Properties

Label 531.2.d.a.530.12
Level $531$
Weight $2$
Character 531.530
Analytic conductor $4.240$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(530,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.530"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 530.12
Root \(-0.535103 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 531.530
Dual form 531.2.d.a.530.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.535103 q^{2} -1.71366 q^{4} +0.0572139i q^{5} +1.50263 q^{7} -1.98719 q^{8} +0.0306154i q^{10} +4.66096 q^{11} +3.89497i q^{13} +0.804063 q^{14} +2.36397 q^{16} -1.25895i q^{17} +2.63275 q^{19} -0.0980455i q^{20} +2.49409 q^{22} +3.36966 q^{23} +4.99673 q^{25} +2.08421i q^{26} -2.57501 q^{28} -5.86470i q^{29} +7.43142i q^{31} +5.23936 q^{32} -0.673671i q^{34} +0.0859715i q^{35} +8.51607i q^{37} +1.40879 q^{38} -0.113695i q^{40} -9.39188i q^{41} +3.51460i q^{43} -7.98732 q^{44} +1.80311 q^{46} +1.49539 q^{47} -4.74210 q^{49} +2.67376 q^{50} -6.67467i q^{52} +5.49315i q^{53} +0.266672i q^{55} -2.98602 q^{56} -3.13822i q^{58} +(-6.04342 - 4.74100i) q^{59} -1.90926i q^{61} +3.97658i q^{62} -1.92435 q^{64} -0.222847 q^{65} -5.56817i q^{67} +2.15742i q^{68} +0.0460036i q^{70} +6.42027i q^{71} -12.1291i q^{73} +4.55698i q^{74} -4.51165 q^{76} +7.00371 q^{77} -4.35495 q^{79} +0.135252i q^{80} -5.02563i q^{82} -7.98732 q^{83} +0.0720297 q^{85} +1.88068i q^{86} -9.26223 q^{88} -12.3821 q^{89} +5.85271i q^{91} -5.77446 q^{92} +0.800187 q^{94} +0.150630i q^{95} +11.0266i q^{97} -2.53751 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} - 8 q^{7} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 8 q^{28} + 44 q^{49} + 36 q^{64} - 96 q^{76} - 24 q^{85} + 16 q^{88} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535103 0.378375 0.189188 0.981941i \(-0.439415\pi\)
0.189188 + 0.981941i \(0.439415\pi\)
\(3\) 0 0
\(4\) −1.71366 −0.856832
\(5\) 0.0572139i 0.0255868i 0.999918 + 0.0127934i \(0.00407238\pi\)
−0.999918 + 0.0127934i \(0.995928\pi\)
\(6\) 0 0
\(7\) 1.50263 0.567942 0.283971 0.958833i \(-0.408348\pi\)
0.283971 + 0.958833i \(0.408348\pi\)
\(8\) −1.98719 −0.702579
\(9\) 0 0
\(10\) 0.0306154i 0.00968143i
\(11\) 4.66096 1.40533 0.702666 0.711520i \(-0.251993\pi\)
0.702666 + 0.711520i \(0.251993\pi\)
\(12\) 0 0
\(13\) 3.89497i 1.08027i 0.841578 + 0.540135i \(0.181627\pi\)
−0.841578 + 0.540135i \(0.818373\pi\)
\(14\) 0.804063 0.214895
\(15\) 0 0
\(16\) 2.36397 0.590994
\(17\) 1.25895i 0.305341i −0.988277 0.152671i \(-0.951213\pi\)
0.988277 0.152671i \(-0.0487874\pi\)
\(18\) 0 0
\(19\) 2.63275 0.603995 0.301997 0.953309i \(-0.402347\pi\)
0.301997 + 0.953309i \(0.402347\pi\)
\(20\) 0.0980455i 0.0219236i
\(21\) 0 0
\(22\) 2.49409 0.531743
\(23\) 3.36966 0.702622 0.351311 0.936259i \(-0.385736\pi\)
0.351311 + 0.936259i \(0.385736\pi\)
\(24\) 0 0
\(25\) 4.99673 0.999345
\(26\) 2.08421i 0.408747i
\(27\) 0 0
\(28\) −2.57501 −0.486631
\(29\) 5.86470i 1.08905i −0.838746 0.544524i \(-0.816710\pi\)
0.838746 0.544524i \(-0.183290\pi\)
\(30\) 0 0
\(31\) 7.43142i 1.33472i 0.744734 + 0.667361i \(0.232576\pi\)
−0.744734 + 0.667361i \(0.767424\pi\)
\(32\) 5.23936 0.926197
\(33\) 0 0
\(34\) 0.673671i 0.115534i
\(35\) 0.0859715i 0.0145318i
\(36\) 0 0
\(37\) 8.51607i 1.40003i 0.714126 + 0.700017i \(0.246824\pi\)
−0.714126 + 0.700017i \(0.753176\pi\)
\(38\) 1.40879 0.228537
\(39\) 0 0
\(40\) 0.113695i 0.0179768i
\(41\) 9.39188i 1.46677i −0.679816 0.733383i \(-0.737940\pi\)
0.679816 0.733383i \(-0.262060\pi\)
\(42\) 0 0
\(43\) 3.51460i 0.535972i 0.963423 + 0.267986i \(0.0863581\pi\)
−0.963423 + 0.267986i \(0.913642\pi\)
\(44\) −7.98732 −1.20413
\(45\) 0 0
\(46\) 1.80311 0.265855
\(47\) 1.49539 0.218125 0.109062 0.994035i \(-0.465215\pi\)
0.109062 + 0.994035i \(0.465215\pi\)
\(48\) 0 0
\(49\) −4.74210 −0.677442
\(50\) 2.67376 0.378127
\(51\) 0 0
\(52\) 6.67467i 0.925610i
\(53\) 5.49315i 0.754542i 0.926103 + 0.377271i \(0.123137\pi\)
−0.926103 + 0.377271i \(0.876863\pi\)
\(54\) 0 0
\(55\) 0.266672i 0.0359580i
\(56\) −2.98602 −0.399024
\(57\) 0 0
\(58\) 3.13822i 0.412068i
\(59\) −6.04342 4.74100i −0.786787 0.617225i
\(60\) 0 0
\(61\) 1.90926i 0.244455i −0.992502 0.122228i \(-0.960996\pi\)
0.992502 0.122228i \(-0.0390038\pi\)
\(62\) 3.97658i 0.505026i
\(63\) 0 0
\(64\) −1.92435 −0.240544
\(65\) −0.222847 −0.0276407
\(66\) 0 0
\(67\) 5.56817i 0.680260i −0.940378 0.340130i \(-0.889529\pi\)
0.940378 0.340130i \(-0.110471\pi\)
\(68\) 2.15742i 0.261626i
\(69\) 0 0
\(70\) 0.0460036i 0.00549849i
\(71\) 6.42027i 0.761946i 0.924586 + 0.380973i \(0.124411\pi\)
−0.924586 + 0.380973i \(0.875589\pi\)
\(72\) 0 0
\(73\) 12.1291i 1.41961i −0.704399 0.709805i \(-0.748783\pi\)
0.704399 0.709805i \(-0.251217\pi\)
\(74\) 4.55698i 0.529738i
\(75\) 0 0
\(76\) −4.51165 −0.517522
\(77\) 7.00371 0.798146
\(78\) 0 0
\(79\) −4.35495 −0.489971 −0.244985 0.969527i \(-0.578783\pi\)
−0.244985 + 0.969527i \(0.578783\pi\)
\(80\) 0.135252i 0.0151217i
\(81\) 0 0
\(82\) 5.02563i 0.554988i
\(83\) −7.98732 −0.876722 −0.438361 0.898799i \(-0.644441\pi\)
−0.438361 + 0.898799i \(0.644441\pi\)
\(84\) 0 0
\(85\) 0.0720297 0.00781272
\(86\) 1.88068i 0.202798i
\(87\) 0 0
\(88\) −9.26223 −0.987357
\(89\) −12.3821 −1.31250 −0.656252 0.754542i \(-0.727859\pi\)
−0.656252 + 0.754542i \(0.727859\pi\)
\(90\) 0 0
\(91\) 5.85271i 0.613530i
\(92\) −5.77446 −0.602029
\(93\) 0 0
\(94\) 0.800187 0.0825330
\(95\) 0.150630i 0.0154543i
\(96\) 0 0
\(97\) 11.0266i 1.11958i 0.828633 + 0.559792i \(0.189119\pi\)
−0.828633 + 0.559792i \(0.810881\pi\)
\(98\) −2.53751 −0.256327
\(99\) 0 0
\(100\) −8.56271 −0.856271
\(101\) 6.49193 0.645971 0.322986 0.946404i \(-0.395313\pi\)
0.322986 + 0.946404i \(0.395313\pi\)
\(102\) 0 0
\(103\) 14.1673i 1.39595i −0.716123 0.697974i \(-0.754085\pi\)
0.716123 0.697974i \(-0.245915\pi\)
\(104\) 7.74006i 0.758975i
\(105\) 0 0
\(106\) 2.93940i 0.285500i
\(107\) 4.10739i 0.397076i −0.980093 0.198538i \(-0.936381\pi\)
0.980093 0.198538i \(-0.0636194\pi\)
\(108\) 0 0
\(109\) 0.953525i 0.0913312i −0.998957 0.0456656i \(-0.985459\pi\)
0.998957 0.0456656i \(-0.0145409\pi\)
\(110\) 0.142697i 0.0136056i
\(111\) 0 0
\(112\) 3.55218 0.335650
\(113\) 6.15159 0.578693 0.289347 0.957224i \(-0.406562\pi\)
0.289347 + 0.957224i \(0.406562\pi\)
\(114\) 0 0
\(115\) 0.192791i 0.0179779i
\(116\) 10.0501i 0.933131i
\(117\) 0 0
\(118\) −3.23386 2.53692i −0.297700 0.233543i
\(119\) 1.89174i 0.173416i
\(120\) 0 0
\(121\) 10.7245 0.974958
\(122\) 1.02165i 0.0924958i
\(123\) 0 0
\(124\) 12.7350i 1.14363i
\(125\) 0.571952i 0.0511569i
\(126\) 0 0
\(127\) 3.42406 0.303836 0.151918 0.988393i \(-0.451455\pi\)
0.151918 + 0.988393i \(0.451455\pi\)
\(128\) −11.5084 −1.01721
\(129\) 0 0
\(130\) −0.119246 −0.0104586
\(131\) 4.30822 0.376411 0.188206 0.982130i \(-0.439733\pi\)
0.188206 + 0.982130i \(0.439733\pi\)
\(132\) 0 0
\(133\) 3.95606 0.343034
\(134\) 2.97955i 0.257394i
\(135\) 0 0
\(136\) 2.50179i 0.214526i
\(137\) 17.6475i 1.50773i 0.657031 + 0.753863i \(0.271812\pi\)
−0.657031 + 0.753863i \(0.728188\pi\)
\(138\) 0 0
\(139\) −7.04266 −0.597351 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(140\) 0.147326i 0.0124513i
\(141\) 0 0
\(142\) 3.43551i 0.288301i
\(143\) 18.1543i 1.51814i
\(144\) 0 0
\(145\) 0.335542 0.0278653
\(146\) 6.49035i 0.537145i
\(147\) 0 0
\(148\) 14.5937i 1.19959i
\(149\) 18.8497 1.54423 0.772113 0.635486i \(-0.219200\pi\)
0.772113 + 0.635486i \(0.219200\pi\)
\(150\) 0 0
\(151\) 20.0133i 1.62866i −0.580402 0.814330i \(-0.697105\pi\)
0.580402 0.814330i \(-0.302895\pi\)
\(152\) −5.23179 −0.424354
\(153\) 0 0
\(154\) 3.74771 0.301999
\(155\) −0.425181 −0.0341513
\(156\) 0 0
\(157\) 23.8996i 1.90740i 0.300765 + 0.953698i \(0.402758\pi\)
−0.300765 + 0.953698i \(0.597242\pi\)
\(158\) −2.33035 −0.185393
\(159\) 0 0
\(160\) 0.299764i 0.0236985i
\(161\) 5.06336 0.399048
\(162\) 0 0
\(163\) −13.3857 −1.04845 −0.524225 0.851580i \(-0.675645\pi\)
−0.524225 + 0.851580i \(0.675645\pi\)
\(164\) 16.0945i 1.25677i
\(165\) 0 0
\(166\) −4.27404 −0.331730
\(167\) 16.9603i 1.31243i −0.754575 0.656214i \(-0.772157\pi\)
0.754575 0.656214i \(-0.227843\pi\)
\(168\) 0 0
\(169\) −2.17079 −0.166984
\(170\) 0.0385433 0.00295614
\(171\) 0 0
\(172\) 6.02285i 0.459238i
\(173\) −7.52360 −0.572008 −0.286004 0.958228i \(-0.592327\pi\)
−0.286004 + 0.958228i \(0.592327\pi\)
\(174\) 0 0
\(175\) 7.50824 0.567570
\(176\) 11.0184 0.830542
\(177\) 0 0
\(178\) −6.62572 −0.496619
\(179\) −19.5778 −1.46331 −0.731656 0.681674i \(-0.761252\pi\)
−0.731656 + 0.681674i \(0.761252\pi\)
\(180\) 0 0
\(181\) 12.2713 0.912115 0.456057 0.889950i \(-0.349261\pi\)
0.456057 + 0.889950i \(0.349261\pi\)
\(182\) 3.13180i 0.232145i
\(183\) 0 0
\(184\) −6.69616 −0.493648
\(185\) −0.487238 −0.0358225
\(186\) 0 0
\(187\) 5.86793i 0.429106i
\(188\) −2.56259 −0.186896
\(189\) 0 0
\(190\) 0.0806027i 0.00584753i
\(191\) −12.6097 −0.912408 −0.456204 0.889875i \(-0.650791\pi\)
−0.456204 + 0.889875i \(0.650791\pi\)
\(192\) 0 0
\(193\) −9.92376 −0.714328 −0.357164 0.934042i \(-0.616256\pi\)
−0.357164 + 0.934042i \(0.616256\pi\)
\(194\) 5.90038i 0.423623i
\(195\) 0 0
\(196\) 8.12636 0.580454
\(197\) 18.9919i 1.35312i −0.736388 0.676559i \(-0.763470\pi\)
0.736388 0.676559i \(-0.236530\pi\)
\(198\) 0 0
\(199\) −15.5770 −1.10422 −0.552112 0.833770i \(-0.686178\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(200\) −9.92947 −0.702119
\(201\) 0 0
\(202\) 3.47385 0.244420
\(203\) 8.81248i 0.618515i
\(204\) 0 0
\(205\) 0.537346 0.0375299
\(206\) 7.58098i 0.528192i
\(207\) 0 0
\(208\) 9.20761i 0.638433i
\(209\) 12.2711 0.848813
\(210\) 0 0
\(211\) 3.59521i 0.247504i 0.992313 + 0.123752i \(0.0394928\pi\)
−0.992313 + 0.123752i \(0.960507\pi\)
\(212\) 9.41341i 0.646516i
\(213\) 0 0
\(214\) 2.19788i 0.150244i
\(215\) −0.201084 −0.0137138
\(216\) 0 0
\(217\) 11.1667i 0.758044i
\(218\) 0.510235i 0.0345574i
\(219\) 0 0
\(220\) 0.456986i 0.0308100i
\(221\) 4.90359 0.329851
\(222\) 0 0
\(223\) 18.0856 1.21110 0.605550 0.795807i \(-0.292953\pi\)
0.605550 + 0.795807i \(0.292953\pi\)
\(224\) 7.87283 0.526025
\(225\) 0 0
\(226\) 3.29174 0.218963
\(227\) 1.11175 0.0737895 0.0368948 0.999319i \(-0.488253\pi\)
0.0368948 + 0.999319i \(0.488253\pi\)
\(228\) 0 0
\(229\) 1.43042i 0.0945249i 0.998883 + 0.0472624i \(0.0150497\pi\)
−0.998883 + 0.0472624i \(0.984950\pi\)
\(230\) 0.103163i 0.00680239i
\(231\) 0 0
\(232\) 11.6543i 0.765142i
\(233\) 8.34181 0.546490 0.273245 0.961944i \(-0.411903\pi\)
0.273245 + 0.961944i \(0.411903\pi\)
\(234\) 0 0
\(235\) 0.0855570i 0.00558112i
\(236\) 10.3564 + 8.12448i 0.674144 + 0.528858i
\(237\) 0 0
\(238\) 1.01228i 0.0656163i
\(239\) 25.1068i 1.62402i 0.583641 + 0.812012i \(0.301627\pi\)
−0.583641 + 0.812012i \(0.698373\pi\)
\(240\) 0 0
\(241\) 19.9640 1.28599 0.642997 0.765868i \(-0.277691\pi\)
0.642997 + 0.765868i \(0.277691\pi\)
\(242\) 5.73874 0.368900
\(243\) 0 0
\(244\) 3.27182i 0.209457i
\(245\) 0.271314i 0.0173336i
\(246\) 0 0
\(247\) 10.2545i 0.652477i
\(248\) 14.7677i 0.937748i
\(249\) 0 0
\(250\) 0.306053i 0.0193565i
\(251\) 0.429389i 0.0271028i 0.999908 + 0.0135514i \(0.00431367\pi\)
−0.999908 + 0.0135514i \(0.995686\pi\)
\(252\) 0 0
\(253\) 15.7058 0.987417
\(254\) 1.83222 0.114964
\(255\) 0 0
\(256\) −2.30950 −0.144344
\(257\) 17.2872i 1.07835i −0.842195 0.539173i \(-0.818737\pi\)
0.842195 0.539173i \(-0.181263\pi\)
\(258\) 0 0
\(259\) 12.7965i 0.795137i
\(260\) 0.381884 0.0236835
\(261\) 0 0
\(262\) 2.30534 0.142425
\(263\) 2.83668i 0.174917i 0.996168 + 0.0874586i \(0.0278746\pi\)
−0.996168 + 0.0874586i \(0.972125\pi\)
\(264\) 0 0
\(265\) −0.314284 −0.0193063
\(266\) 2.11690 0.129795
\(267\) 0 0
\(268\) 9.54197i 0.582869i
\(269\) −1.37965 −0.0841185 −0.0420593 0.999115i \(-0.513392\pi\)
−0.0420593 + 0.999115i \(0.513392\pi\)
\(270\) 0 0
\(271\) −15.7877 −0.959034 −0.479517 0.877533i \(-0.659188\pi\)
−0.479517 + 0.877533i \(0.659188\pi\)
\(272\) 2.97614i 0.180455i
\(273\) 0 0
\(274\) 9.44323i 0.570486i
\(275\) 23.2895 1.40441
\(276\) 0 0
\(277\) −3.82862 −0.230039 −0.115020 0.993363i \(-0.536693\pi\)
−0.115020 + 0.993363i \(0.536693\pi\)
\(278\) −3.76855 −0.226023
\(279\) 0 0
\(280\) 0.170842i 0.0102098i
\(281\) 12.1670i 0.725824i −0.931824 0.362912i \(-0.881783\pi\)
0.931824 0.362912i \(-0.118217\pi\)
\(282\) 0 0
\(283\) 8.51457i 0.506139i −0.967448 0.253069i \(-0.918560\pi\)
0.967448 0.253069i \(-0.0814401\pi\)
\(284\) 11.0022i 0.652860i
\(285\) 0 0
\(286\) 9.71442i 0.574426i
\(287\) 14.1125i 0.833037i
\(288\) 0 0
\(289\) 15.4150 0.906767
\(290\) 0.179550 0.0105435
\(291\) 0 0
\(292\) 20.7853i 1.21637i
\(293\) 13.5899i 0.793929i 0.917834 + 0.396964i \(0.129936\pi\)
−0.917834 + 0.396964i \(0.870064\pi\)
\(294\) 0 0
\(295\) 0.271251 0.345768i 0.0157928 0.0201314i
\(296\) 16.9231i 0.983635i
\(297\) 0 0
\(298\) 10.0865 0.584297
\(299\) 13.1247i 0.759022i
\(300\) 0 0
\(301\) 5.28115i 0.304401i
\(302\) 10.7092i 0.616244i
\(303\) 0 0
\(304\) 6.22376 0.356957
\(305\) 0.109236 0.00625484
\(306\) 0 0
\(307\) 7.72126 0.440676 0.220338 0.975424i \(-0.429284\pi\)
0.220338 + 0.975424i \(0.429284\pi\)
\(308\) −12.0020 −0.683878
\(309\) 0 0
\(310\) −0.227516 −0.0129220
\(311\) 2.34575i 0.133015i −0.997786 0.0665076i \(-0.978814\pi\)
0.997786 0.0665076i \(-0.0211857\pi\)
\(312\) 0 0
\(313\) 6.94382i 0.392488i −0.980555 0.196244i \(-0.937126\pi\)
0.980555 0.196244i \(-0.0628745\pi\)
\(314\) 12.7888i 0.721712i
\(315\) 0 0
\(316\) 7.46293 0.419823
\(317\) 32.1894i 1.80794i −0.427596 0.903970i \(-0.640640\pi\)
0.427596 0.903970i \(-0.359360\pi\)
\(318\) 0 0
\(319\) 27.3351i 1.53047i
\(320\) 0.110100i 0.00615476i
\(321\) 0 0
\(322\) 2.70942 0.150990
\(323\) 3.31451i 0.184424i
\(324\) 0 0
\(325\) 19.4621i 1.07956i
\(326\) −7.16274 −0.396708
\(327\) 0 0
\(328\) 18.6635i 1.03052i
\(329\) 2.24702 0.123882
\(330\) 0 0
\(331\) −11.3990 −0.626548 −0.313274 0.949663i \(-0.601426\pi\)
−0.313274 + 0.949663i \(0.601426\pi\)
\(332\) 13.6876 0.751204
\(333\) 0 0
\(334\) 9.07551i 0.496590i
\(335\) 0.318577 0.0174057
\(336\) 0 0
\(337\) 16.0878i 0.876360i 0.898887 + 0.438180i \(0.144377\pi\)
−0.898887 + 0.438180i \(0.855623\pi\)
\(338\) −1.16160 −0.0631825
\(339\) 0 0
\(340\) −0.123435 −0.00669419
\(341\) 34.6376i 1.87573i
\(342\) 0 0
\(343\) −17.6441 −0.952689
\(344\) 6.98420i 0.376563i
\(345\) 0 0
\(346\) −4.02590 −0.216434
\(347\) −8.52524 −0.457659 −0.228829 0.973467i \(-0.573490\pi\)
−0.228829 + 0.973467i \(0.573490\pi\)
\(348\) 0 0
\(349\) 0.170942i 0.00915033i −0.999990 0.00457516i \(-0.998544\pi\)
0.999990 0.00457516i \(-0.00145633\pi\)
\(350\) 4.01768 0.214754
\(351\) 0 0
\(352\) 24.4204 1.30161
\(353\) −9.98798 −0.531606 −0.265803 0.964027i \(-0.585637\pi\)
−0.265803 + 0.964027i \(0.585637\pi\)
\(354\) 0 0
\(355\) −0.367329 −0.0194958
\(356\) 21.2188 1.12460
\(357\) 0 0
\(358\) −10.4761 −0.553681
\(359\) 31.6950i 1.67280i 0.548120 + 0.836399i \(0.315344\pi\)
−0.548120 + 0.836399i \(0.684656\pi\)
\(360\) 0 0
\(361\) −12.0686 −0.635190
\(362\) 6.56639 0.345122
\(363\) 0 0
\(364\) 10.0296i 0.525693i
\(365\) 0.693956 0.0363233
\(366\) 0 0
\(367\) 14.0601i 0.733931i −0.930235 0.366965i \(-0.880397\pi\)
0.930235 0.366965i \(-0.119603\pi\)
\(368\) 7.96579 0.415245
\(369\) 0 0
\(370\) −0.260723 −0.0135543
\(371\) 8.25418i 0.428536i
\(372\) 0 0
\(373\) 28.8222 1.49235 0.746177 0.665747i \(-0.231887\pi\)
0.746177 + 0.665747i \(0.231887\pi\)
\(374\) 3.13995i 0.162363i
\(375\) 0 0
\(376\) −2.97163 −0.153250
\(377\) 22.8428 1.17647
\(378\) 0 0
\(379\) 4.21089 0.216299 0.108150 0.994135i \(-0.465507\pi\)
0.108150 + 0.994135i \(0.465507\pi\)
\(380\) 0.258129i 0.0132418i
\(381\) 0 0
\(382\) −6.74751 −0.345233
\(383\) 14.0507i 0.717958i −0.933346 0.358979i \(-0.883125\pi\)
0.933346 0.358979i \(-0.116875\pi\)
\(384\) 0 0
\(385\) 0.400710i 0.0204221i
\(386\) −5.31024 −0.270284
\(387\) 0 0
\(388\) 18.8959i 0.959296i
\(389\) 6.37231i 0.323089i −0.986865 0.161545i \(-0.948352\pi\)
0.986865 0.161545i \(-0.0516475\pi\)
\(390\) 0 0
\(391\) 4.24224i 0.214540i
\(392\) 9.42347 0.475957
\(393\) 0 0
\(394\) 10.1626i 0.511987i
\(395\) 0.249164i 0.0125368i
\(396\) 0 0
\(397\) 7.29835i 0.366294i 0.983086 + 0.183147i \(0.0586284\pi\)
−0.983086 + 0.183147i \(0.941372\pi\)
\(398\) −8.33530 −0.417811
\(399\) 0 0
\(400\) 11.8121 0.590607
\(401\) −29.8174 −1.48901 −0.744504 0.667617i \(-0.767314\pi\)
−0.744504 + 0.667617i \(0.767314\pi\)
\(402\) 0 0
\(403\) −28.9452 −1.44186
\(404\) −11.1250 −0.553489
\(405\) 0 0
\(406\) 4.71559i 0.234031i
\(407\) 39.6931i 1.96751i
\(408\) 0 0
\(409\) 39.1449i 1.93559i −0.251742 0.967795i \(-0.581003\pi\)
0.251742 0.967795i \(-0.418997\pi\)
\(410\) 0.287536 0.0142004
\(411\) 0 0
\(412\) 24.2780i 1.19609i
\(413\) −9.08104 7.12397i −0.446849 0.350548i
\(414\) 0 0
\(415\) 0.456986i 0.0224326i
\(416\) 20.4071i 1.00054i
\(417\) 0 0
\(418\) 6.56633 0.321170
\(419\) −13.7418 −0.671329 −0.335665 0.941982i \(-0.608961\pi\)
−0.335665 + 0.941982i \(0.608961\pi\)
\(420\) 0 0
\(421\) 4.74347i 0.231182i −0.993297 0.115591i \(-0.963124\pi\)
0.993297 0.115591i \(-0.0368763\pi\)
\(422\) 1.92381i 0.0936494i
\(423\) 0 0
\(424\) 10.9159i 0.530125i
\(425\) 6.29065i 0.305141i
\(426\) 0 0
\(427\) 2.86891i 0.138836i
\(428\) 7.03869i 0.340228i
\(429\) 0 0
\(430\) −0.107601 −0.00518897
\(431\) −38.9221 −1.87481 −0.937405 0.348240i \(-0.886779\pi\)
−0.937405 + 0.348240i \(0.886779\pi\)
\(432\) 0 0
\(433\) −27.2141 −1.30783 −0.653913 0.756570i \(-0.726874\pi\)
−0.653913 + 0.756570i \(0.726874\pi\)
\(434\) 5.97533i 0.286825i
\(435\) 0 0
\(436\) 1.63402i 0.0782555i
\(437\) 8.87147 0.424380
\(438\) 0 0
\(439\) −23.9897 −1.14497 −0.572483 0.819917i \(-0.694020\pi\)
−0.572483 + 0.819917i \(0.694020\pi\)
\(440\) 0.529929i 0.0252634i
\(441\) 0 0
\(442\) 2.62393 0.124807
\(443\) 29.7149 1.41180 0.705898 0.708313i \(-0.250543\pi\)
0.705898 + 0.708313i \(0.250543\pi\)
\(444\) 0 0
\(445\) 0.708431i 0.0335828i
\(446\) 9.67766 0.458250
\(447\) 0 0
\(448\) −2.89159 −0.136615
\(449\) 7.04380i 0.332418i −0.986091 0.166209i \(-0.946847\pi\)
0.986091 0.166209i \(-0.0531526\pi\)
\(450\) 0 0
\(451\) 43.7752i 2.06129i
\(452\) −10.5418 −0.495843
\(453\) 0 0
\(454\) 0.594902 0.0279201
\(455\) −0.334856 −0.0156983
\(456\) 0 0
\(457\) 26.6089i 1.24471i 0.782735 + 0.622356i \(0.213824\pi\)
−0.782735 + 0.622356i \(0.786176\pi\)
\(458\) 0.765423i 0.0357659i
\(459\) 0 0
\(460\) 0.330380i 0.0154040i
\(461\) 22.8883i 1.06602i −0.846110 0.533008i \(-0.821062\pi\)
0.846110 0.533008i \(-0.178938\pi\)
\(462\) 0 0
\(463\) 28.5688i 1.32770i −0.747864 0.663852i \(-0.768921\pi\)
0.747864 0.663852i \(-0.231079\pi\)
\(464\) 13.8640i 0.643620i
\(465\) 0 0
\(466\) 4.46373 0.206778
\(467\) −32.7412 −1.51508 −0.757541 0.652787i \(-0.773599\pi\)
−0.757541 + 0.652787i \(0.773599\pi\)
\(468\) 0 0
\(469\) 8.36691i 0.386348i
\(470\) 0.0457818i 0.00211176i
\(471\) 0 0
\(472\) 12.0095 + 9.42128i 0.552780 + 0.433650i
\(473\) 16.3814i 0.753218i
\(474\) 0 0
\(475\) 13.1551 0.603599
\(476\) 3.24182i 0.148588i
\(477\) 0 0
\(478\) 13.4347i 0.614490i
\(479\) 21.2159i 0.969379i −0.874686 0.484689i \(-0.838933\pi\)
0.874686 0.484689i \(-0.161067\pi\)
\(480\) 0 0
\(481\) −33.1699 −1.51242
\(482\) 10.6828 0.486588
\(483\) 0 0
\(484\) −18.3783 −0.835375
\(485\) −0.630877 −0.0286466
\(486\) 0 0
\(487\) 4.69119 0.212578 0.106289 0.994335i \(-0.466103\pi\)
0.106289 + 0.994335i \(0.466103\pi\)
\(488\) 3.79406i 0.171749i
\(489\) 0 0
\(490\) 0.145181i 0.00655861i
\(491\) 41.4227i 1.86938i 0.355461 + 0.934691i \(0.384324\pi\)
−0.355461 + 0.934691i \(0.615676\pi\)
\(492\) 0 0
\(493\) −7.38339 −0.332531
\(494\) 5.48721i 0.246881i
\(495\) 0 0
\(496\) 17.5677i 0.788813i
\(497\) 9.64730i 0.432741i
\(498\) 0 0
\(499\) 9.88636 0.442574 0.221287 0.975209i \(-0.428974\pi\)
0.221287 + 0.975209i \(0.428974\pi\)
\(500\) 0.980134i 0.0438329i
\(501\) 0 0
\(502\) 0.229767i 0.0102550i
\(503\) −19.0690 −0.850245 −0.425123 0.905136i \(-0.639769\pi\)
−0.425123 + 0.905136i \(0.639769\pi\)
\(504\) 0 0
\(505\) 0.371429i 0.0165284i
\(506\) 8.40424 0.373614
\(507\) 0 0
\(508\) −5.86768 −0.260336
\(509\) −18.2367 −0.808327 −0.404163 0.914687i \(-0.632437\pi\)
−0.404163 + 0.914687i \(0.632437\pi\)
\(510\) 0 0
\(511\) 18.2256i 0.806255i
\(512\) 21.7811 0.962596
\(513\) 0 0
\(514\) 9.25044i 0.408019i
\(515\) 0.810568 0.0357179
\(516\) 0 0
\(517\) 6.96994 0.306538
\(518\) 6.84746i 0.300860i
\(519\) 0 0
\(520\) 0.442839 0.0194198
\(521\) 8.13363i 0.356341i 0.984000 + 0.178170i \(0.0570178\pi\)
−0.984000 + 0.178170i \(0.942982\pi\)
\(522\) 0 0
\(523\) −18.5156 −0.809632 −0.404816 0.914398i \(-0.632664\pi\)
−0.404816 + 0.914398i \(0.632664\pi\)
\(524\) −7.38285 −0.322521
\(525\) 0 0
\(526\) 1.51792i 0.0661843i
\(527\) 9.35582 0.407546
\(528\) 0 0
\(529\) −11.6454 −0.506322
\(530\) −0.168175 −0.00730504
\(531\) 0 0
\(532\) −6.77935 −0.293922
\(533\) 36.5811 1.58450
\(534\) 0 0
\(535\) 0.235000 0.0101599
\(536\) 11.0650i 0.477937i
\(537\) 0 0
\(538\) −0.738253 −0.0318284
\(539\) −22.1027 −0.952031
\(540\) 0 0
\(541\) 3.51611i 0.151169i 0.997139 + 0.0755847i \(0.0240823\pi\)
−0.997139 + 0.0755847i \(0.975918\pi\)
\(542\) −8.44804 −0.362874
\(543\) 0 0
\(544\) 6.59611i 0.282806i
\(545\) 0.0545549 0.00233688
\(546\) 0 0
\(547\) 20.4936 0.876245 0.438122 0.898915i \(-0.355644\pi\)
0.438122 + 0.898915i \(0.355644\pi\)
\(548\) 30.2419i 1.29187i
\(549\) 0 0
\(550\) 12.4623 0.531395
\(551\) 15.4403i 0.657779i
\(552\) 0 0
\(553\) −6.54389 −0.278275
\(554\) −2.04871 −0.0870412
\(555\) 0 0
\(556\) 12.0688 0.511829
\(557\) 22.4467i 0.951097i −0.879689 0.475549i \(-0.842250\pi\)
0.879689 0.475549i \(-0.157750\pi\)
\(558\) 0 0
\(559\) −13.6893 −0.578994
\(560\) 0.203234i 0.00858822i
\(561\) 0 0
\(562\) 6.51061i 0.274634i
\(563\) −28.6890 −1.20910 −0.604549 0.796568i \(-0.706646\pi\)
−0.604549 + 0.796568i \(0.706646\pi\)
\(564\) 0 0
\(565\) 0.351957i 0.0148069i
\(566\) 4.55617i 0.191510i
\(567\) 0 0
\(568\) 12.7583i 0.535327i
\(569\) −38.1279 −1.59840 −0.799202 0.601062i \(-0.794744\pi\)
−0.799202 + 0.601062i \(0.794744\pi\)
\(570\) 0 0
\(571\) 24.4240i 1.02211i −0.859547 0.511057i \(-0.829254\pi\)
0.859547 0.511057i \(-0.170746\pi\)
\(572\) 31.1104i 1.30079i
\(573\) 0 0
\(574\) 7.55167i 0.315200i
\(575\) 16.8373 0.702162
\(576\) 0 0
\(577\) 19.2499 0.801382 0.400691 0.916213i \(-0.368770\pi\)
0.400691 + 0.916213i \(0.368770\pi\)
\(578\) 8.24864 0.343098
\(579\) 0 0
\(580\) −0.575007 −0.0238759
\(581\) −12.0020 −0.497927
\(582\) 0 0
\(583\) 25.6033i 1.06038i
\(584\) 24.1030i 0.997388i
\(585\) 0 0
\(586\) 7.27198i 0.300403i
\(587\) 27.0844 1.11789 0.558946 0.829204i \(-0.311206\pi\)
0.558946 + 0.829204i \(0.311206\pi\)
\(588\) 0 0
\(589\) 19.5651i 0.806165i
\(590\) 0.145147 0.185022i 0.00597562 0.00761722i
\(591\) 0 0
\(592\) 20.1318i 0.827411i
\(593\) 21.0005i 0.862389i 0.902259 + 0.431194i \(0.141908\pi\)
−0.902259 + 0.431194i \(0.858092\pi\)
\(594\) 0 0
\(595\) 0.108234 0.00443717
\(596\) −32.3020 −1.32314
\(597\) 0 0
\(598\) 7.02308i 0.287195i
\(599\) 23.4727i 0.959068i −0.877523 0.479534i \(-0.840806\pi\)
0.877523 0.479534i \(-0.159194\pi\)
\(600\) 0 0
\(601\) 36.8840i 1.50453i −0.658861 0.752264i \(-0.728962\pi\)
0.658861 0.752264i \(-0.271038\pi\)
\(602\) 2.82596i 0.115178i
\(603\) 0 0
\(604\) 34.2961i 1.39549i
\(605\) 0.613593i 0.0249461i
\(606\) 0 0
\(607\) −39.8036 −1.61558 −0.807789 0.589472i \(-0.799336\pi\)
−0.807789 + 0.589472i \(0.799336\pi\)
\(608\) 13.7939 0.559418
\(609\) 0 0
\(610\) 0.0584526 0.00236668
\(611\) 5.82449i 0.235634i
\(612\) 0 0
\(613\) 29.5183i 1.19223i 0.802898 + 0.596117i \(0.203290\pi\)
−0.802898 + 0.596117i \(0.796710\pi\)
\(614\) 4.13167 0.166741
\(615\) 0 0
\(616\) −13.9177 −0.560761
\(617\) 31.1223i 1.25293i 0.779448 + 0.626467i \(0.215500\pi\)
−0.779448 + 0.626467i \(0.784500\pi\)
\(618\) 0 0
\(619\) −42.1742 −1.69512 −0.847562 0.530697i \(-0.821930\pi\)
−0.847562 + 0.530697i \(0.821930\pi\)
\(620\) 0.728617 0.0292620
\(621\) 0 0
\(622\) 1.25522i 0.0503297i
\(623\) −18.6058 −0.745425
\(624\) 0 0
\(625\) 24.9509 0.998036
\(626\) 3.71566i 0.148508i
\(627\) 0 0
\(628\) 40.9559i 1.63432i
\(629\) 10.7213 0.427488
\(630\) 0 0
\(631\) −9.10110 −0.362309 −0.181154 0.983455i \(-0.557983\pi\)
−0.181154 + 0.983455i \(0.557983\pi\)
\(632\) 8.65414 0.344243
\(633\) 0 0
\(634\) 17.2247i 0.684079i
\(635\) 0.195904i 0.00777420i
\(636\) 0 0
\(637\) 18.4703i 0.731821i
\(638\) 14.6271i 0.579093i
\(639\) 0 0
\(640\) 0.658443i 0.0260273i
\(641\) 4.30662i 0.170101i −0.996377 0.0850505i \(-0.972895\pi\)
0.996377 0.0850505i \(-0.0271052\pi\)
\(642\) 0 0
\(643\) 48.3224 1.90565 0.952825 0.303519i \(-0.0981617\pi\)
0.952825 + 0.303519i \(0.0981617\pi\)
\(644\) −8.67689 −0.341917
\(645\) 0 0
\(646\) 1.77361i 0.0697816i
\(647\) 23.4111i 0.920387i 0.887819 + 0.460193i \(0.152220\pi\)
−0.887819 + 0.460193i \(0.847780\pi\)
\(648\) 0 0
\(649\) −28.1681 22.0976i −1.10570 0.867406i
\(650\) 10.4142i 0.408480i
\(651\) 0 0
\(652\) 22.9386 0.898346
\(653\) 11.8688i 0.464461i 0.972661 + 0.232231i \(0.0746024\pi\)
−0.972661 + 0.232231i \(0.925398\pi\)
\(654\) 0 0
\(655\) 0.246490i 0.00963118i
\(656\) 22.2022i 0.866849i
\(657\) 0 0
\(658\) 1.20239 0.0468739
\(659\) 36.5897 1.42533 0.712667 0.701503i \(-0.247487\pi\)
0.712667 + 0.701503i \(0.247487\pi\)
\(660\) 0 0
\(661\) −26.2750 −1.02198 −0.510989 0.859587i \(-0.670721\pi\)
−0.510989 + 0.859587i \(0.670721\pi\)
\(662\) −6.09966 −0.237070
\(663\) 0 0
\(664\) 15.8724 0.615967
\(665\) 0.226342i 0.00877715i
\(666\) 0 0
\(667\) 19.7620i 0.765189i
\(668\) 29.0643i 1.12453i
\(669\) 0 0
\(670\) 0.170472 0.00658589
\(671\) 8.89896i 0.343541i
\(672\) 0 0
\(673\) 5.26426i 0.202922i 0.994840 + 0.101461i \(0.0323518\pi\)
−0.994840 + 0.101461i \(0.967648\pi\)
\(674\) 8.60865i 0.331593i
\(675\) 0 0
\(676\) 3.72000 0.143077
\(677\) 24.6167i 0.946097i −0.881036 0.473048i \(-0.843154\pi\)
0.881036 0.473048i \(-0.156846\pi\)
\(678\) 0 0
\(679\) 16.5690i 0.635858i
\(680\) −0.143137 −0.00548905
\(681\) 0 0
\(682\) 18.5347i 0.709729i
\(683\) −22.8844 −0.875646 −0.437823 0.899061i \(-0.644250\pi\)
−0.437823 + 0.899061i \(0.644250\pi\)
\(684\) 0 0
\(685\) −1.00968 −0.0385780
\(686\) −9.44139 −0.360474
\(687\) 0 0
\(688\) 8.30843i 0.316756i
\(689\) −21.3956 −0.815109
\(690\) 0 0
\(691\) 19.8690i 0.755852i 0.925836 + 0.377926i \(0.123363\pi\)
−0.925836 + 0.377926i \(0.876637\pi\)
\(692\) 12.8929 0.490115
\(693\) 0 0
\(694\) −4.56188 −0.173167
\(695\) 0.402938i 0.0152843i
\(696\) 0 0
\(697\) −11.8239 −0.447864
\(698\) 0.0914718i 0.00346226i
\(699\) 0 0
\(700\) −12.8666 −0.486312
\(701\) 38.7648 1.46413 0.732063 0.681237i \(-0.238558\pi\)
0.732063 + 0.681237i \(0.238558\pi\)
\(702\) 0 0
\(703\) 22.4207i 0.845613i
\(704\) −8.96932 −0.338044
\(705\) 0 0
\(706\) −5.34460 −0.201147
\(707\) 9.75499 0.366874
\(708\) 0 0
\(709\) 26.0280 0.977503 0.488752 0.872423i \(-0.337452\pi\)
0.488752 + 0.872423i \(0.337452\pi\)
\(710\) −0.196559 −0.00737672
\(711\) 0 0
\(712\) 24.6057 0.922138
\(713\) 25.0413i 0.937806i
\(714\) 0 0
\(715\) −1.03868 −0.0388444
\(716\) 33.5498 1.25381
\(717\) 0 0
\(718\) 16.9601i 0.632946i
\(719\) −47.4001 −1.76773 −0.883864 0.467745i \(-0.845067\pi\)
−0.883864 + 0.467745i \(0.845067\pi\)
\(720\) 0 0
\(721\) 21.2883i 0.792817i
\(722\) −6.45796 −0.240340
\(723\) 0 0
\(724\) −21.0288 −0.781529
\(725\) 29.3043i 1.08833i
\(726\) 0 0
\(727\) 21.2881 0.789533 0.394767 0.918781i \(-0.370825\pi\)
0.394767 + 0.918781i \(0.370825\pi\)
\(728\) 11.6305i 0.431054i
\(729\) 0 0
\(730\) 0.371338 0.0137438
\(731\) 4.42472 0.163654
\(732\) 0 0
\(733\) 15.9687 0.589817 0.294909 0.955525i \(-0.404711\pi\)
0.294909 + 0.955525i \(0.404711\pi\)
\(734\) 7.52360i 0.277701i
\(735\) 0 0
\(736\) 17.6548 0.650766
\(737\) 25.9530i 0.955991i
\(738\) 0 0
\(739\) 23.5337i 0.865700i −0.901466 0.432850i \(-0.857508\pi\)
0.901466 0.432850i \(-0.142492\pi\)
\(740\) 0.834963 0.0306938
\(741\) 0 0
\(742\) 4.41684i 0.162147i
\(743\) 24.9553i 0.915521i −0.889076 0.457760i \(-0.848652\pi\)
0.889076 0.457760i \(-0.151348\pi\)
\(744\) 0 0
\(745\) 1.07846i 0.0395119i
\(746\) 15.4228 0.564670
\(747\) 0 0
\(748\) 10.0557i 0.367672i
\(749\) 6.17189i 0.225516i
\(750\) 0 0
\(751\) 27.8955i 1.01792i 0.860790 + 0.508961i \(0.169970\pi\)
−0.860790 + 0.508961i \(0.830030\pi\)
\(752\) 3.53506 0.128910
\(753\) 0 0
\(754\) 12.2233 0.445145
\(755\) 1.14504 0.0416723
\(756\) 0 0
\(757\) 36.7457 1.33554 0.667772 0.744366i \(-0.267248\pi\)
0.667772 + 0.744366i \(0.267248\pi\)
\(758\) 2.25326 0.0818422
\(759\) 0 0
\(760\) 0.299331i 0.0108579i
\(761\) 49.2771i 1.78629i 0.449767 + 0.893146i \(0.351507\pi\)
−0.449767 + 0.893146i \(0.648493\pi\)
\(762\) 0 0
\(763\) 1.43280i 0.0518708i
\(764\) 21.6089 0.781781
\(765\) 0 0
\(766\) 7.51859i 0.271658i
\(767\) 18.4660 23.5389i 0.666770 0.849942i
\(768\) 0 0
\(769\) 25.8526i 0.932267i 0.884714 + 0.466134i \(0.154353\pi\)
−0.884714 + 0.466134i \(0.845647\pi\)
\(770\) 0.214421i 0.00772720i
\(771\) 0 0
\(772\) 17.0060 0.612059
\(773\) 31.2038 1.12232 0.561161 0.827707i \(-0.310355\pi\)
0.561161 + 0.827707i \(0.310355\pi\)
\(774\) 0 0
\(775\) 37.1328i 1.33385i
\(776\) 21.9120i 0.786597i
\(777\) 0 0
\(778\) 3.40985i 0.122249i
\(779\) 24.7265i 0.885918i
\(780\) 0 0
\(781\) 29.9246i 1.07079i
\(782\) 2.27004i 0.0811764i
\(783\) 0 0
\(784\) −11.2102 −0.400364
\(785\) −1.36739 −0.0488043
\(786\) 0 0
\(787\) 28.7492 1.02480 0.512400 0.858747i \(-0.328757\pi\)
0.512400 + 0.858747i \(0.328757\pi\)
\(788\) 32.5458i 1.15940i
\(789\) 0 0
\(790\) 0.133329i 0.00474362i
\(791\) 9.24358 0.328664
\(792\) 0 0
\(793\) 7.43649 0.264078
\(794\) 3.90537i 0.138597i
\(795\) 0 0
\(796\) 26.6937 0.946135
\(797\) 24.7210 0.875662 0.437831 0.899057i \(-0.355747\pi\)
0.437831 + 0.899057i \(0.355747\pi\)
\(798\) 0 0
\(799\) 1.88262i 0.0666025i
\(800\) 26.1796 0.925590
\(801\) 0 0
\(802\) −15.9554 −0.563404
\(803\) 56.5334i 1.99502i
\(804\) 0 0
\(805\) 0.289694i 0.0102104i
\(806\) −15.4887 −0.545564
\(807\) 0 0
\(808\) −12.9007 −0.453846
\(809\) −4.02256 −0.141426 −0.0707128 0.997497i \(-0.522527\pi\)
−0.0707128 + 0.997497i \(0.522527\pi\)
\(810\) 0 0
\(811\) 31.8340i 1.11784i 0.829220 + 0.558922i \(0.188785\pi\)
−0.829220 + 0.558922i \(0.811215\pi\)
\(812\) 15.1016i 0.529964i
\(813\) 0 0
\(814\) 21.2399i 0.744458i
\(815\) 0.765850i 0.0268266i
\(816\) 0 0
\(817\) 9.25308i 0.323724i
\(818\) 20.9465i 0.732379i
\(819\) 0 0
\(820\) −0.920832 −0.0321568
\(821\) 50.5547 1.76437 0.882186 0.470901i \(-0.156071\pi\)
0.882186 + 0.470901i \(0.156071\pi\)
\(822\) 0 0
\(823\) 26.8522i 0.936009i 0.883726 + 0.468004i \(0.155027\pi\)
−0.883726 + 0.468004i \(0.844973\pi\)
\(824\) 28.1532i 0.980764i
\(825\) 0 0
\(826\) −4.85929 3.81206i −0.169076 0.132639i
\(827\) 24.4845i 0.851408i 0.904862 + 0.425704i \(0.139974\pi\)
−0.904862 + 0.425704i \(0.860026\pi\)
\(828\) 0 0
\(829\) 23.8267 0.827536 0.413768 0.910382i \(-0.364213\pi\)
0.413768 + 0.910382i \(0.364213\pi\)
\(830\) 0.244535i 0.00848792i
\(831\) 0 0
\(832\) 7.49529i 0.259852i
\(833\) 5.97008i 0.206851i
\(834\) 0 0
\(835\) 0.970365 0.0335809
\(836\) −21.0286 −0.727290
\(837\) 0 0
\(838\) −7.35327 −0.254014
\(839\) 4.78134 0.165070 0.0825351 0.996588i \(-0.473698\pi\)
0.0825351 + 0.996588i \(0.473698\pi\)
\(840\) 0 0
\(841\) −5.39469 −0.186024
\(842\) 2.53824i 0.0874737i
\(843\) 0 0
\(844\) 6.16098i 0.212070i
\(845\) 0.124199i 0.00427259i
\(846\) 0 0
\(847\) 16.1150 0.553719
\(848\) 12.9857i 0.445929i
\(849\) 0 0
\(850\) 3.36615i 0.115458i
\(851\) 28.6963i 0.983695i
\(852\) 0 0
\(853\) 41.6528 1.42616 0.713082 0.701080i \(-0.247299\pi\)
0.713082 + 0.701080i \(0.247299\pi\)
\(854\) 1.53516i 0.0525322i
\(855\) 0 0
\(856\) 8.16218i 0.278977i
\(857\) 20.2705 0.692427 0.346213 0.938156i \(-0.387467\pi\)
0.346213 + 0.938156i \(0.387467\pi\)
\(858\) 0 0
\(859\) 25.7983i 0.880225i −0.897943 0.440113i \(-0.854939\pi\)
0.897943 0.440113i \(-0.145061\pi\)
\(860\) 0.344591 0.0117505
\(861\) 0 0
\(862\) −20.8273 −0.709382
\(863\) 55.6395 1.89399 0.946995 0.321249i \(-0.104103\pi\)
0.946995 + 0.321249i \(0.104103\pi\)
\(864\) 0 0
\(865\) 0.430455i 0.0146359i
\(866\) −14.5623 −0.494849
\(867\) 0 0
\(868\) 19.1360i 0.649517i
\(869\) −20.2983 −0.688571
\(870\) 0 0
\(871\) 21.6879 0.734865
\(872\) 1.89484i 0.0641674i
\(873\) 0 0
\(874\) 4.74715 0.160575
\(875\) 0.859434i 0.0290542i
\(876\) 0 0
\(877\) −5.28752 −0.178547 −0.0892734 0.996007i \(-0.528454\pi\)
−0.0892734 + 0.996007i \(0.528454\pi\)
\(878\) −12.8370 −0.433227
\(879\) 0 0
\(880\) 0.630405i 0.0212510i
\(881\) −6.52960 −0.219988 −0.109994 0.993932i \(-0.535083\pi\)
−0.109994 + 0.993932i \(0.535083\pi\)
\(882\) 0 0
\(883\) 53.3596 1.79569 0.897847 0.440308i \(-0.145131\pi\)
0.897847 + 0.440308i \(0.145131\pi\)
\(884\) −8.40310 −0.282627
\(885\) 0 0
\(886\) 15.9005 0.534189
\(887\) −22.7631 −0.764312 −0.382156 0.924098i \(-0.624818\pi\)
−0.382156 + 0.924098i \(0.624818\pi\)
\(888\) 0 0
\(889\) 5.14510 0.172561
\(890\) 0.379084i 0.0127069i
\(891\) 0 0
\(892\) −30.9926 −1.03771
\(893\) 3.93698 0.131746
\(894\) 0 0
\(895\) 1.12012i 0.0374416i
\(896\) −17.2930 −0.577717
\(897\) 0 0
\(898\) 3.76916i 0.125779i
\(899\) 43.5830 1.45358
\(900\) 0 0
\(901\) 6.91562 0.230393
\(902\) 23.4242i 0.779942i
\(903\) 0 0
\(904\) −12.2244 −0.406578
\(905\) 0.702087i 0.0233381i
\(906\) 0 0
\(907\) −27.1810 −0.902532 −0.451266 0.892390i \(-0.649027\pi\)
−0.451266 + 0.892390i \(0.649027\pi\)
\(908\) −1.90517 −0.0632253
\(909\) 0 0
\(910\) −0.179183 −0.00593985
\(911\) 55.0496i 1.82388i −0.410328 0.911938i \(-0.634586\pi\)
0.410328 0.911938i \(-0.365414\pi\)
\(912\) 0 0
\(913\) −37.2286 −1.23209
\(914\) 14.2385i 0.470968i
\(915\) 0 0
\(916\) 2.45126i 0.0809920i
\(917\) 6.47367 0.213780
\(918\) 0 0
\(919\) 0.0172712i 0.000569723i 1.00000 0.000284861i \(9.06742e-5\pi\)
−1.00000 0.000284861i \(0.999909\pi\)
\(920\) 0.383114i 0.0126309i
\(921\) 0 0
\(922\) 12.2476i 0.403354i
\(923\) −25.0067 −0.823107
\(924\) 0 0
\(925\) 42.5525i 1.39912i
\(926\) 15.2872i 0.502370i
\(927\) 0 0
\(928\) 30.7273i 1.00867i
\(929\) 21.4405 0.703441 0.351721 0.936105i \(-0.385597\pi\)
0.351721 + 0.936105i \(0.385597\pi\)
\(930\) 0 0
\(931\) −12.4848 −0.409172
\(932\) −14.2951 −0.468250
\(933\) 0 0
\(934\) −17.5199 −0.573269
\(935\) 0.335728 0.0109795
\(936\) 0 0
\(937\) 30.3318i 0.990896i 0.868638 + 0.495448i \(0.164996\pi\)
−0.868638 + 0.495448i \(0.835004\pi\)
\(938\) 4.47716i 0.146184i
\(939\) 0 0
\(940\) 0.146616i 0.00478209i
\(941\) −53.0581 −1.72964 −0.864822 0.502078i \(-0.832569\pi\)
−0.864822 + 0.502078i \(0.832569\pi\)
\(942\) 0 0
\(943\) 31.6474i 1.03058i
\(944\) −14.2865 11.2076i −0.464986 0.364776i
\(945\) 0 0
\(946\) 8.76575i 0.284999i
\(947\) 30.9120i 1.00450i 0.864721 + 0.502252i \(0.167495\pi\)
−0.864721 + 0.502252i \(0.832505\pi\)
\(948\) 0 0
\(949\) 47.2427 1.53356
\(950\) 7.03936 0.228387
\(951\) 0 0
\(952\) 3.75926i 0.121838i
\(953\) 58.8468i 1.90624i −0.302600 0.953118i \(-0.597855\pi\)
0.302600 0.953118i \(-0.402145\pi\)
\(954\) 0 0
\(955\) 0.721453i 0.0233457i
\(956\) 43.0246i 1.39152i
\(957\) 0 0
\(958\) 11.3527i 0.366789i
\(959\) 26.5177i 0.856301i
\(960\) 0 0
\(961\) −24.2260 −0.781485
\(962\) −17.7493 −0.572260
\(963\) 0 0
\(964\) −34.2116 −1.10188
\(965\) 0.567777i 0.0182774i
\(966\) 0 0
\(967\) 26.2197i 0.843168i 0.906789 + 0.421584i \(0.138526\pi\)
−0.906789 + 0.421584i \(0.861474\pi\)
\(968\) −21.3117 −0.684985
\(969\) 0 0
\(970\) −0.337584 −0.0108392
\(971\) 46.1301i 1.48038i 0.672396 + 0.740192i \(0.265265\pi\)
−0.672396 + 0.740192i \(0.734735\pi\)
\(972\) 0 0
\(973\) −10.5825 −0.339260
\(974\) 2.51027 0.0804342
\(975\) 0 0
\(976\) 4.51343i 0.144471i
\(977\) −23.8245 −0.762212 −0.381106 0.924531i \(-0.624457\pi\)
−0.381106 + 0.924531i \(0.624457\pi\)
\(978\) 0 0
\(979\) −57.7126 −1.84450
\(980\) 0.464941i 0.0148520i
\(981\) 0 0
\(982\) 22.1654i 0.707328i
\(983\) 7.06451 0.225323 0.112661 0.993633i \(-0.464062\pi\)
0.112661 + 0.993633i \(0.464062\pi\)
\(984\) 0 0
\(985\) 1.08660 0.0346220
\(986\) −3.95087 −0.125821
\(987\) 0 0
\(988\) 17.5728i 0.559064i
\(989\) 11.8430i 0.376586i
\(990\) 0 0
\(991\) 42.1784i 1.33984i −0.742432 0.669921i \(-0.766328\pi\)
0.742432 0.669921i \(-0.233672\pi\)
\(992\) 38.9359i 1.23622i
\(993\) 0 0
\(994\) 5.16230i 0.163738i
\(995\) 0.891221i 0.0282536i
\(996\) 0 0
\(997\) 15.8794 0.502904 0.251452 0.967870i \(-0.419092\pi\)
0.251452 + 0.967870i \(0.419092\pi\)
\(998\) 5.29023 0.167459
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.d.a.530.12 yes 20
3.2 odd 2 inner 531.2.d.a.530.9 20
59.58 odd 2 inner 531.2.d.a.530.10 yes 20
177.176 even 2 inner 531.2.d.a.530.11 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
531.2.d.a.530.9 20 3.2 odd 2 inner
531.2.d.a.530.10 yes 20 59.58 odd 2 inner
531.2.d.a.530.11 yes 20 177.176 even 2 inner
531.2.d.a.530.12 yes 20 1.1 even 1 trivial