Properties

Label 531.2.d.a
Level $531$
Weight $2$
Character orbit 531.d
Analytic conductor $4.240$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(530,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.530"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{12} q^{2} + (\beta_{2} + 1) q^{4} + \beta_{13} q^{5} - \beta_{4} q^{7} + ( - \beta_{15} - \beta_{12}) q^{8} + (\beta_{6} + \beta_{3}) q^{10} - \beta_{18} q^{11} + \beta_{6} q^{13} + (\beta_{18} - \beta_{16}) q^{14}+ \cdots + (3 \beta_{19} - 2 \beta_{16} + \cdots - \beta_{12}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} - 8 q^{7} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 8 q^{28} + 44 q^{49} + 36 q^{64} - 96 q^{76} - 24 q^{85} + 16 q^{88} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 726777222591367 \nu^{18} + \cdots - 37\!\cdots\!13 ) / 36\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 726777222591367 \nu^{18} + \cdots - 55\!\cdots\!31 ) / 18\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 11\!\cdots\!86 \nu^{18} + \cdots + 97\!\cdots\!39 ) / 22\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 93\!\cdots\!23 \nu^{18} + \cdots - 20\!\cdots\!11 ) / 55\!\cdots\!54 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 22\!\cdots\!53 \nu^{18} + \cdots + 38\!\cdots\!41 ) / 55\!\cdots\!54 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 15\!\cdots\!51 \nu^{18} + \cdots - 11\!\cdots\!65 ) / 22\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 38\!\cdots\!22 \nu^{18} + \cdots - 60\!\cdots\!00 ) / 55\!\cdots\!54 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 92\!\cdots\!25 \nu^{18} + \cdots + 72\!\cdots\!28 ) / 11\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 19\!\cdots\!31 \nu^{18} + \cdots + 71\!\cdots\!03 ) / 22\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 14\!\cdots\!37 \nu^{19} + \cdots - 12\!\cdots\!33 \nu ) / 13\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 19\!\cdots\!07 \nu^{19} + \cdots + 80\!\cdots\!40 \nu ) / 67\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 19\!\cdots\!07 \nu^{19} + \cdots - 12\!\cdots\!08 \nu ) / 67\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 37\!\cdots\!70 \nu^{19} + \cdots - 11\!\cdots\!47 \nu ) / 40\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 85\!\cdots\!56 \nu^{19} + \cdots + 19\!\cdots\!55 \nu ) / 67\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 98\!\cdots\!12 \nu^{19} + \cdots + 18\!\cdots\!77 \nu ) / 67\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 50\!\cdots\!21 \nu^{19} + \cdots + 61\!\cdots\!49 \nu ) / 20\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 13\!\cdots\!83 \nu^{19} + \cdots - 72\!\cdots\!43 \nu ) / 40\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 74\!\cdots\!34 \nu^{19} + \cdots + 17\!\cdots\!86 \nu ) / 20\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 98\!\cdots\!07 \nu^{19} + \cdots + 77\!\cdots\!05 \nu ) / 20\!\cdots\!96 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{12} + \beta_{11} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} - 3\beta_{14} - \beta_{12} + 7\beta_{11} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -4\beta_{9} + \beta_{7} + 4\beta_{6} + \beta_{5} - 5\beta_{2} - 12\beta _1 - 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{19} + \beta_{18} - 5 \beta_{17} - \beta_{16} - 11 \beta_{15} - 20 \beta_{14} + \cdots + 5 \beta_{10} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 8 \beta_{9} - 6 \beta_{8} - 20 \beta_{7} + 20 \beta_{6} - 19 \beta_{5} + 2 \beta_{4} + 12 \beta_{3} + \cdots - 171 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 31 \beta_{19} - 30 \beta_{18} + 14 \beta_{17} + 29 \beta_{16} - 171 \beta_{15} + 84 \beta_{14} + \cdots + 14 \beta_{10} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 224 \beta_{9} + 16 \beta_{8} - 201 \beta_{7} - 272 \beta_{6} - 245 \beta_{5} - 85 \beta_{4} - 16 \beta_{3} + \cdots - 590 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 197 \beta_{19} - 254 \beta_{18} + 372 \beta_{17} + 314 \beta_{16} - 488 \beta_{15} + \cdots - 558 \beta_{10} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 2526 \beta_{9} + 812 \beta_{8} + 188 \beta_{7} - 3970 \beta_{6} + 51 \beta_{5} - 499 \beta_{4} + \cdots + 4913 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 1495 \beta_{19} + 1313 \beta_{18} + 1419 \beta_{17} - 1416 \beta_{16} + 9149 \beta_{15} + \cdots - 6325 \beta_{10} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 6536 \beta_{9} + 5012 \beta_{8} + 18206 \beta_{7} - 13248 \beta_{6} + 21762 \beta_{5} + 7556 \beta_{4} + \cdots + 84875 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 28474 \beta_{19} + 35786 \beta_{18} - 9178 \beta_{17} - 41094 \beta_{16} + 121036 \beta_{15} + \cdots - 2574 \beta_{10} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 128156 \beta_{9} - 33212 \beta_{8} + 150218 \beta_{7} + 190356 \beta_{6} + 185352 \beta_{5} + \cdots + 471335 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 123152 \beta_{19} + 185046 \beta_{18} - 163634 \beta_{17} - 210916 \beta_{16} + 416849 \beta_{15} + \cdots + 521738 \beta_{10} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 1704336 \beta_{9} - 706784 \beta_{8} - 83477 \beta_{7} + 2777744 \beta_{6} - 76187 \beta_{5} + \cdots - 1465224 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 1149595 \beta_{19} - 1371423 \beta_{18} - 961605 \beta_{17} + 1557605 \beta_{16} + \cdots + 4767089 \beta_{10} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 6345468 \beta_{9} - 3395666 \beta_{8} - 12507586 \beta_{7} + 11056432 \beta_{6} - 15124823 \beta_{5} + \cdots - 48347593 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 19835787 \beta_{19} - 26441440 \beta_{18} + 2009060 \beta_{17} + 29967773 \beta_{16} + \cdots + 1187120 \beta_{10} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
530.1
2.59182 + 1.41421i
2.59182 1.41421i
2.08812 1.41421i
2.08812 + 1.41421i
1.45273 1.41421i
1.45273 + 1.41421i
1.23509 + 1.41421i
1.23509 1.41421i
0.535103 + 1.41421i
0.535103 1.41421i
−0.535103 + 1.41421i
−0.535103 1.41421i
−1.23509 + 1.41421i
−1.23509 1.41421i
−1.45273 1.41421i
−1.45273 + 1.41421i
−2.08812 1.41421i
−2.08812 + 1.41421i
−2.59182 + 1.41421i
−2.59182 1.41421i
−2.59182 0 4.71754 1.33755i 0 −1.10356 −7.04337 0 3.46670i
530.2 −2.59182 0 4.71754 1.33755i 0 −1.10356 −7.04337 0 3.46670i
530.3 −2.08812 0 2.36026 2.45675i 0 4.05068 −0.752258 0 5.12999i
530.4 −2.08812 0 2.36026 2.45675i 0 4.05068 −0.752258 0 5.12999i
530.5 −1.45273 0 0.110435 2.26259i 0 −4.85531 2.74503 0 3.28694i
530.6 −1.45273 0 0.110435 2.26259i 0 −4.85531 2.74503 0 3.28694i
530.7 −1.23509 0 −0.474562 3.32457i 0 −1.59444 3.05630 0 4.10613i
530.8 −1.23509 0 −0.474562 3.32457i 0 −1.59444 3.05630 0 4.10613i
530.9 −0.535103 0 −1.71366 0.0572139i 0 1.50263 1.98719 0 0.0306154i
530.10 −0.535103 0 −1.71366 0.0572139i 0 1.50263 1.98719 0 0.0306154i
530.11 0.535103 0 −1.71366 0.0572139i 0 1.50263 −1.98719 0 0.0306154i
530.12 0.535103 0 −1.71366 0.0572139i 0 1.50263 −1.98719 0 0.0306154i
530.13 1.23509 0 −0.474562 3.32457i 0 −1.59444 −3.05630 0 4.10613i
530.14 1.23509 0 −0.474562 3.32457i 0 −1.59444 −3.05630 0 4.10613i
530.15 1.45273 0 0.110435 2.26259i 0 −4.85531 −2.74503 0 3.28694i
530.16 1.45273 0 0.110435 2.26259i 0 −4.85531 −2.74503 0 3.28694i
530.17 2.08812 0 2.36026 2.45675i 0 4.05068 0.752258 0 5.12999i
530.18 2.08812 0 2.36026 2.45675i 0 4.05068 0.752258 0 5.12999i
530.19 2.59182 0 4.71754 1.33755i 0 −1.10356 7.04337 0 3.46670i
530.20 2.59182 0 4.71754 1.33755i 0 −1.10356 7.04337 0 3.46670i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 530.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
59.b odd 2 1 inner
177.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 531.2.d.a 20
3.b odd 2 1 inner 531.2.d.a 20
59.b odd 2 1 inner 531.2.d.a 20
177.d even 2 1 inner 531.2.d.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
531.2.d.a 20 1.a even 1 1 trivial
531.2.d.a 20 3.b odd 2 1 inner
531.2.d.a 20 59.b odd 2 1 inner
531.2.d.a 20 177.d even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(531, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{10} - 15 T^{8} + \cdots - 27)^{2} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( (T^{10} + 24 T^{8} + \cdots + 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{5} + 2 T^{4} - 21 T^{3} + \cdots + 52)^{4} \) Copy content Toggle raw display
$11$ \( (T^{10} - 58 T^{8} + \cdots - 38988)^{2} \) Copy content Toggle raw display
$13$ \( (T^{10} + 64 T^{8} + \cdots + 864)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} + 70 T^{8} + \cdots + 34322)^{2} \) Copy content Toggle raw display
$19$ \( (T^{5} - 35 T^{3} + \cdots - 412)^{4} \) Copy content Toggle raw display
$23$ \( (T^{10} - 146 T^{8} + \cdots - 1581228)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 76 T^{8} + \cdots + 3698)^{2} \) Copy content Toggle raw display
$31$ \( (T^{10} + 154 T^{8} + \cdots + 1888326)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + 196 T^{8} + \cdots + 32350104)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + 308 T^{8} + \cdots + 5126402)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + 266 T^{8} + \cdots + 68830614)^{2} \) Copy content Toggle raw display
$47$ \( (T^{10} - 196 T^{8} + \cdots - 3345408)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + 332 T^{8} + \cdots + 211233458)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 51\!\cdots\!01 \) Copy content Toggle raw display
$61$ \( (T^{10} + 328 T^{8} + \cdots + 2032344)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} + 346 T^{8} + \cdots + 196379046)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + 298 T^{8} + \cdots + 1492992)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + 568 T^{8} + \cdots + 1932353496)^{2} \) Copy content Toggle raw display
$79$ \( (T^{5} - 172 T^{3} + \cdots + 4972)^{4} \) Copy content Toggle raw display
$83$ \( (T^{10} - 152 T^{8} + \cdots - 38988)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 564 T^{8} + \cdots - 12064006188)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + 720 T^{8} + \cdots + 11933889624)^{2} \) Copy content Toggle raw display
show more
show less