(641\) 28.7163i 1.13423i 0.823640 + 0.567113i \(0.191940\pi\)
−0.823640 + 0.567113i \(0.808060\pi\)
\(642\) 0 0
\(643\) 4.48994 0.177066 0.0885330 0.996073i \(-0.471782\pi\)
0.0885330 + 0.996073i \(0.471782\pi\)
\(644\) −4.02369 −0.158556
\(645\) 0 0
\(646\) 20.3585i 0.800996i
\(647\) 22.0680i 0.867585i 0.901013 + 0.433792i \(0.142825\pi\)
−0.901013 + 0.433792i \(0.857175\pi\)
\(648\) 0 0
\(649\) 19.7441 + 0.610269i 0.775024 + 0.0239551i
\(650\) 1.11910i 0.0438949i
\(651\) 0 0
\(652\) 2.18226 0.0854640
\(653\) 19.2580i 0.753623i −0.926290 0.376812i \(-0.877020\pi\)
0.926290 0.376812i \(-0.122980\pi\)
\(654\) 0 0
\(655\) 4.32073i 0.168825i
\(656\) 2.41912i 0.0944508i
\(657\) 0 0
\(658\) 23.6724 0.922847
\(659\) 34.0407 1.32604 0.663018 0.748603i \(-0.269275\pi\)
0.663018 + 0.748603i \(0.269275\pi\)
\(660\) 0 0
\(661\) 3.89624 0.151546 0.0757731 0.997125i \(-0.475858\pi\)
0.0757731 + 0.997125i \(0.475858\pi\)
\(662\) 34.9999 1.36031
\(663\) 0 0
\(664\) −0.779604 −0.0302545
\(665\) 44.9239i 1.74207i
\(666\) 0 0
\(667\) 43.9613i 1.70219i
\(668\) 1.27100i 0.0491766i
\(669\) 0 0
\(670\) −24.3271 −0.939838
\(671\) 29.1255i 1.12438i
\(672\) 0 0
\(673\) 9.67617i 0.372989i 0.982456 + 0.186494i \(0.0597126\pi\)
−0.982456 + 0.186494i \(0.940287\pi\)
\(674\) 17.1606i 0.661000i
\(675\) 0 0
\(676\) −3.16732 −0.121820
\(677\) 16.5422i 0.635770i −0.948129 0.317885i \(-0.897027\pi\)
0.948129 0.317885i \(-0.102973\pi\)
\(678\) 0 0
\(679\) 24.7644i 0.950369i
\(680\) −21.2843 −0.816217
\(681\) 0 0
\(682\) 10.3391i 0.395906i
\(683\) 25.7358 0.984752 0.492376 0.870383i \(-0.336129\pi\)
0.492376 + 0.870383i \(0.336129\pi\)
\(684\) 0 0
\(685\) −19.5082 −0.745371
\(686\) 67.5298 2.57830
\(687\) 0 0
\(688\) 23.4572i 0.894299i
\(689\) −75.1812 −2.86417
\(690\) 0 0
\(691\) 28.3944i 1.08017i −0.841610 0.540086i \(-0.818392\pi\)
0.841610 0.540086i \(-0.181608\pi\)
\(692\) 1.90409 0.0723828
\(693\) 0 0
\(694\) 25.1271 0.953810
\(695\) 17.8876i 0.678516i
\(696\) 0 0
\(697\) 1.96978 0.0746109
\(698\) 19.3633i 0.732911i
\(699\) 0 0
\(700\) 0.0639797 0.00241820
\(701\) −4.87339 −0.184065 −0.0920326 0.995756i \(-0.529336\pi\)
−0.0920326 + 0.995756i \(0.529336\pi\)
\(702\) 0 0
\(703\) 30.9591i 1.16764i
\(704\) −19.3155 −0.727981
\(705\) 0 0
\(706\) 48.3053 1.81800
\(707\) 14.9161 0.560979
\(708\) 0 0
\(709\) 26.0675 0.978984 0.489492 0.872008i \(-0.337182\pi\)
0.489492 + 0.872008i \(0.337182\pi\)
\(710\) 39.8581 1.49585
\(711\) 0 0
\(712\) −21.0578 −0.789176
\(713\) 20.7673i 0.777742i
\(714\) 0 0
\(715\) −37.5657 −1.40488
\(716\) −1.18298 −0.0442101
\(717\) 0 0
\(718\) 14.6624i 0.547194i
\(719\) 12.9351 0.482400 0.241200 0.970475i \(-0.422459\pi\)
0.241200 + 0.970475i \(0.422459\pi\)
\(720\) 0 0
\(721\) 15.0197i 0.559364i
\(722\) 3.30816 0.123117
\(723\) 0 0
\(724\) 1.26593 0.0470478
\(725\) 0.699017i 0.0259609i
\(726\) 0 0
\(727\) 40.1070 1.48749 0.743744 0.668465i \(-0.233048\pi\)
0.743744 + 0.668465i \(0.233048\pi\)
\(728\) 86.0459i 3.18907i
\(729\) 0 0
\(730\) −47.0855 −1.74271
\(731\) −19.1002 −0.706446
\(732\) 0 0
\(733\) 10.8132 0.399395 0.199698 0.979858i \(-0.436004\pi\)
0.199698 + 0.979858i \(0.436004\pi\)
\(734\) 18.1282i 0.669125i
\(735\) 0 0
\(736\) 4.68268 0.172606
\(737\) 19.0334i 0.701106i
\(738\) 0 0
\(739\) 13.3226i 0.490079i −0.969513 0.245039i \(-0.921199\pi\)
0.969513 0.245039i \(-0.0788009\pi\)
\(740\) 1.89168 0.0695394
\(741\) 0 0
\(742\) 82.1383i 3.01539i
\(743\) 13.0441i 0.478543i −0.970953 0.239271i \(-0.923091\pi\)
0.970953 0.239271i \(-0.0769085\pi\)
\(744\) 0 0
\(745\) 9.71062i 0.355770i
\(746\) −31.8849 −1.16739
\(747\) 0 0
\(748\) 0.973267i 0.0355862i
\(749\) 25.6354i 0.936697i
\(750\) 0 0
\(751\) 22.9341i 0.836876i −0.908245 0.418438i \(-0.862578\pi\)
0.908245 0.418438i \(-0.137422\pi\)
\(752\) −14.1249 −0.515082
\(753\) 0 0
\(754\) 54.9442 2.00095
\(755\) 42.7552 1.55602
\(756\) 0 0
\(757\) −0.702841 −0.0255452 −0.0127726 0.999918i \(-0.504066\pi\)
−0.0127726 + 0.999918i \(0.504066\pi\)
\(758\) −17.2805 −0.627655
\(759\) 0 0
\(760\) 25.3985i 0.921302i
\(761\) 24.2259i 0.878189i −0.898441 0.439095i \(-0.855299\pi\)
0.898441 0.439095i \(-0.144701\pi\)
\(762\) 0 0
\(763\) 34.3773i 1.24454i
\(764\) 1.49660 0.0541450
\(765\) 0 0
\(766\) 43.0971i 1.55716i
\(767\) 1.53203 49.5661i 0.0553185 1.78973i
\(768\) 0 0
\(769\) 21.1758i 0.763618i −0.924241 0.381809i \(-0.875301\pi\)
0.924241 0.381809i \(-0.124699\pi\)
\(770\) 41.0419i 1.47905i
\(771\) 0 0
\(772\) −0.202145 −0.00727535
\(773\) −14.4343 −0.519167 −0.259583 0.965721i \(-0.583585\pi\)
−0.259583 + 0.965721i \(0.583585\pi\)
\(774\) 0 0
\(775\) 0.330216i 0.0118617i
\(776\) 14.0010i 0.502606i
\(777\) 0 0
\(778\) 6.70584i 0.240416i
\(779\) 2.35054i 0.0842167i
\(780\) 0 0
\(781\) 31.1849i 1.11588i
\(782\) 37.3588i 1.33595i
\(783\) 0 0
\(784\) −69.7545 −2.49123
\(785\) −5.77067 −0.205964
\(786\) 0 0
\(787\) −12.7783 −0.455497 −0.227748 0.973720i \(-0.573136\pi\)
−0.227748 + 0.973720i \(0.573136\pi\)
\(788\) 1.25736i 0.0447918i
\(789\) 0 0
\(790\) 11.8737i 0.422446i
\(791\) −35.9300 −1.27752
\(792\) 0 0
\(793\) −73.1173 −2.59647
\(794\) 23.0199i 0.816946i
\(795\) 0 0
\(796\) 0.474179 0.0168068
\(797\) 10.6941 0.378803 0.189401 0.981900i \(-0.439345\pi\)
0.189401 + 0.981900i \(0.439345\pi\)
\(798\) 0 0
\(799\) 11.5013i 0.406886i
\(800\) −0.0744582 −0.00263249
\(801\) 0 0
\(802\) −40.1101 −1.41634
\(803\) 36.8395i 1.30004i
\(804\) 0 0
\(805\) 82.4373i 2.90553i
\(806\) −25.9556 −0.914248
\(807\) 0 0
\(808\) −8.43311 −0.296676
\(809\) 44.3215 1.55826 0.779131 0.626862i \(-0.215661\pi\)
0.779131 + 0.626862i \(0.215661\pi\)
\(810\) 0 0
\(811\) 21.9196i 0.769702i −0.922979 0.384851i \(-0.874253\pi\)
0.922979 0.384851i \(-0.125747\pi\)
\(812\) 3.14118i 0.110234i
\(813\) 0 0
\(814\) 28.2838i 0.991348i
\(815\) 44.7102i 1.56613i
\(816\) 0 0
\(817\) 22.7922i 0.797398i
\(818\) 29.3991i 1.02792i
\(819\) 0 0
\(820\) 0.143624 0.00501555
\(821\) 3.38196 0.118031 0.0590157 0.998257i \(-0.481204\pi\)
0.0590157 + 0.998257i \(0.481204\pi\)
\(822\) 0 0
\(823\) 23.5824i 0.822029i −0.911629 0.411015i \(-0.865175\pi\)
0.911629 0.411015i \(-0.134825\pi\)
\(824\) 8.49167i 0.295821i
\(825\) 0 0
\(826\) −54.1528 1.67380i −1.88422 0.0582391i
\(827\) 57.2583i 1.99107i −0.0944133 0.995533i \(-0.530098\pi\)
0.0944133 0.995533i \(-0.469902\pi\)
\(828\) 0 0
\(829\) 45.0168 1.56350 0.781749 0.623593i \(-0.214328\pi\)
0.781749 + 0.623593i \(0.214328\pi\)
\(830\) 0.933508i 0.0324026i
\(831\) 0 0
\(832\) 48.4901i 1.68109i
\(833\) 56.7980i 1.96793i
\(834\) 0 0
\(835\) 26.0403 0.901162
\(836\) −1.16140 −0.0401678
\(837\) 0 0
\(838\) 27.9452 0.965352
\(839\) 24.6050 0.849460 0.424730 0.905320i \(-0.360369\pi\)
0.424730 + 0.905320i \(0.360369\pi\)
\(840\) 0 0
\(841\) −5.31937 −0.183426
\(842\) 3.72558i 0.128392i
\(843\) 0 0
\(844\) 0.868895i 0.0299086i
\(845\) 64.8920i 2.23235i
\(846\) 0 0
\(847\) 21.2973 0.731784
\(848\) 49.0104i 1.68303i
\(849\) 0 0
\(850\) 0.594033i 0.0203752i
\(851\) 56.8112i 1.94746i
\(852\) 0 0
\(853\) −47.0831 −1.61209 −0.806047 0.591851i \(-0.798397\pi\)
−0.806047 + 0.591851i \(0.798397\pi\)
\(854\) 79.8835i 2.73356i
\(855\) 0 0
\(856\) 14.4934i 0.495375i
\(857\) 34.8653 1.19098 0.595488 0.803364i \(-0.296959\pi\)
0.595488 + 0.803364i \(0.296959\pi\)
\(858\) 0 0
\(859\) 13.8066i 0.471075i 0.971865 + 0.235537i \(0.0756850\pi\)
−0.971865 + 0.235537i \(0.924315\pi\)
\(860\) −1.39266 −0.0474893
\(861\) 0 0
\(862\) 27.2884 0.929446
\(863\) −24.9833 −0.850441 −0.425221 0.905090i \(-0.639804\pi\)
−0.425221 + 0.905090i \(0.639804\pi\)
\(864\) 0 0
\(865\) 39.0110i 1.32641i
\(866\) −21.3828 −0.726616
\(867\) 0 0
\(868\) 1.48389i 0.0503667i
\(869\) −9.28991 −0.315139
\(870\) 0 0
\(871\) −47.7820 −1.61903
\(872\) 19.4358i 0.658181i
\(873\) 0 0
\(874\) −44.5801 −1.50795
\(875\) 53.6171i 1.81259i
\(876\) 0 0
\(877\) 34.7540 1.17356 0.586779 0.809747i \(-0.300396\pi\)
0.586779 + 0.809747i \(0.300396\pi\)
\(878\) −0.512744 −0.0173043
\(879\) 0 0
\(880\) 24.4890i 0.825523i
\(881\) 35.3540 1.19111 0.595553 0.803316i \(-0.296933\pi\)
0.595553 + 0.803316i \(0.296933\pi\)
\(882\) 0 0
\(883\) −52.3914 −1.76311 −0.881556 0.472079i \(-0.843504\pi\)
−0.881556 + 0.472079i \(0.843504\pi\)
\(884\) 2.44331 0.0821775
\(885\) 0 0
\(886\) 46.2597 1.55412
\(887\) −44.0877 −1.48032 −0.740160 0.672431i \(-0.765250\pi\)
−0.740160 + 0.672431i \(0.765250\pi\)
\(888\) 0 0
\(889\) 25.9283 0.869606
\(890\) 25.2149i 0.845207i
\(891\) 0 0
\(892\) 0.378888 0.0126861
\(893\) 13.7244 0.459271
\(894\) 0 0
\(895\) 24.2369i 0.810151i
\(896\) 59.0369 1.97228
\(897\) 0 0
\(898\) 36.3167i 1.21190i
\(899\) 16.2125 0.540716
\(900\) 0 0
\(901\) 39.9070 1.32950
\(902\) 2.14742i 0.0715013i
\(903\) 0 0
\(904\) 20.3137 0.675623
\(905\) 25.9363i 0.862151i
\(906\) 0 0
\(907\) −34.5597 −1.14754 −0.573768 0.819018i \(-0.694519\pi\)
−0.573768 + 0.819018i \(0.694519\pi\)
\(908\) 1.01379 0.0336439
\(909\) 0 0
\(910\) 103.033 3.41550
\(911\) 19.6647i 0.651519i −0.945453 0.325760i \(-0.894380\pi\)
0.945453 0.325760i \(-0.105620\pi\)
\(912\) 0 0
\(913\) 0.730374 0.0241718
\(914\) 5.20104i 0.172035i
\(915\) 0 0
\(916\) 0.776679i 0.0256622i
\(917\) 9.27188 0.306184
\(918\) 0 0
\(919\) 38.8259i 1.28075i 0.768063 + 0.640374i \(0.221221\pi\)
−0.768063 + 0.640374i \(0.778779\pi\)
\(920\) 46.6074i 1.53660i
\(921\) 0 0
\(922\) 27.2909i 0.898777i
\(923\) 78.2872 2.57685
\(924\) 0 0
\(925\) 0.903341i 0.0297017i
\(926\) 1.60101i 0.0526124i
\(927\) 0 0
\(928\) 3.65564i 0.120002i
\(929\) −45.9332 −1.50702 −0.753510 0.657437i \(-0.771641\pi\)
−0.753510 + 0.657437i \(0.771641\pi\)
\(930\) 0 0
\(931\) 67.7769 2.22130
\(932\) −0.863057 −0.0282704
\(933\) 0 0
\(934\) −21.3378 −0.698196
\(935\) 19.9403 0.652117
\(936\) 0 0
\(937\) 21.3913i 0.698823i −0.936969 0.349412i \(-0.886381\pi\)
0.936969 0.349412i \(-0.113619\pi\)
\(938\) 52.2037i 1.70451i
\(939\) 0 0
\(940\) 0.838597i 0.0273520i
\(941\) −3.42668 −0.111707 −0.0558533 0.998439i \(-0.517788\pi\)
−0.0558533 + 0.998439i \(0.517788\pi\)
\(942\) 0 0
\(943\) 4.31333i 0.140462i
\(944\) 32.3120 + 0.998728i 1.05167 + 0.0325058i
\(945\) 0 0
\(946\) 20.8227i 0.677004i
\(947\) 43.7251i 1.42088i 0.703760 + 0.710438i \(0.251503\pi\)
−0.703760 + 0.710438i \(0.748497\pi\)
\(948\) 0 0
\(949\) −92.4827 −3.00212
\(950\) 0.708858 0.0229984
\(951\) 0 0
\(952\) 45.6741i 1.48031i
\(953\) 47.1692i 1.52796i −0.645241 0.763979i \(-0.723243\pi\)
0.645241 0.763979i \(-0.276757\pi\)
\(954\) 0 0
\(955\) 30.6623i 0.992207i
\(956\) 0.544389i 0.0176068i
\(957\) 0 0
\(958\) 24.4992i 0.791534i
\(959\) 41.8628i 1.35182i
\(960\) 0 0
\(961\) 23.3412 0.752943
\(962\) 71.0044 2.28927
\(963\) 0 0
\(964\) −1.11596 −0.0359425
\(965\) 4.14154i 0.133321i
\(966\) 0 0
\(967\) 43.2197i 1.38985i 0.719082 + 0.694926i \(0.244563\pi\)
−0.719082 + 0.694926i \(0.755437\pi\)
\(968\) −12.0408 −0.387006
\(969\) 0 0
\(970\) −16.7650 −0.538291
\(971\) 27.9637i 0.897398i −0.893683 0.448699i \(-0.851888\pi\)
0.893683 0.448699i \(-0.148112\pi\)
\(972\) 0 0
\(973\) 38.3851 1.23057
\(974\) −49.2956 −1.57953
\(975\) 0 0
\(976\) 47.6650i 1.52572i
\(977\) −16.4979 −0.527816 −0.263908 0.964548i \(-0.585012\pi\)
−0.263908 + 0.964548i \(0.585012\pi\)
\(978\) 0 0
\(979\) 19.7281 0.630512
\(980\) 4.14133i 0.132290i
\(981\) 0 0
\(982\) 20.2193i 0.645224i
\(983\) −19.1629 −0.611201 −0.305600 0.952160i \(-0.598857\pi\)
−0.305600 + 0.952160i \(0.598857\pi\)
\(984\) 0 0
\(985\) 25.7609 0.820809
\(986\) −29.1650 −0.928802
\(987\) 0 0
\(988\) 2.91560i 0.0927575i
\(989\) 41.8247i 1.32995i
\(990\) 0 0
\(991\) 44.4423i 1.41175i −0.708334 0.705877i \(-0.750553\pi\)
0.708334 0.705877i \(-0.249447\pi\)
\(992\) 1.72693i 0.0548299i
\(993\) 0 0
\(994\) 85.5318i 2.71290i
\(995\) 9.71497i 0.307985i
\(996\) 0 0
\(997\) 11.2680 0.356863 0.178431 0.983952i \(-0.442898\pi\)
0.178431 + 0.983952i \(0.442898\pi\)
\(998\) 17.1219 0.541984
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.d.a.530.5 20
3.2 odd 2 inner 531.2.d.a.530.16 yes 20
59.58 odd 2 inner 531.2.d.a.530.15 yes 20
177.176 even 2 inner 531.2.d.a.530.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
531.2.d.a.530.5 20 1.1 even 1 trivial
531.2.d.a.530.6 yes 20 177.176 even 2 inner
531.2.d.a.530.15 yes 20 59.58 odd 2 inner
531.2.d.a.530.16 yes 20 3.2 odd 2 inner