Properties

Label 531.2.d.a.530.1
Level $531$
Weight $2$
Character 531.530
Analytic conductor $4.240$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(530,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.530"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{18} + 139 x^{16} - 476 x^{14} + 4681 x^{12} - 666 x^{10} + 82273 x^{8} + 168944 x^{6} + \cdots + 3374569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 530.1
Root \(2.59182 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 531.530
Dual form 531.2.d.a.530.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59182 q^{2} +4.71754 q^{4} -1.33755i q^{5} -1.10356 q^{7} -7.04337 q^{8} +3.46670i q^{10} -1.27883 q^{11} +2.34848i q^{13} +2.86024 q^{14} +8.82007 q^{16} +6.38662i q^{17} -5.60912 q^{19} -6.30996i q^{20} +3.31451 q^{22} +2.40913 q^{23} +3.21095 q^{25} -6.08684i q^{26} -5.20610 q^{28} -0.508101i q^{29} -7.41366i q^{31} -8.77331 q^{32} -16.5530i q^{34} +1.47608i q^{35} +4.89565i q^{37} +14.5378 q^{38} +9.42089i q^{40} +4.17932i q^{41} +10.0589i q^{43} -6.03295 q^{44} -6.24402 q^{46} +4.73253 q^{47} -5.78215 q^{49} -8.32220 q^{50} +11.0790i q^{52} +10.2917i q^{53} +1.71051i q^{55} +7.77280 q^{56} +1.31691i q^{58} +(5.91308 + 4.90261i) q^{59} +7.67203i q^{61} +19.2149i q^{62} +5.09871 q^{64} +3.14122 q^{65} +3.56735i q^{67} +30.1291i q^{68} -3.82573i q^{70} -1.48942i q^{71} +5.22551i q^{73} -12.6886i q^{74} -26.4612 q^{76} +1.41127 q^{77} +13.7447 q^{79} -11.7973i q^{80} -10.8321i q^{82} -6.03295 q^{83} +8.54246 q^{85} -26.0708i q^{86} +9.00730 q^{88} -12.7980 q^{89} -2.59170i q^{91} +11.3651 q^{92} -12.2659 q^{94} +7.50251i q^{95} -16.8000i q^{97} +14.9863 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{4} - 8 q^{7} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 8 q^{28} + 44 q^{49} + 36 q^{64} - 96 q^{76} - 24 q^{85} + 16 q^{88} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59182 −1.83269 −0.916347 0.400385i \(-0.868876\pi\)
−0.916347 + 0.400385i \(0.868876\pi\)
\(3\) 0 0
\(4\) 4.71754 2.35877
\(5\) 1.33755i 0.598173i −0.954226 0.299086i \(-0.903318\pi\)
0.954226 0.299086i \(-0.0966819\pi\)
\(6\) 0 0
\(7\) −1.10356 −0.417108 −0.208554 0.978011i \(-0.566876\pi\)
−0.208554 + 0.978011i \(0.566876\pi\)
\(8\) −7.04337 −2.49021
\(9\) 0 0
\(10\) 3.46670i 1.09627i
\(11\) −1.27883 −0.385583 −0.192792 0.981240i \(-0.561754\pi\)
−0.192792 + 0.981240i \(0.561754\pi\)
\(12\) 0 0
\(13\) 2.34848i 0.651352i 0.945482 + 0.325676i \(0.105592\pi\)
−0.945482 + 0.325676i \(0.894408\pi\)
\(14\) 2.86024 0.764431
\(15\) 0 0
\(16\) 8.82007 2.20502
\(17\) 6.38662i 1.54898i 0.632584 + 0.774492i \(0.281994\pi\)
−0.632584 + 0.774492i \(0.718006\pi\)
\(18\) 0 0
\(19\) −5.60912 −1.28682 −0.643411 0.765521i \(-0.722481\pi\)
−0.643411 + 0.765521i \(0.722481\pi\)
\(20\) 6.30996i 1.41095i
\(21\) 0 0
\(22\) 3.31451 0.706656
\(23\) 2.40913 0.502337 0.251169 0.967943i \(-0.419185\pi\)
0.251169 + 0.967943i \(0.419185\pi\)
\(24\) 0 0
\(25\) 3.21095 0.642189
\(26\) 6.08684i 1.19373i
\(27\) 0 0
\(28\) −5.20610 −0.983860
\(29\) 0.508101i 0.0943520i −0.998887 0.0471760i \(-0.984978\pi\)
0.998887 0.0471760i \(-0.0150222\pi\)
\(30\) 0 0
\(31\) 7.41366i 1.33153i −0.746161 0.665766i \(-0.768105\pi\)
0.746161 0.665766i \(-0.231895\pi\)
\(32\) −8.77331 −1.55092
\(33\) 0 0
\(34\) 16.5530i 2.83881i
\(35\) 1.47608i 0.249502i
\(36\) 0 0
\(37\) 4.89565i 0.804840i 0.915455 + 0.402420i \(0.131831\pi\)
−0.915455 + 0.402420i \(0.868169\pi\)
\(38\) 14.5378 2.35835
\(39\) 0 0
\(40\) 9.42089i 1.48957i
\(41\) 4.17932i 0.652701i 0.945249 + 0.326350i \(0.105819\pi\)
−0.945249 + 0.326350i \(0.894181\pi\)
\(42\) 0 0
\(43\) 10.0589i 1.53396i 0.641670 + 0.766981i \(0.278242\pi\)
−0.641670 + 0.766981i \(0.721758\pi\)
\(44\) −6.03295 −0.909501
\(45\) 0 0
\(46\) −6.24402 −0.920631
\(47\) 4.73253 0.690310 0.345155 0.938546i \(-0.387826\pi\)
0.345155 + 0.938546i \(0.387826\pi\)
\(48\) 0 0
\(49\) −5.78215 −0.826021
\(50\) −8.32220 −1.17694
\(51\) 0 0
\(52\) 11.0790i 1.53639i
\(53\) 10.2917i 1.41367i 0.707379 + 0.706834i \(0.249877\pi\)
−0.707379 + 0.706834i \(0.750123\pi\)
\(54\) 0 0
\(55\) 1.71051i 0.230645i
\(56\) 7.77280 1.03868
\(57\) 0 0
\(58\) 1.31691i 0.172918i
\(59\) 5.91308 + 4.90261i 0.769817 + 0.638265i
\(60\) 0 0
\(61\) 7.67203i 0.982302i 0.871074 + 0.491151i \(0.163424\pi\)
−0.871074 + 0.491151i \(0.836576\pi\)
\(62\) 19.2149i 2.44029i
\(63\) 0 0
\(64\) 5.09871 0.637339
\(65\) 3.14122 0.389621
\(66\) 0 0
\(67\) 3.56735i 0.435822i 0.975969 + 0.217911i \(0.0699242\pi\)
−0.975969 + 0.217911i \(0.930076\pi\)
\(68\) 30.1291i 3.65369i
\(69\) 0 0
\(70\) 3.82573i 0.457262i
\(71\) 1.48942i 0.176761i −0.996087 0.0883807i \(-0.971831\pi\)
0.996087 0.0883807i \(-0.0281692\pi\)
\(72\) 0 0
\(73\) 5.22551i 0.611600i 0.952096 + 0.305800i \(0.0989239\pi\)
−0.952096 + 0.305800i \(0.901076\pi\)
\(74\) 12.6886i 1.47502i
\(75\) 0 0
\(76\) −26.4612 −3.03531
\(77\) 1.41127 0.160830
\(78\) 0 0
\(79\) 13.7447 1.54640 0.773202 0.634160i \(-0.218654\pi\)
0.773202 + 0.634160i \(0.218654\pi\)
\(80\) 11.7973i 1.31898i
\(81\) 0 0
\(82\) 10.8321i 1.19620i
\(83\) −6.03295 −0.662202 −0.331101 0.943595i \(-0.607420\pi\)
−0.331101 + 0.943595i \(0.607420\pi\)
\(84\) 0 0
\(85\) 8.54246 0.926559
\(86\) 26.0708i 2.81128i
\(87\) 0 0
\(88\) 9.00730 0.960181
\(89\) −12.7980 −1.35658 −0.678292 0.734792i \(-0.737280\pi\)
−0.678292 + 0.734792i \(0.737280\pi\)
\(90\) 0 0
\(91\) 2.59170i 0.271684i
\(92\) 11.3651 1.18490
\(93\) 0 0
\(94\) −12.2659 −1.26513
\(95\) 7.50251i 0.769741i
\(96\) 0 0
\(97\) 16.8000i 1.70578i −0.522093 0.852889i \(-0.674848\pi\)
0.522093 0.852889i \(-0.325152\pi\)
\(98\) 14.9863 1.51384
\(99\) 0 0
\(100\) 15.1478 1.51478
\(101\) 1.30042 0.129397 0.0646983 0.997905i \(-0.479392\pi\)
0.0646983 + 0.997905i \(0.479392\pi\)
\(102\) 0 0
\(103\) 11.5593i 1.13897i 0.822001 + 0.569486i \(0.192858\pi\)
−0.822001 + 0.569486i \(0.807142\pi\)
\(104\) 16.5412i 1.62200i
\(105\) 0 0
\(106\) 26.6741i 2.59082i
\(107\) 7.55469i 0.730339i −0.930941 0.365170i \(-0.881011\pi\)
0.930941 0.365170i \(-0.118989\pi\)
\(108\) 0 0
\(109\) 18.6431i 1.78568i 0.450370 + 0.892842i \(0.351292\pi\)
−0.450370 + 0.892842i \(0.648708\pi\)
\(110\) 4.43334i 0.422702i
\(111\) 0 0
\(112\) −9.73351 −0.919730
\(113\) −13.7842 −1.29670 −0.648352 0.761340i \(-0.724542\pi\)
−0.648352 + 0.761340i \(0.724542\pi\)
\(114\) 0 0
\(115\) 3.22234i 0.300484i
\(116\) 2.39698i 0.222554i
\(117\) 0 0
\(118\) −15.3256 12.7067i −1.41084 1.16974i
\(119\) 7.04804i 0.646093i
\(120\) 0 0
\(121\) −9.36458 −0.851326
\(122\) 19.8845i 1.80026i
\(123\) 0 0
\(124\) 34.9742i 3.14077i
\(125\) 10.9826i 0.982313i
\(126\) 0 0
\(127\) −11.2241 −0.995980 −0.497990 0.867183i \(-0.665928\pi\)
−0.497990 + 0.867183i \(0.665928\pi\)
\(128\) 4.33167 0.382869
\(129\) 0 0
\(130\) −8.14149 −0.714056
\(131\) 16.5704 1.44776 0.723880 0.689926i \(-0.242357\pi\)
0.723880 + 0.689926i \(0.242357\pi\)
\(132\) 0 0
\(133\) 6.19002 0.536743
\(134\) 9.24594i 0.798728i
\(135\) 0 0
\(136\) 44.9833i 3.85729i
\(137\) 18.5776i 1.58719i 0.608447 + 0.793594i \(0.291793\pi\)
−0.608447 + 0.793594i \(0.708207\pi\)
\(138\) 0 0
\(139\) 3.97525 0.337177 0.168588 0.985687i \(-0.446079\pi\)
0.168588 + 0.985687i \(0.446079\pi\)
\(140\) 6.96344i 0.588518i
\(141\) 0 0
\(142\) 3.86031i 0.323950i
\(143\) 3.00332i 0.251150i
\(144\) 0 0
\(145\) −0.679613 −0.0564388
\(146\) 13.5436i 1.12088i
\(147\) 0 0
\(148\) 23.0954i 1.89843i
\(149\) −1.33175 −0.109102 −0.0545508 0.998511i \(-0.517373\pi\)
−0.0545508 + 0.998511i \(0.517373\pi\)
\(150\) 0 0
\(151\) 10.2270i 0.832263i −0.909304 0.416131i \(-0.863386\pi\)
0.909304 0.416131i \(-0.136614\pi\)
\(152\) 39.5071 3.20445
\(153\) 0 0
\(154\) −3.65777 −0.294752
\(155\) −9.91617 −0.796486
\(156\) 0 0
\(157\) 4.51008i 0.359944i −0.983672 0.179972i \(-0.942399\pi\)
0.983672 0.179972i \(-0.0576007\pi\)
\(158\) −35.6239 −2.83408
\(159\) 0 0
\(160\) 11.7348i 0.927716i
\(161\) −2.65862 −0.209529
\(162\) 0 0
\(163\) 7.47402 0.585411 0.292705 0.956203i \(-0.405445\pi\)
0.292705 + 0.956203i \(0.405445\pi\)
\(164\) 19.7161i 1.53957i
\(165\) 0 0
\(166\) 15.6363 1.21361
\(167\) 16.3746i 1.26710i −0.773701 0.633550i \(-0.781597\pi\)
0.773701 0.633550i \(-0.218403\pi\)
\(168\) 0 0
\(169\) 7.48464 0.575741
\(170\) −22.1405 −1.69810
\(171\) 0 0
\(172\) 47.4530i 3.61826i
\(173\) −18.2573 −1.38808 −0.694038 0.719938i \(-0.744170\pi\)
−0.694038 + 0.719938i \(0.744170\pi\)
\(174\) 0 0
\(175\) −3.54348 −0.267862
\(176\) −11.2794 −0.850218
\(177\) 0 0
\(178\) 33.1701 2.48620
\(179\) 16.9631 1.26788 0.633940 0.773382i \(-0.281437\pi\)
0.633940 + 0.773382i \(0.281437\pi\)
\(180\) 0 0
\(181\) 18.5575 1.37937 0.689684 0.724110i \(-0.257749\pi\)
0.689684 + 0.724110i \(0.257749\pi\)
\(182\) 6.71722i 0.497913i
\(183\) 0 0
\(184\) −16.9683 −1.25092
\(185\) 6.54820 0.481433
\(186\) 0 0
\(187\) 8.16743i 0.597262i
\(188\) 22.3259 1.62828
\(189\) 0 0
\(190\) 19.4452i 1.41070i
\(191\) −26.8946 −1.94603 −0.973013 0.230748i \(-0.925883\pi\)
−0.973013 + 0.230748i \(0.925883\pi\)
\(192\) 0 0
\(193\) 12.3495 0.888939 0.444469 0.895794i \(-0.353392\pi\)
0.444469 + 0.895794i \(0.353392\pi\)
\(194\) 43.5425i 3.12617i
\(195\) 0 0
\(196\) −27.2775 −1.94839
\(197\) 9.09516i 0.648003i −0.946056 0.324002i \(-0.894972\pi\)
0.946056 0.324002i \(-0.105028\pi\)
\(198\) 0 0
\(199\) −11.2099 −0.794650 −0.397325 0.917678i \(-0.630061\pi\)
−0.397325 + 0.917678i \(0.630061\pi\)
\(200\) −22.6159 −1.59918
\(201\) 0 0
\(202\) −3.37045 −0.237144
\(203\) 0.560722i 0.0393549i
\(204\) 0 0
\(205\) 5.59008 0.390428
\(206\) 29.9596i 2.08739i
\(207\) 0 0
\(208\) 20.7138i 1.43624i
\(209\) 7.17314 0.496177
\(210\) 0 0
\(211\) 9.38631i 0.646180i −0.946368 0.323090i \(-0.895278\pi\)
0.946368 0.323090i \(-0.104722\pi\)
\(212\) 48.5513i 3.33451i
\(213\) 0 0
\(214\) 19.5804i 1.33849i
\(215\) 13.4543 0.917574
\(216\) 0 0
\(217\) 8.18144i 0.555392i
\(218\) 48.3195i 3.27261i
\(219\) 0 0
\(220\) 8.06940i 0.544039i
\(221\) −14.9989 −1.00893
\(222\) 0 0
\(223\) −0.566357 −0.0379261 −0.0189630 0.999820i \(-0.506036\pi\)
−0.0189630 + 0.999820i \(0.506036\pi\)
\(224\) 9.68191 0.646899
\(225\) 0 0
\(226\) 35.7261 2.37646
\(227\) −5.44940 −0.361689 −0.180845 0.983512i \(-0.557883\pi\)
−0.180845 + 0.983512i \(0.557883\pi\)
\(228\) 0 0
\(229\) 20.2184i 1.33607i 0.744131 + 0.668034i \(0.232864\pi\)
−0.744131 + 0.668034i \(0.767136\pi\)
\(230\) 8.35172i 0.550696i
\(231\) 0 0
\(232\) 3.57874i 0.234956i
\(233\) −16.4532 −1.07788 −0.538941 0.842344i \(-0.681175\pi\)
−0.538941 + 0.842344i \(0.681175\pi\)
\(234\) 0 0
\(235\) 6.33002i 0.412925i
\(236\) 27.8951 + 23.1282i 1.81582 + 1.50552i
\(237\) 0 0
\(238\) 18.2673i 1.18409i
\(239\) 0.297314i 0.0192317i −0.999954 0.00961583i \(-0.996939\pi\)
0.999954 0.00961583i \(-0.00306086\pi\)
\(240\) 0 0
\(241\) 3.52113 0.226816 0.113408 0.993549i \(-0.463823\pi\)
0.113408 + 0.993549i \(0.463823\pi\)
\(242\) 24.2713 1.56022
\(243\) 0 0
\(244\) 36.1931i 2.31702i
\(245\) 7.73394i 0.494103i
\(246\) 0 0
\(247\) 13.1729i 0.838173i
\(248\) 52.2171i 3.31579i
\(249\) 0 0
\(250\) 28.4649i 1.80028i
\(251\) 7.13256i 0.450203i 0.974335 + 0.225102i \(0.0722714\pi\)
−0.974335 + 0.225102i \(0.927729\pi\)
\(252\) 0 0
\(253\) −3.08087 −0.193693
\(254\) 29.0909 1.82533
\(255\) 0 0
\(256\) −21.4243 −1.33902
\(257\) 17.3343i 1.08128i −0.841253 0.540642i \(-0.818181\pi\)
0.841253 0.540642i \(-0.181819\pi\)
\(258\) 0 0
\(259\) 5.40266i 0.335705i
\(260\) 14.8188 0.919025
\(261\) 0 0
\(262\) −42.9474 −2.65330
\(263\) 20.3963i 1.25769i 0.777531 + 0.628844i \(0.216472\pi\)
−0.777531 + 0.628844i \(0.783528\pi\)
\(264\) 0 0
\(265\) 13.7657 0.845618
\(266\) −16.0434 −0.983686
\(267\) 0 0
\(268\) 16.8291i 1.02800i
\(269\) 18.1302 1.10542 0.552708 0.833375i \(-0.313594\pi\)
0.552708 + 0.833375i \(0.313594\pi\)
\(270\) 0 0
\(271\) −10.8287 −0.657799 −0.328900 0.944365i \(-0.606678\pi\)
−0.328900 + 0.944365i \(0.606678\pi\)
\(272\) 56.3305i 3.41554i
\(273\) 0 0
\(274\) 48.1497i 2.90883i
\(275\) −4.10627 −0.247617
\(276\) 0 0
\(277\) 1.76618 0.106120 0.0530598 0.998591i \(-0.483103\pi\)
0.0530598 + 0.998591i \(0.483103\pi\)
\(278\) −10.3031 −0.617942
\(279\) 0 0
\(280\) 10.3965i 0.621312i
\(281\) 27.0494i 1.61363i −0.590802 0.806817i \(-0.701188\pi\)
0.590802 0.806817i \(-0.298812\pi\)
\(282\) 0 0
\(283\) 30.5394i 1.81538i −0.419645 0.907688i \(-0.637845\pi\)
0.419645 0.907688i \(-0.362155\pi\)
\(284\) 7.02639i 0.416939i
\(285\) 0 0
\(286\) 7.78407i 0.460281i
\(287\) 4.61215i 0.272247i
\(288\) 0 0
\(289\) −23.7889 −1.39935
\(290\) 1.76144 0.103435
\(291\) 0 0
\(292\) 24.6515i 1.44262i
\(293\) 2.32134i 0.135614i 0.997698 + 0.0678070i \(0.0216002\pi\)
−0.997698 + 0.0678070i \(0.978400\pi\)
\(294\) 0 0
\(295\) 6.55750 7.90906i 0.381793 0.460483i
\(296\) 34.4818i 2.00422i
\(297\) 0 0
\(298\) 3.45167 0.199950
\(299\) 5.65779i 0.327198i
\(300\) 0 0
\(301\) 11.1006i 0.639827i
\(302\) 26.5066i 1.52528i
\(303\) 0 0
\(304\) −49.4729 −2.83746
\(305\) 10.2618 0.587586
\(306\) 0 0
\(307\) −14.1536 −0.807791 −0.403895 0.914805i \(-0.632344\pi\)
−0.403895 + 0.914805i \(0.632344\pi\)
\(308\) 6.65774 0.379360
\(309\) 0 0
\(310\) 25.7009 1.45972
\(311\) 24.0962i 1.36637i −0.730245 0.683185i \(-0.760594\pi\)
0.730245 0.683185i \(-0.239406\pi\)
\(312\) 0 0
\(313\) 2.81096i 0.158885i 0.996839 + 0.0794424i \(0.0253140\pi\)
−0.996839 + 0.0794424i \(0.974686\pi\)
\(314\) 11.6893i 0.659667i
\(315\) 0 0
\(316\) 64.8413 3.64761
\(317\) 7.10636i 0.399133i 0.979884 + 0.199566i \(0.0639534\pi\)
−0.979884 + 0.199566i \(0.936047\pi\)
\(318\) 0 0
\(319\) 0.649777i 0.0363805i
\(320\) 6.81981i 0.381239i
\(321\) 0 0
\(322\) 6.89067 0.384002
\(323\) 35.8233i 1.99326i
\(324\) 0 0
\(325\) 7.54085i 0.418291i
\(326\) −19.3713 −1.07288
\(327\) 0 0
\(328\) 29.4365i 1.62536i
\(329\) −5.22264 −0.287934
\(330\) 0 0
\(331\) −22.2809 −1.22467 −0.612335 0.790598i \(-0.709770\pi\)
−0.612335 + 0.790598i \(0.709770\pi\)
\(332\) −28.4606 −1.56198
\(333\) 0 0
\(334\) 42.4399i 2.32221i
\(335\) 4.77153 0.260697
\(336\) 0 0
\(337\) 10.6139i 0.578179i 0.957302 + 0.289089i \(0.0933524\pi\)
−0.957302 + 0.289089i \(0.906648\pi\)
\(338\) −19.3988 −1.05516
\(339\) 0 0
\(340\) 40.2993 2.18554
\(341\) 9.48084i 0.513416i
\(342\) 0 0
\(343\) 14.1059 0.761647
\(344\) 70.8482i 3.81988i
\(345\) 0 0
\(346\) 47.3196 2.54392
\(347\) −16.9371 −0.909229 −0.454615 0.890688i \(-0.650223\pi\)
−0.454615 + 0.890688i \(0.650223\pi\)
\(348\) 0 0
\(349\) 16.5987i 0.888506i −0.895901 0.444253i \(-0.853469\pi\)
0.895901 0.444253i \(-0.146531\pi\)
\(350\) 9.18407 0.490909
\(351\) 0 0
\(352\) 11.2196 0.598008
\(353\) 1.72462 0.0917922 0.0458961 0.998946i \(-0.485386\pi\)
0.0458961 + 0.998946i \(0.485386\pi\)
\(354\) 0 0
\(355\) −1.99218 −0.105734
\(356\) −60.3750 −3.19987
\(357\) 0 0
\(358\) −43.9652 −2.32364
\(359\) 26.2732i 1.38665i 0.720626 + 0.693324i \(0.243855\pi\)
−0.720626 + 0.693324i \(0.756145\pi\)
\(360\) 0 0
\(361\) 12.4623 0.655909
\(362\) −48.0977 −2.52796
\(363\) 0 0
\(364\) 12.2264i 0.640839i
\(365\) 6.98941 0.365842
\(366\) 0 0
\(367\) 14.6670i 0.765610i 0.923829 + 0.382805i \(0.125042\pi\)
−0.923829 + 0.382805i \(0.874958\pi\)
\(368\) 21.2487 1.10766
\(369\) 0 0
\(370\) −16.9718 −0.882320
\(371\) 11.3575i 0.589652i
\(372\) 0 0
\(373\) 13.0388 0.675122 0.337561 0.941304i \(-0.390398\pi\)
0.337561 + 0.941304i \(0.390398\pi\)
\(374\) 21.1685i 1.09460i
\(375\) 0 0
\(376\) −33.3329 −1.71901
\(377\) 1.19327 0.0614563
\(378\) 0 0
\(379\) −30.8296 −1.58361 −0.791806 0.610772i \(-0.790859\pi\)
−0.791806 + 0.610772i \(0.790859\pi\)
\(380\) 35.3934i 1.81564i
\(381\) 0 0
\(382\) 69.7061 3.56647
\(383\) 12.8038i 0.654246i −0.944982 0.327123i \(-0.893921\pi\)
0.944982 0.327123i \(-0.106079\pi\)
\(384\) 0 0
\(385\) 1.88766i 0.0962039i
\(386\) −32.0078 −1.62915
\(387\) 0 0
\(388\) 79.2544i 4.02353i
\(389\) 5.21207i 0.264262i 0.991232 + 0.132131i \(0.0421820\pi\)
−0.991232 + 0.132131i \(0.957818\pi\)
\(390\) 0 0
\(391\) 15.3862i 0.778112i
\(392\) 40.7258 2.05696
\(393\) 0 0
\(394\) 23.5730i 1.18759i
\(395\) 18.3843i 0.925016i
\(396\) 0 0
\(397\) 28.3858i 1.42464i 0.701854 + 0.712321i \(0.252356\pi\)
−0.701854 + 0.712321i \(0.747644\pi\)
\(398\) 29.0541 1.45635
\(399\) 0 0
\(400\) 28.3208 1.41604
\(401\) 30.0635 1.50130 0.750649 0.660701i \(-0.229741\pi\)
0.750649 + 0.660701i \(0.229741\pi\)
\(402\) 0 0
\(403\) 17.4108 0.867295
\(404\) 6.13477 0.305216
\(405\) 0 0
\(406\) 1.45329i 0.0721256i
\(407\) 6.26073i 0.310333i
\(408\) 0 0
\(409\) 20.6179i 1.01949i −0.860325 0.509746i \(-0.829740\pi\)
0.860325 0.509746i \(-0.170260\pi\)
\(410\) −14.4885 −0.715535
\(411\) 0 0
\(412\) 54.5314i 2.68657i
\(413\) −6.52545 5.41034i −0.321096 0.266225i
\(414\) 0 0
\(415\) 8.06940i 0.396111i
\(416\) 20.6040i 1.01019i
\(417\) 0 0
\(418\) −18.5915 −0.909340
\(419\) 20.2821 0.990847 0.495424 0.868651i \(-0.335013\pi\)
0.495424 + 0.868651i \(0.335013\pi\)
\(420\) 0 0
\(421\) 10.2119i 0.497696i −0.968543 0.248848i \(-0.919948\pi\)
0.968543 0.248848i \(-0.0800519\pi\)
\(422\) 24.3276i 1.18425i
\(423\) 0 0
\(424\) 72.4879i 3.52032i
\(425\) 20.5071i 0.994741i
\(426\) 0 0
\(427\) 8.46657i 0.409726i
\(428\) 35.6395i 1.72270i
\(429\) 0 0
\(430\) −34.8711 −1.68163
\(431\) 2.48805 0.119845 0.0599226 0.998203i \(-0.480915\pi\)
0.0599226 + 0.998203i \(0.480915\pi\)
\(432\) 0 0
\(433\) 2.62436 0.126118 0.0630592 0.998010i \(-0.479914\pi\)
0.0630592 + 0.998010i \(0.479914\pi\)
\(434\) 21.2048i 1.01786i
\(435\) 0 0
\(436\) 87.9494i 4.21201i
\(437\) −13.5131 −0.646418
\(438\) 0 0
\(439\) 9.35004 0.446253 0.223126 0.974790i \(-0.428374\pi\)
0.223126 + 0.974790i \(0.428374\pi\)
\(440\) 12.0478i 0.574354i
\(441\) 0 0
\(442\) 38.8744 1.84906
\(443\) 21.9494 1.04285 0.521424 0.853298i \(-0.325401\pi\)
0.521424 + 0.853298i \(0.325401\pi\)
\(444\) 0 0
\(445\) 17.1180i 0.811472i
\(446\) 1.46790 0.0695069
\(447\) 0 0
\(448\) −5.62675 −0.265839
\(449\) 33.5977i 1.58558i 0.609498 + 0.792788i \(0.291371\pi\)
−0.609498 + 0.792788i \(0.708629\pi\)
\(450\) 0 0
\(451\) 5.34467i 0.251670i
\(452\) −65.0273 −3.05863
\(453\) 0 0
\(454\) 14.1239 0.662865
\(455\) −3.46654 −0.162514
\(456\) 0 0
\(457\) 7.05058i 0.329812i −0.986309 0.164906i \(-0.947268\pi\)
0.986309 0.164906i \(-0.0527321\pi\)
\(458\) 52.4024i 2.44860i
\(459\) 0 0
\(460\) 15.2015i 0.708773i
\(461\) 10.6981i 0.498258i 0.968470 + 0.249129i \(0.0801443\pi\)
−0.968470 + 0.249129i \(0.919856\pi\)
\(462\) 0 0
\(463\) 41.8771i 1.94619i −0.230399 0.973096i \(-0.574003\pi\)
0.230399 0.973096i \(-0.425997\pi\)
\(464\) 4.48149i 0.208048i
\(465\) 0 0
\(466\) 42.6436 1.97543
\(467\) 12.6008 0.583095 0.291548 0.956556i \(-0.405830\pi\)
0.291548 + 0.956556i \(0.405830\pi\)
\(468\) 0 0
\(469\) 3.93680i 0.181785i
\(470\) 16.4063i 0.756765i
\(471\) 0 0
\(472\) −41.6479 34.5308i −1.91700 1.58941i
\(473\) 12.8636i 0.591470i
\(474\) 0 0
\(475\) −18.0106 −0.826383
\(476\) 33.2494i 1.52398i
\(477\) 0 0
\(478\) 0.770586i 0.0352458i
\(479\) 25.0009i 1.14232i 0.820838 + 0.571161i \(0.193507\pi\)
−0.820838 + 0.571161i \(0.806493\pi\)
\(480\) 0 0
\(481\) −11.4973 −0.524234
\(482\) −9.12614 −0.415684
\(483\) 0 0
\(484\) −44.1777 −2.00808
\(485\) −22.4709 −1.02035
\(486\) 0 0
\(487\) −20.8899 −0.946613 −0.473307 0.880898i \(-0.656940\pi\)
−0.473307 + 0.880898i \(0.656940\pi\)
\(488\) 54.0369i 2.44614i
\(489\) 0 0
\(490\) 20.0450i 0.905540i
\(491\) 6.70459i 0.302574i 0.988490 + 0.151287i \(0.0483418\pi\)
−0.988490 + 0.151287i \(0.951658\pi\)
\(492\) 0 0
\(493\) 3.24505 0.146150
\(494\) 34.1419i 1.53611i
\(495\) 0 0
\(496\) 65.3890i 2.93605i
\(497\) 1.64367i 0.0737286i
\(498\) 0 0
\(499\) −6.58141 −0.294624 −0.147312 0.989090i \(-0.547062\pi\)
−0.147312 + 0.989090i \(0.547062\pi\)
\(500\) 51.8108i 2.31705i
\(501\) 0 0
\(502\) 18.4863i 0.825085i
\(503\) −4.80083 −0.214059 −0.107029 0.994256i \(-0.534134\pi\)
−0.107029 + 0.994256i \(0.534134\pi\)
\(504\) 0 0
\(505\) 1.73938i 0.0774015i
\(506\) 7.98507 0.354980
\(507\) 0 0
\(508\) −52.9502 −2.34929
\(509\) 20.9734 0.929630 0.464815 0.885408i \(-0.346121\pi\)
0.464815 + 0.885408i \(0.346121\pi\)
\(510\) 0 0
\(511\) 5.76668i 0.255103i
\(512\) 46.8647 2.07115
\(513\) 0 0
\(514\) 44.9274i 1.98166i
\(515\) 15.4612 0.681301
\(516\) 0 0
\(517\) −6.05212 −0.266172
\(518\) 14.0027i 0.615244i
\(519\) 0 0
\(520\) −22.1248 −0.970236
\(521\) 33.0424i 1.44762i −0.690002 0.723808i \(-0.742390\pi\)
0.690002 0.723808i \(-0.257610\pi\)
\(522\) 0 0
\(523\) −26.4689 −1.15740 −0.578702 0.815539i \(-0.696440\pi\)
−0.578702 + 0.815539i \(0.696440\pi\)
\(524\) 78.1713 3.41493
\(525\) 0 0
\(526\) 52.8635i 2.30496i
\(527\) 47.3482 2.06252
\(528\) 0 0
\(529\) −17.1961 −0.747657
\(530\) −35.6781 −1.54976
\(531\) 0 0
\(532\) 29.2017 1.26605
\(533\) −9.81507 −0.425138
\(534\) 0 0
\(535\) −10.1048 −0.436869
\(536\) 25.1262i 1.08529i
\(537\) 0 0
\(538\) −46.9902 −2.02589
\(539\) 7.39441 0.318500
\(540\) 0 0
\(541\) 15.5849i 0.670045i −0.942210 0.335023i \(-0.891256\pi\)
0.942210 0.335023i \(-0.108744\pi\)
\(542\) 28.0662 1.20554
\(543\) 0 0
\(544\) 56.0318i 2.40234i
\(545\) 24.9362 1.06815
\(546\) 0 0
\(547\) 37.2794 1.59395 0.796975 0.604012i \(-0.206432\pi\)
0.796975 + 0.604012i \(0.206432\pi\)
\(548\) 87.6403i 3.74381i
\(549\) 0 0
\(550\) 10.6427 0.453807
\(551\) 2.85000i 0.121414i
\(552\) 0 0
\(553\) −15.1682 −0.645017
\(554\) −4.57763 −0.194485
\(555\) 0 0
\(556\) 18.7534 0.795321
\(557\) 15.9475i 0.675717i 0.941197 + 0.337859i \(0.109703\pi\)
−0.941197 + 0.337859i \(0.890297\pi\)
\(558\) 0 0
\(559\) −23.6230 −0.999148
\(560\) 13.0191i 0.550157i
\(561\) 0 0
\(562\) 70.1073i 2.95730i
\(563\) −23.2133 −0.978324 −0.489162 0.872193i \(-0.662697\pi\)
−0.489162 + 0.872193i \(0.662697\pi\)
\(564\) 0 0
\(565\) 18.4371i 0.775653i
\(566\) 79.1526i 3.32703i
\(567\) 0 0
\(568\) 10.4905i 0.440172i
\(569\) −6.74997 −0.282973 −0.141487 0.989940i \(-0.545188\pi\)
−0.141487 + 0.989940i \(0.545188\pi\)
\(570\) 0 0
\(571\) 4.88193i 0.204303i −0.994769 0.102151i \(-0.967427\pi\)
0.994769 0.102151i \(-0.0325726\pi\)
\(572\) 14.1683i 0.592405i
\(573\) 0 0
\(574\) 11.9539i 0.498945i
\(575\) 7.73557 0.322596
\(576\) 0 0
\(577\) −18.7442 −0.780332 −0.390166 0.920745i \(-0.627582\pi\)
−0.390166 + 0.920745i \(0.627582\pi\)
\(578\) 61.6566 2.56458
\(579\) 0 0
\(580\) −3.20610 −0.133126
\(581\) 6.65774 0.276210
\(582\) 0 0
\(583\) 13.1613i 0.545087i
\(584\) 36.8052i 1.52301i
\(585\) 0 0
\(586\) 6.01649i 0.248539i
\(587\) 8.21903 0.339235 0.169618 0.985510i \(-0.445747\pi\)
0.169618 + 0.985510i \(0.445747\pi\)
\(588\) 0 0
\(589\) 41.5841i 1.71344i
\(590\) −16.9959 + 20.4989i −0.699709 + 0.843925i
\(591\) 0 0
\(592\) 43.1800i 1.77469i
\(593\) 19.2976i 0.792456i 0.918152 + 0.396228i \(0.129681\pi\)
−0.918152 + 0.396228i \(0.870319\pi\)
\(594\) 0 0
\(595\) −9.42714 −0.386475
\(596\) −6.28260 −0.257345
\(597\) 0 0
\(598\) 14.6640i 0.599654i
\(599\) 5.55790i 0.227090i 0.993533 + 0.113545i \(0.0362206\pi\)
−0.993533 + 0.113545i \(0.963779\pi\)
\(600\) 0 0
\(601\) 26.2502i 1.07077i 0.844608 + 0.535384i \(0.179833\pi\)
−0.844608 + 0.535384i \(0.820167\pi\)
\(602\) 28.7707i 1.17261i
\(603\) 0 0
\(604\) 48.2463i 1.96311i
\(605\) 12.5256i 0.509240i
\(606\) 0 0
\(607\) 2.50904 0.101839 0.0509195 0.998703i \(-0.483785\pi\)
0.0509195 + 0.998703i \(0.483785\pi\)
\(608\) 49.2106 1.99575
\(609\) 0 0
\(610\) −26.5966 −1.07687
\(611\) 11.1143i 0.449635i
\(612\) 0 0
\(613\) 42.3201i 1.70929i 0.519210 + 0.854647i \(0.326226\pi\)
−0.519210 + 0.854647i \(0.673774\pi\)
\(614\) 36.6837 1.48043
\(615\) 0 0
\(616\) −9.94012 −0.400499
\(617\) 21.3951i 0.861335i 0.902511 + 0.430667i \(0.141722\pi\)
−0.902511 + 0.430667i \(0.858278\pi\)
\(618\) 0 0
\(619\) −3.27219 −0.131520 −0.0657602 0.997835i \(-0.520947\pi\)
−0.0657602 + 0.997835i \(0.520947\pi\)
\(620\) −46.7799 −1.87873
\(621\) 0 0
\(622\) 62.4530i 2.50414i
\(623\) 14.1234 0.565842
\(624\) 0 0
\(625\) 1.36492 0.0545967
\(626\) 7.28550i 0.291187i
\(627\) 0 0
\(628\) 21.2765i 0.849024i
\(629\) −31.2667 −1.24668
\(630\) 0 0
\(631\) 19.2561 0.766572 0.383286 0.923630i \(-0.374792\pi\)
0.383286 + 0.923630i \(0.374792\pi\)
\(632\) −96.8092 −3.85086
\(633\) 0 0
\(634\) 18.4184i 0.731488i
\(635\) 15.0129i 0.595768i
\(636\) 0 0
\(637\) 13.5793i 0.538030i
\(638\) 1.68411i 0.0666744i
\(639\) 0 0
\(640\) 5.79385i 0.229022i
\(641\) 41.3576i 1.63353i −0.576974 0.816763i \(-0.695767\pi\)
0.576974 0.816763i \(-0.304233\pi\)
\(642\) 0 0
\(643\) −22.0837 −0.870897 −0.435449 0.900214i \(-0.643410\pi\)
−0.435449 + 0.900214i \(0.643410\pi\)
\(644\) −12.5421 −0.494230
\(645\) 0 0
\(646\) 92.8477i 3.65304i
\(647\) 5.27457i 0.207365i 0.994610 + 0.103682i \(0.0330625\pi\)
−0.994610 + 0.103682i \(0.966937\pi\)
\(648\) 0 0
\(649\) −7.56185 6.26962i −0.296828 0.246104i
\(650\) 19.5445i 0.766600i
\(651\) 0 0
\(652\) 35.2590 1.38085
\(653\) 23.8696i 0.934089i 0.884234 + 0.467044i \(0.154681\pi\)
−0.884234 + 0.467044i \(0.845319\pi\)
\(654\) 0 0
\(655\) 22.1638i 0.866010i
\(656\) 36.8619i 1.43922i
\(657\) 0 0
\(658\) 13.5362 0.527694
\(659\) 39.0516 1.52123 0.760617 0.649201i \(-0.224897\pi\)
0.760617 + 0.649201i \(0.224897\pi\)
\(660\) 0 0
\(661\) 43.8662 1.70620 0.853099 0.521750i \(-0.174720\pi\)
0.853099 + 0.521750i \(0.174720\pi\)
\(662\) 57.7481 2.24445
\(663\) 0 0
\(664\) 42.4923 1.64902
\(665\) 8.27949i 0.321065i
\(666\) 0 0
\(667\) 1.22408i 0.0473965i
\(668\) 77.2475i 2.98880i
\(669\) 0 0
\(670\) −12.3670 −0.477777
\(671\) 9.81125i 0.378759i
\(672\) 0 0
\(673\) 21.8356i 0.841699i 0.907131 + 0.420849i \(0.138268\pi\)
−0.907131 + 0.420849i \(0.861732\pi\)
\(674\) 27.5095i 1.05962i
\(675\) 0 0
\(676\) 35.3090 1.35804
\(677\) 18.1653i 0.698150i 0.937095 + 0.349075i \(0.113504\pi\)
−0.937095 + 0.349075i \(0.886496\pi\)
\(678\) 0 0
\(679\) 18.5398i 0.711493i
\(680\) −60.1676 −2.30732
\(681\) 0 0
\(682\) 24.5726i 0.940935i
\(683\) −0.927513 −0.0354903 −0.0177451 0.999843i \(-0.505649\pi\)
−0.0177451 + 0.999843i \(0.505649\pi\)
\(684\) 0 0
\(685\) 24.8485 0.949413
\(686\) −36.5600 −1.39587
\(687\) 0 0
\(688\) 88.7198i 3.38241i
\(689\) −24.1698 −0.920795
\(690\) 0 0
\(691\) 16.1812i 0.615562i 0.951457 + 0.307781i \(0.0995864\pi\)
−0.951457 + 0.307781i \(0.900414\pi\)
\(692\) −86.1294 −3.27415
\(693\) 0 0
\(694\) 43.8978 1.66634
\(695\) 5.31712i 0.201690i
\(696\) 0 0
\(697\) −26.6918 −1.01102
\(698\) 43.0207i 1.62836i
\(699\) 0 0
\(700\) −16.7165 −0.631825
\(701\) −25.0850 −0.947448 −0.473724 0.880673i \(-0.657091\pi\)
−0.473724 + 0.880673i \(0.657091\pi\)
\(702\) 0 0
\(703\) 27.4603i 1.03568i
\(704\) −6.52041 −0.245747
\(705\) 0 0
\(706\) −4.46991 −0.168227
\(707\) −1.43509 −0.0539723
\(708\) 0 0
\(709\) −1.10014 −0.0413165 −0.0206583 0.999787i \(-0.506576\pi\)
−0.0206583 + 0.999787i \(0.506576\pi\)
\(710\) 5.16337 0.193778
\(711\) 0 0
\(712\) 90.1409 3.37817
\(713\) 17.8604i 0.668878i
\(714\) 0 0
\(715\) −4.01710 −0.150231
\(716\) 80.0239 2.99063
\(717\) 0 0
\(718\) 68.0955i 2.54130i
\(719\) 12.2771 0.457859 0.228929 0.973443i \(-0.426477\pi\)
0.228929 + 0.973443i \(0.426477\pi\)
\(720\) 0 0
\(721\) 12.7564i 0.475074i
\(722\) −32.3000 −1.20208
\(723\) 0 0
\(724\) 87.5457 3.25361
\(725\) 1.63149i 0.0605919i
\(726\) 0 0
\(727\) −48.3269 −1.79235 −0.896173 0.443704i \(-0.853664\pi\)
−0.896173 + 0.443704i \(0.853664\pi\)
\(728\) 18.2543i 0.676548i
\(729\) 0 0
\(730\) −18.1153 −0.670477
\(731\) −64.2421 −2.37608
\(732\) 0 0
\(733\) 41.3111 1.52586 0.762930 0.646481i \(-0.223760\pi\)
0.762930 + 0.646481i \(0.223760\pi\)
\(734\) 38.0142i 1.40313i
\(735\) 0 0
\(736\) −21.1360 −0.779084
\(737\) 4.56206i 0.168046i
\(738\) 0 0
\(739\) 36.2934i 1.33508i 0.744576 + 0.667538i \(0.232652\pi\)
−0.744576 + 0.667538i \(0.767348\pi\)
\(740\) 30.8914 1.13559
\(741\) 0 0
\(742\) 29.4366i 1.08065i
\(743\) 34.1669i 1.25346i −0.779236 0.626731i \(-0.784393\pi\)
0.779236 0.626731i \(-0.215607\pi\)
\(744\) 0 0
\(745\) 1.78129i 0.0652616i
\(746\) −33.7941 −1.23729
\(747\) 0 0
\(748\) 38.5302i 1.40880i
\(749\) 8.33707i 0.304630i
\(750\) 0 0
\(751\) 15.7840i 0.575968i −0.957635 0.287984i \(-0.907015\pi\)
0.957635 0.287984i \(-0.0929850\pi\)
\(752\) 41.7412 1.52215
\(753\) 0 0
\(754\) −3.09273 −0.112631
\(755\) −13.6792 −0.497837
\(756\) 0 0
\(757\) −10.8100 −0.392897 −0.196449 0.980514i \(-0.562941\pi\)
−0.196449 + 0.980514i \(0.562941\pi\)
\(758\) 79.9049 2.90228
\(759\) 0 0
\(760\) 52.8429i 1.91681i
\(761\) 27.2877i 0.989178i 0.869127 + 0.494589i \(0.164681\pi\)
−0.869127 + 0.494589i \(0.835319\pi\)
\(762\) 0 0
\(763\) 20.5738i 0.744822i
\(764\) −126.876 −4.59023
\(765\) 0 0
\(766\) 33.1853i 1.19903i
\(767\) −11.5137 + 13.8867i −0.415735 + 0.501421i
\(768\) 0 0
\(769\) 51.8241i 1.86882i −0.356193 0.934412i \(-0.615925\pi\)
0.356193 0.934412i \(-0.384075\pi\)
\(770\) 4.89247i 0.176312i
\(771\) 0 0
\(772\) 58.2594 2.09680
\(773\) 14.0810 0.506458 0.253229 0.967406i \(-0.418507\pi\)
0.253229 + 0.967406i \(0.418507\pi\)
\(774\) 0 0
\(775\) 23.8049i 0.855096i
\(776\) 118.328i 4.24774i
\(777\) 0 0
\(778\) 13.5088i 0.484312i
\(779\) 23.4423i 0.839909i
\(780\) 0 0
\(781\) 1.90472i 0.0681563i
\(782\) 39.8782i 1.42604i
\(783\) 0 0
\(784\) −50.9990 −1.82139
\(785\) −6.03248 −0.215309
\(786\) 0 0
\(787\) 30.3109 1.08047 0.540233 0.841515i \(-0.318336\pi\)
0.540233 + 0.841515i \(0.318336\pi\)
\(788\) 42.9067i 1.52849i
\(789\) 0 0
\(790\) 47.6489i 1.69527i
\(791\) 15.2117 0.540866
\(792\) 0 0
\(793\) −18.0176 −0.639824
\(794\) 73.5709i 2.61093i
\(795\) 0 0
\(796\) −52.8832 −1.87440
\(797\) 30.4986 1.08032 0.540159 0.841563i \(-0.318364\pi\)
0.540159 + 0.841563i \(0.318364\pi\)
\(798\) 0 0
\(799\) 30.2249i 1.06928i
\(800\) −28.1706 −0.995983
\(801\) 0 0
\(802\) −77.9192 −2.75142
\(803\) 6.68257i 0.235823i
\(804\) 0 0
\(805\) 3.55605i 0.125334i
\(806\) −45.1258 −1.58949
\(807\) 0 0
\(808\) −9.15933 −0.322224
\(809\) 37.3336 1.31258 0.656289 0.754510i \(-0.272125\pi\)
0.656289 + 0.754510i \(0.272125\pi\)
\(810\) 0 0
\(811\) 23.8189i 0.836393i −0.908356 0.418197i \(-0.862662\pi\)
0.908356 0.418197i \(-0.137338\pi\)
\(812\) 2.64522i 0.0928292i
\(813\) 0 0
\(814\) 16.2267i 0.568745i
\(815\) 9.99691i 0.350177i
\(816\) 0 0
\(817\) 56.4214i 1.97393i
\(818\) 53.4380i 1.86842i
\(819\) 0 0
\(820\) 26.3714 0.920929
\(821\) 32.3859 1.13027 0.565137 0.824997i \(-0.308823\pi\)
0.565137 + 0.824997i \(0.308823\pi\)
\(822\) 0 0
\(823\) 40.1246i 1.39866i 0.714800 + 0.699329i \(0.246518\pi\)
−0.714800 + 0.699329i \(0.753482\pi\)
\(824\) 81.4163i 2.83627i
\(825\) 0 0
\(826\) 16.9128 + 14.0226i 0.588472 + 0.487909i
\(827\) 5.45719i 0.189765i 0.995488 + 0.0948825i \(0.0302475\pi\)
−0.995488 + 0.0948825i \(0.969752\pi\)
\(828\) 0 0
\(829\) 18.6131 0.646458 0.323229 0.946321i \(-0.395232\pi\)
0.323229 + 0.946321i \(0.395232\pi\)
\(830\) 20.9144i 0.725951i
\(831\) 0 0
\(832\) 11.9742i 0.415132i
\(833\) 36.9284i 1.27949i
\(834\) 0 0
\(835\) −21.9019 −0.757945
\(836\) 33.8396 1.17037
\(837\) 0 0
\(838\) −52.5677 −1.81592
\(839\) −50.4625 −1.74216 −0.871080 0.491141i \(-0.836580\pi\)
−0.871080 + 0.491141i \(0.836580\pi\)
\(840\) 0 0
\(841\) 28.7418 0.991098
\(842\) 26.4673i 0.912124i
\(843\) 0 0
\(844\) 44.2802i 1.52419i
\(845\) 10.0111i 0.344393i
\(846\) 0 0
\(847\) 10.3344 0.355094
\(848\) 90.7732i 3.11716i
\(849\) 0 0
\(850\) 53.1507i 1.82306i
\(851\) 11.7942i 0.404301i
\(852\) 0 0
\(853\) 7.16129 0.245198 0.122599 0.992456i \(-0.460877\pi\)
0.122599 + 0.992456i \(0.460877\pi\)
\(854\) 21.9438i 0.750902i
\(855\) 0 0
\(856\) 53.2104i 1.81869i
\(857\) −36.4853 −1.24632 −0.623158 0.782096i \(-0.714150\pi\)
−0.623158 + 0.782096i \(0.714150\pi\)
\(858\) 0 0
\(859\) 37.4842i 1.27894i −0.768815 0.639471i \(-0.779153\pi\)
0.768815 0.639471i \(-0.220847\pi\)
\(860\) 63.4710 2.16434
\(861\) 0 0
\(862\) −6.44858 −0.219640
\(863\) 23.2826 0.792550 0.396275 0.918132i \(-0.370303\pi\)
0.396275 + 0.918132i \(0.370303\pi\)
\(864\) 0 0
\(865\) 24.4201i 0.830309i
\(866\) −6.80186 −0.231137
\(867\) 0 0
\(868\) 38.5962i 1.31004i
\(869\) −17.5772 −0.596267
\(870\) 0 0
\(871\) −8.37787 −0.283873
\(872\) 131.310i 4.44672i
\(873\) 0 0
\(874\) 35.0235 1.18469
\(875\) 12.1200i 0.409730i
\(876\) 0 0
\(877\) 35.1282 1.18619 0.593097 0.805131i \(-0.297905\pi\)
0.593097 + 0.805131i \(0.297905\pi\)
\(878\) −24.2336 −0.817845
\(879\) 0 0
\(880\) 15.0868i 0.508577i
\(881\) 30.5941 1.03074 0.515371 0.856967i \(-0.327654\pi\)
0.515371 + 0.856967i \(0.327654\pi\)
\(882\) 0 0
\(883\) 56.0462 1.88610 0.943052 0.332646i \(-0.107941\pi\)
0.943052 + 0.332646i \(0.107941\pi\)
\(884\) −70.7577 −2.37984
\(885\) 0 0
\(886\) −56.8890 −1.91122
\(887\) 33.5532 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(888\) 0 0
\(889\) 12.3865 0.415431
\(890\) 44.3668i 1.48718i
\(891\) 0 0
\(892\) −2.67181 −0.0894588
\(893\) −26.5453 −0.888306
\(894\) 0 0
\(895\) 22.6890i 0.758411i
\(896\) −4.78027 −0.159698
\(897\) 0 0
\(898\) 87.0793i 2.90588i
\(899\) −3.76689 −0.125633
\(900\) 0 0
\(901\) −65.7289 −2.18975
\(902\) 13.8524i 0.461235i
\(903\) 0 0
\(904\) 97.0869 3.22906
\(905\) 24.8217i 0.825100i
\(906\) 0 0
\(907\) 55.3302 1.83721 0.918605 0.395177i \(-0.129317\pi\)
0.918605 + 0.395177i \(0.129317\pi\)
\(908\) −25.7077 −0.853140
\(909\) 0 0
\(910\) 8.98464 0.297838
\(911\) 2.36437i 0.0783350i 0.999233 + 0.0391675i \(0.0124706\pi\)
−0.999233 + 0.0391675i \(0.987529\pi\)
\(912\) 0 0
\(913\) 7.71514 0.255334
\(914\) 18.2738i 0.604445i
\(915\) 0 0
\(916\) 95.3809i 3.15147i
\(917\) −18.2864 −0.603871
\(918\) 0 0
\(919\) 58.4248i 1.92726i 0.267244 + 0.963629i \(0.413887\pi\)
−0.267244 + 0.963629i \(0.586113\pi\)
\(920\) 22.6961i 0.748268i
\(921\) 0 0
\(922\) 27.7274i 0.913155i
\(923\) 3.49787 0.115134
\(924\) 0 0
\(925\) 15.7197i 0.516860i
\(926\) 108.538i 3.56678i
\(927\) 0 0
\(928\) 4.45773i 0.146332i
\(929\) −0.743626 −0.0243976 −0.0121988 0.999926i \(-0.503883\pi\)
−0.0121988 + 0.999926i \(0.503883\pi\)
\(930\) 0 0
\(931\) 32.4328 1.06294
\(932\) −77.6183 −2.54247
\(933\) 0 0
\(934\) −32.6590 −1.06864
\(935\) −10.9244 −0.357266
\(936\) 0 0
\(937\) 1.30437i 0.0426119i −0.999773 0.0213060i \(-0.993218\pi\)
0.999773 0.0213060i \(-0.00678241\pi\)
\(938\) 10.2035i 0.333156i
\(939\) 0 0
\(940\) 29.8621i 0.973994i
\(941\) −57.1702 −1.86370 −0.931848 0.362849i \(-0.881804\pi\)
−0.931848 + 0.362849i \(0.881804\pi\)
\(942\) 0 0
\(943\) 10.0685i 0.327876i
\(944\) 52.1537 + 43.2413i 1.69746 + 1.40739i
\(945\) 0 0
\(946\) 33.3402i 1.08398i
\(947\) 3.77389i 0.122635i −0.998118 0.0613175i \(-0.980470\pi\)
0.998118 0.0613175i \(-0.0195302\pi\)
\(948\) 0 0
\(949\) −12.2720 −0.398366
\(950\) 46.6803 1.51451
\(951\) 0 0
\(952\) 49.6419i 1.60890i
\(953\) 2.21032i 0.0715993i −0.999359 0.0357996i \(-0.988602\pi\)
0.999359 0.0357996i \(-0.0113978\pi\)
\(954\) 0 0
\(955\) 35.9730i 1.16406i
\(956\) 1.40259i 0.0453630i
\(957\) 0 0
\(958\) 64.7979i 2.09353i
\(959\) 20.5015i 0.662029i
\(960\) 0 0
\(961\) −23.9623 −0.772977
\(962\) 29.7990 0.960760
\(963\) 0 0
\(964\) 16.6111 0.535006
\(965\) 16.5182i 0.531739i
\(966\) 0 0
\(967\) 1.62577i 0.0522813i 0.999658 + 0.0261407i \(0.00832178\pi\)
−0.999658 + 0.0261407i \(0.991678\pi\)
\(968\) 65.9582 2.11998
\(969\) 0 0
\(970\) 58.2405 1.86999
\(971\) 47.1990i 1.51469i −0.653016 0.757344i \(-0.726496\pi\)
0.653016 0.757344i \(-0.273504\pi\)
\(972\) 0 0
\(973\) −4.38694 −0.140639
\(974\) 54.1430 1.73485
\(975\) 0 0
\(976\) 67.6678i 2.16599i
\(977\) 15.0769 0.482353 0.241177 0.970481i \(-0.422467\pi\)
0.241177 + 0.970481i \(0.422467\pi\)
\(978\) 0 0
\(979\) 16.3665 0.523076
\(980\) 36.4851i 1.16547i
\(981\) 0 0
\(982\) 17.3771i 0.554525i
\(983\) −41.5648 −1.32571 −0.662855 0.748748i \(-0.730655\pi\)
−0.662855 + 0.748748i \(0.730655\pi\)
\(984\) 0 0
\(985\) −12.1653 −0.387618
\(986\) −8.41059 −0.267848
\(987\) 0 0
\(988\) 62.1437i 1.97706i
\(989\) 24.2330i 0.770566i
\(990\) 0 0
\(991\) 28.9530i 0.919723i −0.887991 0.459862i \(-0.847899\pi\)
0.887991 0.459862i \(-0.152101\pi\)
\(992\) 65.0423i 2.06510i
\(993\) 0 0
\(994\) 4.26009i 0.135122i
\(995\) 14.9939i 0.475338i
\(996\) 0 0
\(997\) 30.1055 0.953451 0.476726 0.879052i \(-0.341824\pi\)
0.476726 + 0.879052i \(0.341824\pi\)
\(998\) 17.0578 0.539956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.d.a.530.1 20
3.2 odd 2 inner 531.2.d.a.530.20 yes 20
59.58 odd 2 inner 531.2.d.a.530.19 yes 20
177.176 even 2 inner 531.2.d.a.530.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
531.2.d.a.530.1 20 1.1 even 1 trivial
531.2.d.a.530.2 yes 20 177.176 even 2 inner
531.2.d.a.530.19 yes 20 59.58 odd 2 inner
531.2.d.a.530.20 yes 20 3.2 odd 2 inner