Properties

Label 531.2.d.a.530.3
Level $531$
Weight $2$
Character 531.530
Analytic conductor $4.240$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(530,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.530"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 530.3
Root \(2.08812 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 531.530
Dual form 531.2.d.a.530.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08812 q^{2} +2.36026 q^{4} -2.45675i q^{5} +4.05068 q^{7} -0.752258 q^{8} +5.12999i q^{10} +2.91471 q^{11} +1.21007i q^{13} -8.45832 q^{14} -3.14970 q^{16} +1.92759i q^{17} +2.11411 q^{19} -5.79855i q^{20} -6.08628 q^{22} -2.53929 q^{23} -1.03560 q^{25} -2.52677i q^{26} +9.56064 q^{28} +1.99371i q^{29} -5.80912i q^{31} +8.08148 q^{32} -4.02504i q^{34} -9.95149i q^{35} -5.66290i q^{37} -4.41451 q^{38} +1.84811i q^{40} +10.6010i q^{41} +10.2189i q^{43} +6.87947 q^{44} +5.30234 q^{46} +10.0953 q^{47} +9.40801 q^{49} +2.16245 q^{50} +2.85607i q^{52} -7.11916i q^{53} -7.16071i q^{55} -3.04716 q^{56} -4.16312i q^{58} +(0.376831 - 7.67190i) q^{59} -0.735026i q^{61} +12.1301i q^{62} -10.5757 q^{64} +2.97282 q^{65} -14.2358i q^{67} +4.54960i q^{68} +20.7799i q^{70} -1.02120i q^{71} -13.2278i q^{73} +11.8248i q^{74} +4.98983 q^{76} +11.8066 q^{77} -10.8908 q^{79} +7.73802i q^{80} -22.1362i q^{82} +6.87947 q^{83} +4.73559 q^{85} -21.3383i q^{86} -2.19262 q^{88} +8.24682 q^{89} +4.90159i q^{91} -5.99336 q^{92} -21.0802 q^{94} -5.19382i q^{95} +15.2551i q^{97} -19.6451 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} - 8 q^{7} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 8 q^{28} + 44 q^{49} + 36 q^{64} - 96 q^{76} - 24 q^{85} + 16 q^{88} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08812 −1.47653 −0.738263 0.674513i \(-0.764354\pi\)
−0.738263 + 0.674513i \(0.764354\pi\)
\(3\) 0 0
\(4\) 2.36026 1.18013
\(5\) 2.45675i 1.09869i −0.835596 0.549345i \(-0.814877\pi\)
0.835596 0.549345i \(-0.185123\pi\)
\(6\) 0 0
\(7\) 4.05068 1.53101 0.765506 0.643428i \(-0.222488\pi\)
0.765506 + 0.643428i \(0.222488\pi\)
\(8\) −0.752258 −0.265963
\(9\) 0 0
\(10\) 5.12999i 1.62224i
\(11\) 2.91471 0.878819 0.439409 0.898287i \(-0.355188\pi\)
0.439409 + 0.898287i \(0.355188\pi\)
\(12\) 0 0
\(13\) 1.21007i 0.335612i 0.985820 + 0.167806i \(0.0536682\pi\)
−0.985820 + 0.167806i \(0.946332\pi\)
\(14\) −8.45832 −2.26058
\(15\) 0 0
\(16\) −3.14970 −0.787426
\(17\) 1.92759i 0.467509i 0.972296 + 0.233754i \(0.0751012\pi\)
−0.972296 + 0.233754i \(0.924899\pi\)
\(18\) 0 0
\(19\) 2.11411 0.485009 0.242505 0.970150i \(-0.422031\pi\)
0.242505 + 0.970150i \(0.422031\pi\)
\(20\) 5.79855i 1.29659i
\(21\) 0 0
\(22\) −6.08628 −1.29760
\(23\) −2.53929 −0.529478 −0.264739 0.964320i \(-0.585286\pi\)
−0.264739 + 0.964320i \(0.585286\pi\)
\(24\) 0 0
\(25\) −1.03560 −0.207120
\(26\) 2.52677i 0.495540i
\(27\) 0 0
\(28\) 9.56064 1.80679
\(29\) 1.99371i 0.370223i 0.982718 + 0.185112i \(0.0592647\pi\)
−0.982718 + 0.185112i \(0.940735\pi\)
\(30\) 0 0
\(31\) 5.80912i 1.04335i −0.853145 0.521674i \(-0.825308\pi\)
0.853145 0.521674i \(-0.174692\pi\)
\(32\) 8.08148 1.42862
\(33\) 0 0
\(34\) 4.02504i 0.690289i
\(35\) 9.95149i 1.68211i
\(36\) 0 0
\(37\) 5.66290i 0.930976i −0.885054 0.465488i \(-0.845879\pi\)
0.885054 0.465488i \(-0.154121\pi\)
\(38\) −4.41451 −0.716129
\(39\) 0 0
\(40\) 1.84811i 0.292211i
\(41\) 10.6010i 1.65560i 0.561024 + 0.827800i \(0.310408\pi\)
−0.561024 + 0.827800i \(0.689592\pi\)
\(42\) 0 0
\(43\) 10.2189i 1.55836i 0.626797 + 0.779182i \(0.284365\pi\)
−0.626797 + 0.779182i \(0.715635\pi\)
\(44\) 6.87947 1.03712
\(45\) 0 0
\(46\) 5.30234 0.781787
\(47\) 10.0953 1.47255 0.736274 0.676684i \(-0.236584\pi\)
0.736274 + 0.676684i \(0.236584\pi\)
\(48\) 0 0
\(49\) 9.40801 1.34400
\(50\) 2.16245 0.305817
\(51\) 0 0
\(52\) 2.85607i 0.396065i
\(53\) 7.11916i 0.977893i −0.872314 0.488946i \(-0.837381\pi\)
0.872314 0.488946i \(-0.162619\pi\)
\(54\) 0 0
\(55\) 7.16071i 0.965549i
\(56\) −3.04716 −0.407193
\(57\) 0 0
\(58\) 4.16312i 0.546644i
\(59\) 0.376831 7.67190i 0.0490592 0.998796i
\(60\) 0 0
\(61\) 0.735026i 0.0941104i −0.998892 0.0470552i \(-0.985016\pi\)
0.998892 0.0470552i \(-0.0149837\pi\)
\(62\) 12.1301i 1.54053i
\(63\) 0 0
\(64\) −10.5757 −1.32197
\(65\) 2.97282 0.368733
\(66\) 0 0
\(67\) 14.2358i 1.73918i −0.493776 0.869589i \(-0.664384\pi\)
0.493776 0.869589i \(-0.335616\pi\)
\(68\) 4.54960i 0.551720i
\(69\) 0 0
\(70\) 20.7799i 2.48368i
\(71\) 1.02120i 0.121194i −0.998162 0.0605972i \(-0.980699\pi\)
0.998162 0.0605972i \(-0.0193005\pi\)
\(72\) 0 0
\(73\) 13.2278i 1.54820i −0.633063 0.774100i \(-0.718203\pi\)
0.633063 0.774100i \(-0.281797\pi\)
\(74\) 11.8248i 1.37461i
\(75\) 0 0
\(76\) 4.98983 0.572373
\(77\) 11.8066 1.34548
\(78\) 0 0
\(79\) −10.8908 −1.22531 −0.612656 0.790350i \(-0.709899\pi\)
−0.612656 + 0.790350i \(0.709899\pi\)
\(80\) 7.73802i 0.865137i
\(81\) 0 0
\(82\) 22.1362i 2.44453i
\(83\) 6.87947 0.755120 0.377560 0.925985i \(-0.376763\pi\)
0.377560 + 0.925985i \(0.376763\pi\)
\(84\) 0 0
\(85\) 4.73559 0.513647
\(86\) 21.3383i 2.30097i
\(87\) 0 0
\(88\) −2.19262 −0.233734
\(89\) 8.24682 0.874162 0.437081 0.899422i \(-0.356012\pi\)
0.437081 + 0.899422i \(0.356012\pi\)
\(90\) 0 0
\(91\) 4.90159i 0.513826i
\(92\) −5.99336 −0.624851
\(93\) 0 0
\(94\) −21.0802 −2.17425
\(95\) 5.19382i 0.532875i
\(96\) 0 0
\(97\) 15.2551i 1.54892i 0.632622 + 0.774460i \(0.281979\pi\)
−0.632622 + 0.774460i \(0.718021\pi\)
\(98\) −19.6451 −1.98445
\(99\) 0 0
\(100\) −2.44428 −0.244428
\(101\) −16.9747 −1.68905 −0.844525 0.535516i \(-0.820117\pi\)
−0.844525 + 0.535516i \(0.820117\pi\)
\(102\) 0 0
\(103\) 1.59479i 0.157139i −0.996909 0.0785696i \(-0.974965\pi\)
0.996909 0.0785696i \(-0.0250353\pi\)
\(104\) 0.910282i 0.0892605i
\(105\) 0 0
\(106\) 14.8657i 1.44388i
\(107\) 3.49538i 0.337911i 0.985624 + 0.168956i \(0.0540395\pi\)
−0.985624 + 0.168956i \(0.945961\pi\)
\(108\) 0 0
\(109\) 11.7792i 1.12825i 0.825690 + 0.564124i \(0.190786\pi\)
−0.825690 + 0.564124i \(0.809214\pi\)
\(110\) 14.9524i 1.42566i
\(111\) 0 0
\(112\) −12.7584 −1.20556
\(113\) −4.13341 −0.388838 −0.194419 0.980919i \(-0.562282\pi\)
−0.194419 + 0.980919i \(0.562282\pi\)
\(114\) 0 0
\(115\) 6.23838i 0.581732i
\(116\) 4.70567i 0.436911i
\(117\) 0 0
\(118\) −0.786868 + 16.0199i −0.0724371 + 1.47475i
\(119\) 7.80804i 0.715762i
\(120\) 0 0
\(121\) −2.50445 −0.227677
\(122\) 1.53482i 0.138956i
\(123\) 0 0
\(124\) 13.7110i 1.23128i
\(125\) 9.73953i 0.871130i
\(126\) 0 0
\(127\) −10.7561 −0.954450 −0.477225 0.878781i \(-0.658357\pi\)
−0.477225 + 0.878781i \(0.658357\pi\)
\(128\) 5.92043 0.523297
\(129\) 0 0
\(130\) −6.20762 −0.544444
\(131\) −15.8771 −1.38719 −0.693596 0.720364i \(-0.743975\pi\)
−0.693596 + 0.720364i \(0.743975\pi\)
\(132\) 0 0
\(133\) 8.56357 0.742556
\(134\) 29.7261i 2.56794i
\(135\) 0 0
\(136\) 1.45004i 0.124340i
\(137\) 9.33648i 0.797669i −0.917023 0.398835i \(-0.869415\pi\)
0.917023 0.398835i \(-0.130585\pi\)
\(138\) 0 0
\(139\) 4.53341 0.384518 0.192259 0.981344i \(-0.438419\pi\)
0.192259 + 0.981344i \(0.438419\pi\)
\(140\) 23.4881i 1.98510i
\(141\) 0 0
\(142\) 2.13240i 0.178947i
\(143\) 3.52700i 0.294942i
\(144\) 0 0
\(145\) 4.89805 0.406761
\(146\) 27.6213i 2.28596i
\(147\) 0 0
\(148\) 13.3659i 1.09867i
\(149\) 3.69706 0.302875 0.151438 0.988467i \(-0.451610\pi\)
0.151438 + 0.988467i \(0.451610\pi\)
\(150\) 0 0
\(151\) 17.7480i 1.44432i 0.691729 + 0.722158i \(0.256849\pi\)
−0.691729 + 0.722158i \(0.743151\pi\)
\(152\) −1.59035 −0.128995
\(153\) 0 0
\(154\) −24.6536 −1.98664
\(155\) −14.2715 −1.14632
\(156\) 0 0
\(157\) 7.94350i 0.633960i −0.948432 0.316980i \(-0.897331\pi\)
0.948432 0.316980i \(-0.102669\pi\)
\(158\) 22.7413 1.80920
\(159\) 0 0
\(160\) 19.8542i 1.56961i
\(161\) −10.2858 −0.810637
\(162\) 0 0
\(163\) 10.4381 0.817575 0.408787 0.912630i \(-0.365952\pi\)
0.408787 + 0.912630i \(0.365952\pi\)
\(164\) 25.0211i 1.95382i
\(165\) 0 0
\(166\) −14.3652 −1.11495
\(167\) 2.32049i 0.179565i 0.995961 + 0.0897825i \(0.0286172\pi\)
−0.995961 + 0.0897825i \(0.971383\pi\)
\(168\) 0 0
\(169\) 11.5357 0.887365
\(170\) −9.88850 −0.758413
\(171\) 0 0
\(172\) 24.1192i 1.83907i
\(173\) 11.2625 0.856271 0.428136 0.903715i \(-0.359171\pi\)
0.428136 + 0.903715i \(0.359171\pi\)
\(174\) 0 0
\(175\) −4.19487 −0.317103
\(176\) −9.18048 −0.692005
\(177\) 0 0
\(178\) −17.2204 −1.29072
\(179\) −24.9652 −1.86599 −0.932994 0.359892i \(-0.882814\pi\)
−0.932994 + 0.359892i \(0.882814\pi\)
\(180\) 0 0
\(181\) −6.84790 −0.509000 −0.254500 0.967073i \(-0.581911\pi\)
−0.254500 + 0.967073i \(0.581911\pi\)
\(182\) 10.2351i 0.758678i
\(183\) 0 0
\(184\) 1.91020 0.140822
\(185\) −13.9123 −1.02285
\(186\) 0 0
\(187\) 5.61837i 0.410856i
\(188\) 23.8274 1.73779
\(189\) 0 0
\(190\) 10.8453i 0.786803i
\(191\) −5.92374 −0.428627 −0.214314 0.976765i \(-0.568751\pi\)
−0.214314 + 0.976765i \(0.568751\pi\)
\(192\) 0 0
\(193\) 27.0879 1.94983 0.974916 0.222572i \(-0.0714452\pi\)
0.974916 + 0.222572i \(0.0714452\pi\)
\(194\) 31.8545i 2.28702i
\(195\) 0 0
\(196\) 22.2053 1.58609
\(197\) 6.14511i 0.437821i −0.975745 0.218911i \(-0.929750\pi\)
0.975745 0.218911i \(-0.0702503\pi\)
\(198\) 0 0
\(199\) −2.50512 −0.177583 −0.0887917 0.996050i \(-0.528301\pi\)
−0.0887917 + 0.996050i \(0.528301\pi\)
\(200\) 0.779037 0.0550862
\(201\) 0 0
\(202\) 35.4453 2.49393
\(203\) 8.07589i 0.566817i
\(204\) 0 0
\(205\) 26.0440 1.81899
\(206\) 3.33011i 0.232020i
\(207\) 0 0
\(208\) 3.81135i 0.264270i
\(209\) 6.16201 0.426235
\(210\) 0 0
\(211\) 21.0642i 1.45012i 0.688685 + 0.725060i \(0.258188\pi\)
−0.688685 + 0.725060i \(0.741812\pi\)
\(212\) 16.8030i 1.15404i
\(213\) 0 0
\(214\) 7.29878i 0.498935i
\(215\) 25.1052 1.71216
\(216\) 0 0
\(217\) 23.5309i 1.59738i
\(218\) 24.5965i 1.66589i
\(219\) 0 0
\(220\) 16.9011i 1.13947i
\(221\) −2.33251 −0.156902
\(222\) 0 0
\(223\) −26.0367 −1.74354 −0.871772 0.489912i \(-0.837029\pi\)
−0.871772 + 0.489912i \(0.837029\pi\)
\(224\) 32.7355 2.18723
\(225\) 0 0
\(226\) 8.63106 0.574129
\(227\) 15.6817 1.04083 0.520416 0.853913i \(-0.325777\pi\)
0.520416 + 0.853913i \(0.325777\pi\)
\(228\) 0 0
\(229\) 1.07199i 0.0708390i 0.999373 + 0.0354195i \(0.0112767\pi\)
−0.999373 + 0.0354195i \(0.988723\pi\)
\(230\) 13.0265i 0.858942i
\(231\) 0 0
\(232\) 1.49979i 0.0984658i
\(233\) −0.690675 −0.0452476 −0.0226238 0.999744i \(-0.507202\pi\)
−0.0226238 + 0.999744i \(0.507202\pi\)
\(234\) 0 0
\(235\) 24.8015i 1.61787i
\(236\) 0.889416 18.1076i 0.0578961 1.17871i
\(237\) 0 0
\(238\) 16.3041i 1.05684i
\(239\) 20.3847i 1.31858i −0.751889 0.659290i \(-0.770857\pi\)
0.751889 0.659290i \(-0.229143\pi\)
\(240\) 0 0
\(241\) −9.96314 −0.641782 −0.320891 0.947116i \(-0.603982\pi\)
−0.320891 + 0.947116i \(0.603982\pi\)
\(242\) 5.22960 0.336171
\(243\) 0 0
\(244\) 1.73485i 0.111062i
\(245\) 23.1131i 1.47664i
\(246\) 0 0
\(247\) 2.55821i 0.162775i
\(248\) 4.36995i 0.277492i
\(249\) 0 0
\(250\) 20.3373i 1.28625i
\(251\) 25.1337i 1.58642i 0.608946 + 0.793211i \(0.291592\pi\)
−0.608946 + 0.793211i \(0.708408\pi\)
\(252\) 0 0
\(253\) −7.40129 −0.465315
\(254\) 22.4601 1.40927
\(255\) 0 0
\(256\) 8.78885 0.549303
\(257\) 6.34893i 0.396035i 0.980198 + 0.198018i \(0.0634503\pi\)
−0.980198 + 0.198018i \(0.936550\pi\)
\(258\) 0 0
\(259\) 22.9386i 1.42534i
\(260\) 7.01663 0.435153
\(261\) 0 0
\(262\) 33.1534 2.04823
\(263\) 17.6799i 1.09019i 0.838375 + 0.545094i \(0.183506\pi\)
−0.838375 + 0.545094i \(0.816494\pi\)
\(264\) 0 0
\(265\) −17.4900 −1.07440
\(266\) −17.8818 −1.09640
\(267\) 0 0
\(268\) 33.6001i 2.05245i
\(269\) −7.36072 −0.448791 −0.224396 0.974498i \(-0.572041\pi\)
−0.224396 + 0.974498i \(0.572041\pi\)
\(270\) 0 0
\(271\) −15.4411 −0.937980 −0.468990 0.883203i \(-0.655382\pi\)
−0.468990 + 0.883203i \(0.655382\pi\)
\(272\) 6.07133i 0.368129i
\(273\) 0 0
\(274\) 19.4957i 1.17778i
\(275\) −3.01847 −0.182021
\(276\) 0 0
\(277\) 28.1279 1.69004 0.845022 0.534732i \(-0.179588\pi\)
0.845022 + 0.534732i \(0.179588\pi\)
\(278\) −9.46631 −0.567751
\(279\) 0 0
\(280\) 7.48609i 0.447379i
\(281\) 11.5328i 0.687987i 0.938972 + 0.343993i \(0.111780\pi\)
−0.938972 + 0.343993i \(0.888220\pi\)
\(282\) 0 0
\(283\) 8.42176i 0.500622i 0.968166 + 0.250311i \(0.0805328\pi\)
−0.968166 + 0.250311i \(0.919467\pi\)
\(284\) 2.41030i 0.143025i
\(285\) 0 0
\(286\) 7.36480i 0.435490i
\(287\) 42.9413i 2.53474i
\(288\) 0 0
\(289\) 13.2844 0.781435
\(290\) −10.2277 −0.600592
\(291\) 0 0
\(292\) 31.2210i 1.82707i
\(293\) 15.5123i 0.906236i −0.891451 0.453118i \(-0.850312\pi\)
0.891451 0.453118i \(-0.149688\pi\)
\(294\) 0 0
\(295\) −18.8479 0.925777i −1.09737 0.0539008i
\(296\) 4.25997i 0.247605i
\(297\) 0 0
\(298\) −7.71992 −0.447203
\(299\) 3.07270i 0.177699i
\(300\) 0 0
\(301\) 41.3934i 2.38588i
\(302\) 37.0601i 2.13257i
\(303\) 0 0
\(304\) −6.65881 −0.381909
\(305\) −1.80577 −0.103398
\(306\) 0 0
\(307\) −11.5400 −0.658625 −0.329313 0.944221i \(-0.606817\pi\)
−0.329313 + 0.944221i \(0.606817\pi\)
\(308\) 27.8665 1.58784
\(309\) 0 0
\(310\) 29.8007 1.69257
\(311\) 26.0654i 1.47803i 0.673687 + 0.739017i \(0.264710\pi\)
−0.673687 + 0.739017i \(0.735290\pi\)
\(312\) 0 0
\(313\) 27.8402i 1.57362i 0.617195 + 0.786811i \(0.288269\pi\)
−0.617195 + 0.786811i \(0.711731\pi\)
\(314\) 16.5870i 0.936058i
\(315\) 0 0
\(316\) −25.7051 −1.44602
\(317\) 29.7970i 1.67357i −0.547533 0.836784i \(-0.684433\pi\)
0.547533 0.836784i \(-0.315567\pi\)
\(318\) 0 0
\(319\) 5.81110i 0.325359i
\(320\) 25.9819i 1.45243i
\(321\) 0 0
\(322\) 21.4781 1.19693
\(323\) 4.07513i 0.226746i
\(324\) 0 0
\(325\) 1.25314i 0.0695118i
\(326\) −21.7960 −1.20717
\(327\) 0 0
\(328\) 7.97469i 0.440329i
\(329\) 40.8927 2.25449
\(330\) 0 0
\(331\) −9.49668 −0.521985 −0.260992 0.965341i \(-0.584050\pi\)
−0.260992 + 0.965341i \(0.584050\pi\)
\(332\) 16.2373 0.891138
\(333\) 0 0
\(334\) 4.84547i 0.265132i
\(335\) −34.9737 −1.91082
\(336\) 0 0
\(337\) 6.87443i 0.374474i 0.982315 + 0.187237i \(0.0599533\pi\)
−0.982315 + 0.187237i \(0.940047\pi\)
\(338\) −24.0880 −1.31022
\(339\) 0 0
\(340\) 11.1772 0.606169
\(341\) 16.9319i 0.916914i
\(342\) 0 0
\(343\) 9.75406 0.526670
\(344\) 7.68723i 0.414468i
\(345\) 0 0
\(346\) −23.5175 −1.26431
\(347\) 19.6199 1.05325 0.526624 0.850098i \(-0.323457\pi\)
0.526624 + 0.850098i \(0.323457\pi\)
\(348\) 0 0
\(349\) 23.4764i 1.25666i −0.777945 0.628332i \(-0.783738\pi\)
0.777945 0.628332i \(-0.216262\pi\)
\(350\) 8.75941 0.468210
\(351\) 0 0
\(352\) 23.5552 1.25550
\(353\) −27.4568 −1.46138 −0.730689 0.682711i \(-0.760801\pi\)
−0.730689 + 0.682711i \(0.760801\pi\)
\(354\) 0 0
\(355\) −2.50883 −0.133155
\(356\) 19.4646 1.03162
\(357\) 0 0
\(358\) 52.1304 2.75518
\(359\) 20.1509i 1.06352i 0.846895 + 0.531761i \(0.178469\pi\)
−0.846895 + 0.531761i \(0.821531\pi\)
\(360\) 0 0
\(361\) −14.5306 −0.764766
\(362\) 14.2992 0.751552
\(363\) 0 0
\(364\) 11.5690i 0.606381i
\(365\) −32.4974 −1.70099
\(366\) 0 0
\(367\) 29.4451i 1.53702i 0.639836 + 0.768511i \(0.279002\pi\)
−0.639836 + 0.768511i \(0.720998\pi\)
\(368\) 7.99800 0.416924
\(369\) 0 0
\(370\) 29.0506 1.51027
\(371\) 28.8375i 1.49717i
\(372\) 0 0
\(373\) −13.5762 −0.702948 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(374\) 11.7318i 0.606639i
\(375\) 0 0
\(376\) −7.59425 −0.391644
\(377\) −2.41252 −0.124251
\(378\) 0 0
\(379\) 1.41962 0.0729210 0.0364605 0.999335i \(-0.488392\pi\)
0.0364605 + 0.999335i \(0.488392\pi\)
\(380\) 12.2587i 0.628861i
\(381\) 0 0
\(382\) 12.3695 0.632879
\(383\) 1.48973i 0.0761217i 0.999275 + 0.0380609i \(0.0121181\pi\)
−0.999275 + 0.0380609i \(0.987882\pi\)
\(384\) 0 0
\(385\) 29.0057i 1.47827i
\(386\) −56.5629 −2.87898
\(387\) 0 0
\(388\) 36.0059i 1.82792i
\(389\) 18.5068i 0.938332i −0.883110 0.469166i \(-0.844555\pi\)
0.883110 0.469166i \(-0.155445\pi\)
\(390\) 0 0
\(391\) 4.89470i 0.247535i
\(392\) −7.07725 −0.357455
\(393\) 0 0
\(394\) 12.8317i 0.646454i
\(395\) 26.7559i 1.34624i
\(396\) 0 0
\(397\) 4.54638i 0.228176i −0.993471 0.114088i \(-0.963605\pi\)
0.993471 0.114088i \(-0.0363946\pi\)
\(398\) 5.23100 0.262206
\(399\) 0 0
\(400\) 3.26183 0.163091
\(401\) −21.1693 −1.05714 −0.528572 0.848889i \(-0.677272\pi\)
−0.528572 + 0.848889i \(0.677272\pi\)
\(402\) 0 0
\(403\) 7.02942 0.350160
\(404\) −40.0647 −1.99329
\(405\) 0 0
\(406\) 16.8635i 0.836919i
\(407\) 16.5057i 0.818159i
\(408\) 0 0
\(409\) 30.4469i 1.50550i 0.658305 + 0.752752i \(0.271274\pi\)
−0.658305 + 0.752752i \(0.728726\pi\)
\(410\) −54.3830 −2.68579
\(411\) 0 0
\(412\) 3.76411i 0.185444i
\(413\) 1.52642 31.0764i 0.0751102 1.52917i
\(414\) 0 0
\(415\) 16.9011i 0.829642i
\(416\) 9.77913i 0.479461i
\(417\) 0 0
\(418\) −12.8670 −0.629348
\(419\) 35.6215 1.74023 0.870113 0.492853i \(-0.164046\pi\)
0.870113 + 0.492853i \(0.164046\pi\)
\(420\) 0 0
\(421\) 17.3156i 0.843909i 0.906617 + 0.421954i \(0.138656\pi\)
−0.906617 + 0.421954i \(0.861344\pi\)
\(422\) 43.9847i 2.14114i
\(423\) 0 0
\(424\) 5.35545i 0.260084i
\(425\) 1.99621i 0.0968302i
\(426\) 0 0
\(427\) 2.97735i 0.144084i
\(428\) 8.24999i 0.398778i
\(429\) 0 0
\(430\) −52.4227 −2.52805
\(431\) −8.66700 −0.417475 −0.208737 0.977972i \(-0.566935\pi\)
−0.208737 + 0.977972i \(0.566935\pi\)
\(432\) 0 0
\(433\) 7.59616 0.365048 0.182524 0.983201i \(-0.441573\pi\)
0.182524 + 0.983201i \(0.441573\pi\)
\(434\) 49.1353i 2.35857i
\(435\) 0 0
\(436\) 27.8020i 1.33148i
\(437\) −5.36832 −0.256802
\(438\) 0 0
\(439\) −29.0707 −1.38747 −0.693734 0.720231i \(-0.744036\pi\)
−0.693734 + 0.720231i \(0.744036\pi\)
\(440\) 5.38670i 0.256801i
\(441\) 0 0
\(442\) 4.87057 0.231669
\(443\) 0.232426 0.0110429 0.00552144 0.999985i \(-0.498242\pi\)
0.00552144 + 0.999985i \(0.498242\pi\)
\(444\) 0 0
\(445\) 20.2603i 0.960433i
\(446\) 54.3677 2.57439
\(447\) 0 0
\(448\) −42.8389 −2.02395
\(449\) 10.5751i 0.499067i 0.968366 + 0.249534i \(0.0802773\pi\)
−0.968366 + 0.249534i \(0.919723\pi\)
\(450\) 0 0
\(451\) 30.8989i 1.45497i
\(452\) −9.75590 −0.458879
\(453\) 0 0
\(454\) −32.7453 −1.53682
\(455\) 12.0420 0.564536
\(456\) 0 0
\(457\) 28.6906i 1.34209i −0.741417 0.671045i \(-0.765846\pi\)
0.741417 0.671045i \(-0.234154\pi\)
\(458\) 2.23845i 0.104596i
\(459\) 0 0
\(460\) 14.7242i 0.686518i
\(461\) 23.3762i 1.08874i 0.838846 + 0.544369i \(0.183231\pi\)
−0.838846 + 0.544369i \(0.816769\pi\)
\(462\) 0 0
\(463\) 4.08709i 0.189943i −0.995480 0.0949715i \(-0.969724\pi\)
0.995480 0.0949715i \(-0.0302760\pi\)
\(464\) 6.27961i 0.291523i
\(465\) 0 0
\(466\) 1.44221 0.0668092
\(467\) 19.2120 0.889025 0.444512 0.895773i \(-0.353377\pi\)
0.444512 + 0.895773i \(0.353377\pi\)
\(468\) 0 0
\(469\) 57.6646i 2.66270i
\(470\) 51.7886i 2.38883i
\(471\) 0 0
\(472\) −0.283474 + 5.77125i −0.0130479 + 0.265643i
\(473\) 29.7851i 1.36952i
\(474\) 0 0
\(475\) −2.18936 −0.100455
\(476\) 18.4290i 0.844691i
\(477\) 0 0
\(478\) 42.5658i 1.94692i
\(479\) 29.9336i 1.36770i 0.729621 + 0.683851i \(0.239696\pi\)
−0.729621 + 0.683851i \(0.760304\pi\)
\(480\) 0 0
\(481\) 6.85249 0.312447
\(482\) 20.8042 0.947607
\(483\) 0 0
\(484\) −5.91114 −0.268688
\(485\) 37.4779 1.70178
\(486\) 0 0
\(487\) −22.9050 −1.03792 −0.518962 0.854798i \(-0.673681\pi\)
−0.518962 + 0.854798i \(0.673681\pi\)
\(488\) 0.552929i 0.0250299i
\(489\) 0 0
\(490\) 48.2629i 2.18030i
\(491\) 12.4050i 0.559832i −0.960025 0.279916i \(-0.909693\pi\)
0.960025 0.279916i \(-0.0903065\pi\)
\(492\) 0 0
\(493\) −3.84306 −0.173083
\(494\) 5.34185i 0.240341i
\(495\) 0 0
\(496\) 18.2970i 0.821560i
\(497\) 4.13656i 0.185550i
\(498\) 0 0
\(499\) −10.4532 −0.467948 −0.233974 0.972243i \(-0.575173\pi\)
−0.233974 + 0.972243i \(0.575173\pi\)
\(500\) 22.9878i 1.02804i
\(501\) 0 0
\(502\) 52.4822i 2.34239i
\(503\) −25.9304 −1.15618 −0.578089 0.815974i \(-0.696201\pi\)
−0.578089 + 0.815974i \(0.696201\pi\)
\(504\) 0 0
\(505\) 41.7026i 1.85574i
\(506\) 15.4548 0.687049
\(507\) 0 0
\(508\) −25.3872 −1.12637
\(509\) −7.71600 −0.342006 −0.171003 0.985271i \(-0.554701\pi\)
−0.171003 + 0.985271i \(0.554701\pi\)
\(510\) 0 0
\(511\) 53.5817i 2.37031i
\(512\) −30.1931 −1.33436
\(513\) 0 0
\(514\) 13.2573i 0.584756i
\(515\) −3.91799 −0.172647
\(516\) 0 0
\(517\) 29.4248 1.29410
\(518\) 47.8986i 2.10454i
\(519\) 0 0
\(520\) −2.23633 −0.0980696
\(521\) 6.07913i 0.266331i 0.991094 + 0.133166i \(0.0425142\pi\)
−0.991094 + 0.133166i \(0.957486\pi\)
\(522\) 0 0
\(523\) −7.14169 −0.312284 −0.156142 0.987735i \(-0.549906\pi\)
−0.156142 + 0.987735i \(0.549906\pi\)
\(524\) −37.4741 −1.63706
\(525\) 0 0
\(526\) 36.9177i 1.60969i
\(527\) 11.1976 0.487774
\(528\) 0 0
\(529\) −16.5520 −0.719654
\(530\) 36.5212 1.58638
\(531\) 0 0
\(532\) 20.2122 0.876311
\(533\) −12.8279 −0.555639
\(534\) 0 0
\(535\) 8.58726 0.371260
\(536\) 10.7090i 0.462558i
\(537\) 0 0
\(538\) 15.3701 0.662651
\(539\) 27.4216 1.18113
\(540\) 0 0
\(541\) 12.9777i 0.557956i 0.960297 + 0.278978i \(0.0899957\pi\)
−0.960297 + 0.278978i \(0.910004\pi\)
\(542\) 32.2429 1.38495
\(543\) 0 0
\(544\) 15.5778i 0.667892i
\(545\) 28.9386 1.23959
\(546\) 0 0
\(547\) −37.5805 −1.60683 −0.803413 0.595422i \(-0.796985\pi\)
−0.803413 + 0.595422i \(0.796985\pi\)
\(548\) 22.0365i 0.941352i
\(549\) 0 0
\(550\) 6.30293 0.268758
\(551\) 4.21492i 0.179562i
\(552\) 0 0
\(553\) −44.1152 −1.87597
\(554\) −58.7345 −2.49539
\(555\) 0 0
\(556\) 10.7000 0.453781
\(557\) 1.90152i 0.0805700i 0.999188 + 0.0402850i \(0.0128266\pi\)
−0.999188 + 0.0402850i \(0.987173\pi\)
\(558\) 0 0
\(559\) −12.3655 −0.523006
\(560\) 31.3442i 1.32454i
\(561\) 0 0
\(562\) 24.0818i 1.01583i
\(563\) −17.0033 −0.716602 −0.358301 0.933606i \(-0.616644\pi\)
−0.358301 + 0.933606i \(0.616644\pi\)
\(564\) 0 0
\(565\) 10.1547i 0.427213i
\(566\) 17.5857i 0.739181i
\(567\) 0 0
\(568\) 0.768208i 0.0322333i
\(569\) 47.3281 1.98410 0.992049 0.125853i \(-0.0401667\pi\)
0.992049 + 0.125853i \(0.0401667\pi\)
\(570\) 0 0
\(571\) 28.4465i 1.19045i −0.803559 0.595225i \(-0.797063\pi\)
0.803559 0.595225i \(-0.202937\pi\)
\(572\) 8.32461i 0.348069i
\(573\) 0 0
\(574\) 89.6667i 3.74261i
\(575\) 2.62968 0.109665
\(576\) 0 0
\(577\) 16.5746 0.690009 0.345005 0.938601i \(-0.387877\pi\)
0.345005 + 0.938601i \(0.387877\pi\)
\(578\) −27.7395 −1.15381
\(579\) 0 0
\(580\) 11.5606 0.480029
\(581\) 27.8665 1.15610
\(582\) 0 0
\(583\) 20.7503i 0.859390i
\(584\) 9.95074i 0.411764i
\(585\) 0 0
\(586\) 32.3915i 1.33808i
\(587\) 8.71377 0.359656 0.179828 0.983698i \(-0.442446\pi\)
0.179828 + 0.983698i \(0.442446\pi\)
\(588\) 0 0
\(589\) 12.2811i 0.506034i
\(590\) 39.3567 + 1.93314i 1.62029 + 0.0795859i
\(591\) 0 0
\(592\) 17.8365i 0.733075i
\(593\) 25.7454i 1.05724i 0.848860 + 0.528618i \(0.177290\pi\)
−0.848860 + 0.528618i \(0.822710\pi\)
\(594\) 0 0
\(595\) 19.1824 0.786401
\(596\) 8.72601 0.357431
\(597\) 0 0
\(598\) 6.41618i 0.262377i
\(599\) 17.6320i 0.720425i −0.932870 0.360212i \(-0.882704\pi\)
0.932870 0.360212i \(-0.117296\pi\)
\(600\) 0 0
\(601\) 11.0031i 0.448827i −0.974494 0.224413i \(-0.927953\pi\)
0.974494 0.224413i \(-0.0720466\pi\)
\(602\) 86.4345i 3.52281i
\(603\) 0 0
\(604\) 41.8899i 1.70448i
\(605\) 6.15280i 0.250147i
\(606\) 0 0
\(607\) 29.6123 1.20193 0.600963 0.799277i \(-0.294784\pi\)
0.600963 + 0.799277i \(0.294784\pi\)
\(608\) 17.0851 0.692893
\(609\) 0 0
\(610\) 3.77067 0.152670
\(611\) 12.2160i 0.494204i
\(612\) 0 0
\(613\) 7.37241i 0.297769i 0.988855 + 0.148884i \(0.0475683\pi\)
−0.988855 + 0.148884i \(0.952432\pi\)
\(614\) 24.0970 0.972477
\(615\) 0 0
\(616\) −8.88159 −0.357849
\(617\) 22.2534i 0.895886i 0.894062 + 0.447943i \(0.147843\pi\)
−0.894062 + 0.447943i \(0.852157\pi\)
\(618\) 0 0
\(619\) 19.0679 0.766403 0.383201 0.923665i \(-0.374822\pi\)
0.383201 + 0.923665i \(0.374822\pi\)
\(620\) −33.6844 −1.35280
\(621\) 0 0
\(622\) 54.4278i 2.18236i
\(623\) 33.4052 1.33835
\(624\) 0 0
\(625\) −29.1055 −1.16422
\(626\) 58.1338i 2.32349i
\(627\) 0 0
\(628\) 18.7487i 0.748154i
\(629\) 10.9157 0.435239
\(630\) 0 0
\(631\) 29.5525 1.17647 0.588233 0.808692i \(-0.299824\pi\)
0.588233 + 0.808692i \(0.299824\pi\)
\(632\) 8.19270 0.325888
\(633\) 0 0
\(634\) 62.2199i 2.47107i
\(635\) 26.4250i 1.04864i
\(636\) 0 0
\(637\) 11.3843i 0.451063i
\(638\) 12.1343i 0.480401i
\(639\) 0 0
\(640\) 14.5450i 0.574941i
\(641\) 41.7782i 1.65014i −0.565031 0.825070i \(-0.691136\pi\)
0.565031 0.825070i \(-0.308864\pi\)
\(642\) 0 0
\(643\) −20.9815 −0.827431 −0.413715 0.910406i \(-0.635769\pi\)
−0.413715 + 0.910406i \(0.635769\pi\)
\(644\) −24.2772 −0.956655
\(645\) 0 0
\(646\) 8.50937i 0.334797i
\(647\) 0.979600i 0.0385120i −0.999815 0.0192560i \(-0.993870\pi\)
0.999815 0.0192560i \(-0.00612976\pi\)
\(648\) 0 0
\(649\) 1.09835 22.3614i 0.0431141 0.877761i
\(650\) 2.61671i 0.102636i
\(651\) 0 0
\(652\) 24.6366 0.964842
\(653\) 30.2362i 1.18323i 0.806219 + 0.591617i \(0.201510\pi\)
−0.806219 + 0.591617i \(0.798490\pi\)
\(654\) 0 0
\(655\) 39.0061i 1.52409i
\(656\) 33.3900i 1.30366i
\(657\) 0 0
\(658\) −85.3890 −3.32881
\(659\) −4.38599 −0.170854 −0.0854269 0.996344i \(-0.527225\pi\)
−0.0854269 + 0.996344i \(0.527225\pi\)
\(660\) 0 0
\(661\) −12.9447 −0.503492 −0.251746 0.967793i \(-0.581005\pi\)
−0.251746 + 0.967793i \(0.581005\pi\)
\(662\) 19.8302 0.770724
\(663\) 0 0
\(664\) −5.17513 −0.200834
\(665\) 21.0385i 0.815838i
\(666\) 0 0
\(667\) 5.06261i 0.196025i
\(668\) 5.47695i 0.211910i
\(669\) 0 0
\(670\) 73.0294 2.82137
\(671\) 2.14239i 0.0827060i
\(672\) 0 0
\(673\) 22.9846i 0.885992i 0.896524 + 0.442996i \(0.146084\pi\)
−0.896524 + 0.442996i \(0.853916\pi\)
\(674\) 14.3547i 0.552921i
\(675\) 0 0
\(676\) 27.2273 1.04720
\(677\) 0.448150i 0.0172238i −0.999963 0.00861191i \(-0.997259\pi\)
0.999963 0.00861191i \(-0.00274129\pi\)
\(678\) 0 0
\(679\) 61.7935i 2.37142i
\(680\) −3.56239 −0.136611
\(681\) 0 0
\(682\) 35.3559i 1.35385i
\(683\) −17.4454 −0.667531 −0.333766 0.942656i \(-0.608319\pi\)
−0.333766 + 0.942656i \(0.608319\pi\)
\(684\) 0 0
\(685\) −22.9373 −0.876391
\(686\) −20.3677 −0.777641
\(687\) 0 0
\(688\) 32.1864i 1.22710i
\(689\) 8.61466 0.328192
\(690\) 0 0
\(691\) 21.0299i 0.800016i −0.916512 0.400008i \(-0.869007\pi\)
0.916512 0.400008i \(-0.130993\pi\)
\(692\) 26.5824 1.01051
\(693\) 0 0
\(694\) −40.9687 −1.55515
\(695\) 11.1374i 0.422467i
\(696\) 0 0
\(697\) −20.4344 −0.774007
\(698\) 49.0217i 1.85550i
\(699\) 0 0
\(700\) −9.90098 −0.374222
\(701\) −13.9255 −0.525960 −0.262980 0.964801i \(-0.584705\pi\)
−0.262980 + 0.964801i \(0.584705\pi\)
\(702\) 0 0
\(703\) 11.9720i 0.451532i
\(704\) −30.8252 −1.16177
\(705\) 0 0
\(706\) 57.3331 2.15776
\(707\) −68.7592 −2.58596
\(708\) 0 0
\(709\) 40.7527 1.53050 0.765249 0.643734i \(-0.222616\pi\)
0.765249 + 0.643734i \(0.222616\pi\)
\(710\) 5.23875 0.196607
\(711\) 0 0
\(712\) −6.20374 −0.232495
\(713\) 14.7510i 0.552429i
\(714\) 0 0
\(715\) 8.66493 0.324050
\(716\) −58.9243 −2.20210
\(717\) 0 0
\(718\) 42.0775i 1.57032i
\(719\) 9.50629 0.354525 0.177262 0.984164i \(-0.443276\pi\)
0.177262 + 0.984164i \(0.443276\pi\)
\(720\) 0 0
\(721\) 6.45998i 0.240582i
\(722\) 30.3416 1.12920
\(723\) 0 0
\(724\) −16.1628 −0.600685
\(725\) 2.06468i 0.0766805i
\(726\) 0 0
\(727\) 33.7101 1.25024 0.625119 0.780530i \(-0.285051\pi\)
0.625119 + 0.780530i \(0.285051\pi\)
\(728\) 3.68726i 0.136659i
\(729\) 0 0
\(730\) 67.8585 2.51156
\(731\) −19.6978 −0.728549
\(732\) 0 0
\(733\) −4.78826 −0.176858 −0.0884292 0.996082i \(-0.528185\pi\)
−0.0884292 + 0.996082i \(0.528185\pi\)
\(734\) 61.4850i 2.26945i
\(735\) 0 0
\(736\) −20.5212 −0.756421
\(737\) 41.4932i 1.52842i
\(738\) 0 0
\(739\) 37.2975i 1.37201i −0.727596 0.686006i \(-0.759362\pi\)
0.727596 0.686006i \(-0.240638\pi\)
\(740\) −32.8366 −1.20710
\(741\) 0 0
\(742\) 60.2161i 2.21060i
\(743\) 32.4149i 1.18919i −0.804026 0.594594i \(-0.797313\pi\)
0.804026 0.594594i \(-0.202687\pi\)
\(744\) 0 0
\(745\) 9.08274i 0.332766i
\(746\) 28.3487 1.03792
\(747\) 0 0
\(748\) 13.2608i 0.484862i
\(749\) 14.1587i 0.517346i
\(750\) 0 0
\(751\) 15.8850i 0.579652i −0.957079 0.289826i \(-0.906403\pi\)
0.957079 0.289826i \(-0.0935975\pi\)
\(752\) −31.7971 −1.15952
\(753\) 0 0
\(754\) 5.03765 0.183460
\(755\) 43.6024 1.58685
\(756\) 0 0
\(757\) 45.5239 1.65460 0.827298 0.561764i \(-0.189877\pi\)
0.827298 + 0.561764i \(0.189877\pi\)
\(758\) −2.96434 −0.107670
\(759\) 0 0
\(760\) 3.90709i 0.141725i
\(761\) 45.9501i 1.66569i 0.553506 + 0.832845i \(0.313290\pi\)
−0.553506 + 0.832845i \(0.686710\pi\)
\(762\) 0 0
\(763\) 47.7140i 1.72736i
\(764\) −13.9816 −0.505835
\(765\) 0 0
\(766\) 3.11074i 0.112396i
\(767\) 9.28350 + 0.455990i 0.335208 + 0.0164648i
\(768\) 0 0
\(769\) 41.6846i 1.50318i −0.659628 0.751592i \(-0.729286\pi\)
0.659628 0.751592i \(-0.270714\pi\)
\(770\) 60.5675i 2.18270i
\(771\) 0 0
\(772\) 63.9345 2.30105
\(773\) 5.78737 0.208157 0.104079 0.994569i \(-0.466811\pi\)
0.104079 + 0.994569i \(0.466811\pi\)
\(774\) 0 0
\(775\) 6.01591i 0.216098i
\(776\) 11.4758i 0.411956i
\(777\) 0 0
\(778\) 38.6444i 1.38547i
\(779\) 22.4117i 0.802981i
\(780\) 0 0
\(781\) 2.97651i 0.106508i
\(782\) 10.2207i 0.365492i
\(783\) 0 0
\(784\) −29.6324 −1.05830
\(785\) −19.5151 −0.696526
\(786\) 0 0
\(787\) −50.0820 −1.78523 −0.892616 0.450819i \(-0.851132\pi\)
−0.892616 + 0.450819i \(0.851132\pi\)
\(788\) 14.5040i 0.516685i
\(789\) 0 0
\(790\) 55.8697i 1.98775i
\(791\) −16.7431 −0.595316
\(792\) 0 0
\(793\) 0.889430 0.0315846
\(794\) 9.49339i 0.336908i
\(795\) 0 0
\(796\) −5.91273 −0.209571
\(797\) −23.7485 −0.841217 −0.420608 0.907242i \(-0.638183\pi\)
−0.420608 + 0.907242i \(0.638183\pi\)
\(798\) 0 0
\(799\) 19.4595i 0.688429i
\(800\) −8.36917 −0.295895
\(801\) 0 0
\(802\) 44.2040 1.56090
\(803\) 38.5553i 1.36059i
\(804\) 0 0
\(805\) 25.2697i 0.890639i
\(806\) −14.6783 −0.517020
\(807\) 0 0
\(808\) 12.7694 0.449225
\(809\) −30.5126 −1.07277 −0.536383 0.843975i \(-0.680210\pi\)
−0.536383 + 0.843975i \(0.680210\pi\)
\(810\) 0 0
\(811\) 23.9284i 0.840240i 0.907469 + 0.420120i \(0.138012\pi\)
−0.907469 + 0.420120i \(0.861988\pi\)
\(812\) 19.0612i 0.668916i
\(813\) 0 0
\(814\) 34.4660i 1.20803i
\(815\) 25.6437i 0.898261i
\(816\) 0 0
\(817\) 21.6038i 0.755821i
\(818\) 63.5769i 2.22291i
\(819\) 0 0
\(820\) 61.4705 2.14664
\(821\) 37.8171 1.31983 0.659913 0.751342i \(-0.270593\pi\)
0.659913 + 0.751342i \(0.270593\pi\)
\(822\) 0 0
\(823\) 21.3721i 0.744984i −0.928035 0.372492i \(-0.878503\pi\)
0.928035 0.372492i \(-0.121497\pi\)
\(824\) 1.19969i 0.0417933i
\(825\) 0 0
\(826\) −3.18735 + 64.8913i −0.110902 + 2.25786i
\(827\) 24.0914i 0.837741i 0.908046 + 0.418871i \(0.137574\pi\)
−0.908046 + 0.418871i \(0.862426\pi\)
\(828\) 0 0
\(829\) −5.57074 −0.193480 −0.0967399 0.995310i \(-0.530842\pi\)
−0.0967399 + 0.995310i \(0.530842\pi\)
\(830\) 35.2916i 1.22499i
\(831\) 0 0
\(832\) 12.7973i 0.443667i
\(833\) 18.1348i 0.628332i
\(834\) 0 0
\(835\) 5.70086 0.197286
\(836\) 14.5439 0.503012
\(837\) 0 0
\(838\) −74.3821 −2.56949
\(839\) −9.60739 −0.331684 −0.165842 0.986152i \(-0.553034\pi\)
−0.165842 + 0.986152i \(0.553034\pi\)
\(840\) 0 0
\(841\) 25.0251 0.862935
\(842\) 36.1570i 1.24605i
\(843\) 0 0
\(844\) 49.7169i 1.71133i
\(845\) 28.3404i 0.974939i
\(846\) 0 0
\(847\) −10.1447 −0.348577
\(848\) 22.4233i 0.770018i
\(849\) 0 0
\(850\) 4.16832i 0.142972i
\(851\) 14.3797i 0.492931i
\(852\) 0 0
\(853\) 33.5799 1.14975 0.574876 0.818240i \(-0.305050\pi\)
0.574876 + 0.818240i \(0.305050\pi\)
\(854\) 6.21708i 0.212744i
\(855\) 0 0
\(856\) 2.62943i 0.0898720i
\(857\) −49.8817 −1.70393 −0.851963 0.523601i \(-0.824588\pi\)
−0.851963 + 0.523601i \(0.824588\pi\)
\(858\) 0 0
\(859\) 14.5742i 0.497266i −0.968598 0.248633i \(-0.920019\pi\)
0.968598 0.248633i \(-0.0799812\pi\)
\(860\) 59.2547 2.02057
\(861\) 0 0
\(862\) 18.0978 0.616412
\(863\) −31.1338 −1.05981 −0.529904 0.848058i \(-0.677772\pi\)
−0.529904 + 0.848058i \(0.677772\pi\)
\(864\) 0 0
\(865\) 27.6691i 0.940776i
\(866\) −15.8617 −0.539003
\(867\) 0 0
\(868\) 55.5389i 1.88511i
\(869\) −31.7436 −1.07683
\(870\) 0 0
\(871\) 17.2262 0.583689
\(872\) 8.86104i 0.300073i
\(873\) 0 0
\(874\) 11.2097 0.379174
\(875\) 39.4517i 1.33371i
\(876\) 0 0
\(877\) 35.0300 1.18288 0.591440 0.806349i \(-0.298560\pi\)
0.591440 + 0.806349i \(0.298560\pi\)
\(878\) 60.7031 2.04863
\(879\) 0 0
\(880\) 22.5541i 0.760299i
\(881\) −11.5847 −0.390298 −0.195149 0.980774i \(-0.562519\pi\)
−0.195149 + 0.980774i \(0.562519\pi\)
\(882\) 0 0
\(883\) −24.1764 −0.813600 −0.406800 0.913517i \(-0.633355\pi\)
−0.406800 + 0.913517i \(0.633355\pi\)
\(884\) −5.50532 −0.185164
\(885\) 0 0
\(886\) −0.485333 −0.0163051
\(887\) −15.5103 −0.520784 −0.260392 0.965503i \(-0.583852\pi\)
−0.260392 + 0.965503i \(0.583852\pi\)
\(888\) 0 0
\(889\) −43.5696 −1.46128
\(890\) 42.3061i 1.41810i
\(891\) 0 0
\(892\) −61.4532 −2.05760
\(893\) 21.3425 0.714199
\(894\) 0 0
\(895\) 61.3332i 2.05014i
\(896\) 23.9818 0.801175
\(897\) 0 0
\(898\) 22.0820i 0.736886i
\(899\) 11.5817 0.386272
\(900\) 0 0
\(901\) 13.7228 0.457173
\(902\) 64.5207i 2.14830i
\(903\) 0 0
\(904\) 3.10939 0.103417
\(905\) 16.8235i 0.559233i
\(906\) 0 0
\(907\) −31.3281 −1.04023 −0.520116 0.854096i \(-0.674111\pi\)
−0.520116 + 0.854096i \(0.674111\pi\)
\(908\) 37.0129 1.22831
\(909\) 0 0
\(910\) −25.1451 −0.833551
\(911\) 36.3805i 1.20534i −0.797990 0.602671i \(-0.794103\pi\)
0.797990 0.602671i \(-0.205897\pi\)
\(912\) 0 0
\(913\) 20.0517 0.663613
\(914\) 59.9095i 1.98163i
\(915\) 0 0
\(916\) 2.53017i 0.0835991i
\(917\) −64.3132 −2.12381
\(918\) 0 0
\(919\) 12.3963i 0.408917i −0.978875 0.204459i \(-0.934457\pi\)
0.978875 0.204459i \(-0.0655434\pi\)
\(920\) 4.69287i 0.154719i
\(921\) 0 0
\(922\) 48.8123i 1.60755i
\(923\) 1.23572 0.0406743
\(924\) 0 0
\(925\) 5.86449i 0.192823i
\(926\) 8.53434i 0.280456i
\(927\) 0 0
\(928\) 16.1122i 0.528908i
\(929\) 6.54232 0.214646 0.107323 0.994224i \(-0.465772\pi\)
0.107323 + 0.994224i \(0.465772\pi\)
\(930\) 0 0
\(931\) 19.8895 0.651853
\(932\) −1.63017 −0.0533980
\(933\) 0 0
\(934\) −40.1170 −1.31267
\(935\) 13.8029 0.451403
\(936\) 0 0
\(937\) 34.3791i 1.12312i 0.827437 + 0.561559i \(0.189798\pi\)
−0.827437 + 0.561559i \(0.810202\pi\)
\(938\) 120.411i 3.93155i
\(939\) 0 0
\(940\) 58.5379i 1.90930i
\(941\) −0.307719 −0.0100313 −0.00501567 0.999987i \(-0.501597\pi\)
−0.00501567 + 0.999987i \(0.501597\pi\)
\(942\) 0 0
\(943\) 26.9190i 0.876603i
\(944\) −1.18690 + 24.1642i −0.0386305 + 0.786478i
\(945\) 0 0
\(946\) 62.1949i 2.02213i
\(947\) 45.9612i 1.49354i −0.665084 0.746768i \(-0.731604\pi\)
0.665084 0.746768i \(-0.268396\pi\)
\(948\) 0 0
\(949\) 16.0065 0.519594
\(950\) 4.57166 0.148324
\(951\) 0 0
\(952\) 5.87366i 0.190367i
\(953\) 13.6688i 0.442777i −0.975186 0.221388i \(-0.928941\pi\)
0.975186 0.221388i \(-0.0710588\pi\)
\(954\) 0 0
\(955\) 14.5531i 0.470928i
\(956\) 48.1132i 1.55609i
\(957\) 0 0
\(958\) 62.5051i 2.01945i
\(959\) 37.8191i 1.22124i
\(960\) 0 0
\(961\) −2.74584 −0.0885754
\(962\) −14.3088 −0.461335
\(963\) 0 0
\(964\) −23.5155 −0.757385
\(965\) 66.5482i 2.14226i
\(966\) 0 0
\(967\) 37.2572i 1.19811i −0.800708 0.599055i \(-0.795543\pi\)
0.800708 0.599055i \(-0.204457\pi\)
\(968\) 1.88399 0.0605538
\(969\) 0 0
\(970\) −78.2584 −2.51273
\(971\) 16.1694i 0.518901i 0.965756 + 0.259451i \(0.0835415\pi\)
−0.965756 + 0.259451i \(0.916458\pi\)
\(972\) 0 0
\(973\) 18.3634 0.588703
\(974\) 47.8284 1.53252
\(975\) 0 0
\(976\) 2.31511i 0.0741050i
\(977\) 45.5053 1.45584 0.727922 0.685660i \(-0.240486\pi\)
0.727922 + 0.685660i \(0.240486\pi\)
\(978\) 0 0
\(979\) 24.0371 0.768230
\(980\) 54.5528i 1.74262i
\(981\) 0 0
\(982\) 25.9032i 0.826606i
\(983\) −30.9022 −0.985626 −0.492813 0.870135i \(-0.664031\pi\)
−0.492813 + 0.870135i \(0.664031\pi\)
\(984\) 0 0
\(985\) −15.0970 −0.481030
\(986\) 8.02478 0.255561
\(987\) 0 0
\(988\) 6.03803i 0.192095i
\(989\) 25.9486i 0.825119i
\(990\) 0 0
\(991\) 44.1846i 1.40357i 0.712389 + 0.701785i \(0.247613\pi\)
−0.712389 + 0.701785i \(0.752387\pi\)
\(992\) 46.9463i 1.49055i
\(993\) 0 0
\(994\) 8.63765i 0.273970i
\(995\) 6.15445i 0.195109i
\(996\) 0 0
\(997\) 56.3903 1.78590 0.892949 0.450158i \(-0.148632\pi\)
0.892949 + 0.450158i \(0.148632\pi\)
\(998\) 21.8275 0.690938
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.d.a.530.3 20
3.2 odd 2 inner 531.2.d.a.530.18 yes 20
59.58 odd 2 inner 531.2.d.a.530.17 yes 20
177.176 even 2 inner 531.2.d.a.530.4 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
531.2.d.a.530.3 20 1.1 even 1 trivial
531.2.d.a.530.4 yes 20 177.176 even 2 inner
531.2.d.a.530.17 yes 20 59.58 odd 2 inner
531.2.d.a.530.18 yes 20 3.2 odd 2 inner