Properties

Label 5292.2.f.e.2645.4
Level $5292$
Weight $2$
Character 5292.2645
Analytic conductor $42.257$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(2645,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.2645"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2645.4
Root \(-1.07992 - 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2645
Dual form 5292.2.f.e.2645.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15983 q^{5} +1.33513i q^{11} +2.35021i q^{13} +7.20331 q^{17} -1.19862i q^{19} +2.40581i q^{23} -0.335126 q^{25} -6.14675i q^{29} -8.21155i q^{31} -5.14675 q^{37} +4.47234 q^{41} -0.664874 q^{43} -2.15983 q^{47} +12.7409i q^{53} -2.88365i q^{55} +9.66849 q^{59} -12.2938i q^{61} -5.07606i q^{65} -3.73556 q^{67} +11.4058i q^{71} +10.4770i q^{73} -9.07606 q^{79} -10.7992 q^{83} -15.5579 q^{85} +5.19615 q^{89} +2.58881i q^{95} -1.23632i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 48 q^{37} - 12 q^{43} - 48 q^{79} - 12 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.15983 −0.965906 −0.482953 0.875646i \(-0.660436\pi\)
−0.482953 + 0.875646i \(0.660436\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.33513i 0.402556i 0.979534 + 0.201278i \(0.0645094\pi\)
−0.979534 + 0.201278i \(0.935491\pi\)
\(12\) 0 0
\(13\) 2.35021i 0.651832i 0.945399 + 0.325916i \(0.105673\pi\)
−0.945399 + 0.325916i \(0.894327\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.20331 1.74706 0.873530 0.486771i \(-0.161825\pi\)
0.873530 + 0.486771i \(0.161825\pi\)
\(18\) 0 0
\(19\) − 1.19862i − 0.274981i −0.990503 0.137491i \(-0.956096\pi\)
0.990503 0.137491i \(-0.0439037\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.40581i 0.501647i 0.968033 + 0.250823i \(0.0807013\pi\)
−0.968033 + 0.250823i \(0.919299\pi\)
\(24\) 0 0
\(25\) −0.335126 −0.0670251
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.14675i − 1.14142i −0.821151 0.570712i \(-0.806667\pi\)
0.821151 0.570712i \(-0.193333\pi\)
\(30\) 0 0
\(31\) − 8.21155i − 1.47484i −0.675436 0.737419i \(-0.736045\pi\)
0.675436 0.737419i \(-0.263955\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.14675 −0.846121 −0.423060 0.906101i \(-0.639044\pi\)
−0.423060 + 0.906101i \(0.639044\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.47234 0.698462 0.349231 0.937037i \(-0.386443\pi\)
0.349231 + 0.937037i \(0.386443\pi\)
\(42\) 0 0
\(43\) −0.664874 −0.101392 −0.0506962 0.998714i \(-0.516144\pi\)
−0.0506962 + 0.998714i \(0.516144\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.15983 −0.315044 −0.157522 0.987515i \(-0.550350\pi\)
−0.157522 + 0.987515i \(0.550350\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.7409i 1.75010i 0.484030 + 0.875051i \(0.339172\pi\)
−0.484030 + 0.875051i \(0.660828\pi\)
\(54\) 0 0
\(55\) − 2.88365i − 0.388831i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.66849 1.25873 0.629365 0.777110i \(-0.283315\pi\)
0.629365 + 0.777110i \(0.283315\pi\)
\(60\) 0 0
\(61\) − 12.2938i − 1.57406i −0.616914 0.787031i \(-0.711617\pi\)
0.616914 0.787031i \(-0.288383\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 5.07606i − 0.629608i
\(66\) 0 0
\(67\) −3.73556 −0.456372 −0.228186 0.973618i \(-0.573279\pi\)
−0.228186 + 0.973618i \(0.573279\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4058i 1.35362i 0.736157 + 0.676810i \(0.236638\pi\)
−0.736157 + 0.676810i \(0.763362\pi\)
\(72\) 0 0
\(73\) 10.4770i 1.22624i 0.789988 + 0.613122i \(0.210087\pi\)
−0.789988 + 0.613122i \(0.789913\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −9.07606 −1.02114 −0.510569 0.859837i \(-0.670565\pi\)
−0.510569 + 0.859837i \(0.670565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.7992 −1.18536 −0.592681 0.805437i \(-0.701930\pi\)
−0.592681 + 0.805437i \(0.701930\pi\)
\(84\) 0 0
\(85\) −15.5579 −1.68750
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.58881i 0.265606i
\(96\) 0 0
\(97\) − 1.23632i − 0.125530i −0.998028 0.0627648i \(-0.980008\pi\)
0.998028 0.0627648i \(-0.0199918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.91281 0.389339 0.194670 0.980869i \(-0.437637\pi\)
0.194670 + 0.980869i \(0.437637\pi\)
\(102\) 0 0
\(103\) 4.12928i 0.406870i 0.979088 + 0.203435i \(0.0652106\pi\)
−0.979088 + 0.203435i \(0.934789\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.92394i − 0.379341i −0.981848 0.189671i \(-0.939258\pi\)
0.981848 0.189671i \(-0.0607420\pi\)
\(108\) 0 0
\(109\) 1.32975 0.127367 0.0636834 0.997970i \(-0.479715\pi\)
0.0636834 + 0.997970i \(0.479715\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.4819i 1.55048i 0.631664 + 0.775242i \(0.282372\pi\)
−0.631664 + 0.775242i \(0.717628\pi\)
\(114\) 0 0
\(115\) − 5.19615i − 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.21744 0.837949
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.5230 1.03065
\(126\) 0 0
\(127\) 14.8877 1.32107 0.660534 0.750796i \(-0.270330\pi\)
0.660534 + 0.750796i \(0.270330\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.8426 1.38418 0.692089 0.721812i \(-0.256691\pi\)
0.692089 + 0.721812i \(0.256691\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.8116i 1.94893i 0.224542 + 0.974464i \(0.427911\pi\)
−0.224542 + 0.974464i \(0.572089\pi\)
\(138\) 0 0
\(139\) 16.3761i 1.38900i 0.719492 + 0.694500i \(0.244374\pi\)
−0.719492 + 0.694500i \(0.755626\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.13783 −0.262398
\(144\) 0 0
\(145\) 13.2760i 1.10251i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 8.73556i − 0.715645i −0.933790 0.357823i \(-0.883519\pi\)
0.933790 0.357823i \(-0.116481\pi\)
\(150\) 0 0
\(151\) 7.14675 0.581594 0.290797 0.956785i \(-0.406079\pi\)
0.290797 + 0.956785i \(0.406079\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.7356i 1.42455i
\(156\) 0 0
\(157\) − 12.2468i − 0.977400i −0.872452 0.488700i \(-0.837471\pi\)
0.872452 0.488700i \(-0.162529\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.0761 1.25917 0.629587 0.776930i \(-0.283224\pi\)
0.629587 + 0.776930i \(0.283224\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3703 0.879860 0.439930 0.898032i \(-0.355003\pi\)
0.439930 + 0.898032i \(0.355003\pi\)
\(168\) 0 0
\(169\) 7.47650 0.575115
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.7048 0.965929 0.482964 0.875640i \(-0.339560\pi\)
0.482964 + 0.875640i \(0.339560\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 16.0344i − 1.19847i −0.800573 0.599235i \(-0.795471\pi\)
0.800573 0.599235i \(-0.204529\pi\)
\(180\) 0 0
\(181\) − 14.0729i − 1.04603i −0.852324 0.523015i \(-0.824807\pi\)
0.852324 0.523015i \(-0.175193\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.1161 0.817273
\(186\) 0 0
\(187\) 9.61733i 0.703288i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 26.2881i − 1.90214i −0.308972 0.951071i \(-0.599985\pi\)
0.308972 0.951071i \(-0.400015\pi\)
\(192\) 0 0
\(193\) 3.07606 0.221420 0.110710 0.993853i \(-0.464688\pi\)
0.110710 + 0.993853i \(0.464688\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.08144i 0.647026i 0.946224 + 0.323513i \(0.104864\pi\)
−0.946224 + 0.323513i \(0.895136\pi\)
\(198\) 0 0
\(199\) 22.6861i 1.60818i 0.594510 + 0.804088i \(0.297346\pi\)
−0.594510 + 0.804088i \(0.702654\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9.65950 −0.674649
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.60030 0.110695
\(210\) 0 0
\(211\) 9.81700 0.675830 0.337915 0.941177i \(-0.390278\pi\)
0.337915 + 0.941177i \(0.390278\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.43602 0.0979355
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.9293i 1.13879i
\(222\) 0 0
\(223\) 7.05064i 0.472146i 0.971735 + 0.236073i \(0.0758604\pi\)
−0.971735 + 0.236073i \(0.924140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.7554 1.31122 0.655608 0.755102i \(-0.272413\pi\)
0.655608 + 0.755102i \(0.272413\pi\)
\(228\) 0 0
\(229\) − 3.33235i − 0.220208i −0.993920 0.110104i \(-0.964882\pi\)
0.993920 0.110104i \(-0.0351184\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.32975i 0.414676i 0.978269 + 0.207338i \(0.0664799\pi\)
−0.978269 + 0.207338i \(0.933520\pi\)
\(234\) 0 0
\(235\) 4.66487 0.304303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 27.8877i 1.80390i 0.431836 + 0.901952i \(0.357866\pi\)
−0.431836 + 0.901952i \(0.642134\pi\)
\(240\) 0 0
\(241\) 8.99916i 0.579687i 0.957074 + 0.289844i \(0.0936033\pi\)
−0.957074 + 0.289844i \(0.906397\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.81700 0.179242
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.5230 −0.727324 −0.363662 0.931531i \(-0.618474\pi\)
−0.363662 + 0.931531i \(0.618474\pi\)
\(252\) 0 0
\(253\) −3.21206 −0.201941
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.13783 −0.195732 −0.0978662 0.995200i \(-0.531202\pi\)
−0.0978662 + 0.995200i \(0.531202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.4058i 0.703313i 0.936129 + 0.351656i \(0.114381\pi\)
−0.936129 + 0.351656i \(0.885619\pi\)
\(264\) 0 0
\(265\) − 27.5183i − 1.69043i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.3441 1.30138 0.650688 0.759346i \(-0.274481\pi\)
0.650688 + 0.759346i \(0.274481\pi\)
\(270\) 0 0
\(271\) 17.9480i 1.09026i 0.838351 + 0.545131i \(0.183520\pi\)
−0.838351 + 0.545131i \(0.816480\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 0.447435i − 0.0269813i
\(276\) 0 0
\(277\) −31.7700 −1.90887 −0.954437 0.298412i \(-0.903543\pi\)
−0.954437 + 0.298412i \(0.903543\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3.55794i − 0.212249i −0.994353 0.106125i \(-0.966156\pi\)
0.994353 0.106125i \(-0.0338442\pi\)
\(282\) 0 0
\(283\) 7.75353i 0.460899i 0.973084 + 0.230450i \(0.0740197\pi\)
−0.973084 + 0.230450i \(0.925980\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 34.8877 2.05222
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.04348 0.294643 0.147322 0.989089i \(-0.452935\pi\)
0.147322 + 0.989089i \(0.452935\pi\)
\(294\) 0 0
\(295\) −20.8823 −1.21582
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.65417 −0.326989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 26.5526i 1.52040i
\(306\) 0 0
\(307\) − 15.0080i − 0.856552i −0.903648 0.428276i \(-0.859121\pi\)
0.903648 0.428276i \(-0.140879\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0870 0.571979 0.285989 0.958233i \(-0.407678\pi\)
0.285989 + 0.958233i \(0.407678\pi\)
\(312\) 0 0
\(313\) − 17.9857i − 1.01661i −0.861177 0.508306i \(-0.830272\pi\)
0.861177 0.508306i \(-0.169728\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.73019i 0.265674i 0.991138 + 0.132837i \(0.0424086\pi\)
−0.991138 + 0.132837i \(0.957591\pi\)
\(318\) 0 0
\(319\) 8.20669 0.459486
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 8.63401i − 0.480409i
\(324\) 0 0
\(325\) − 0.787616i − 0.0436891i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.77718 −0.152648 −0.0763239 0.997083i \(-0.524318\pi\)
−0.0763239 + 0.997083i \(0.524318\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.06819 0.440812
\(336\) 0 0
\(337\) −6.99462 −0.381021 −0.190511 0.981685i \(-0.561014\pi\)
−0.190511 + 0.981685i \(0.561014\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.9634 0.593704
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.3043i 1.08999i 0.838439 + 0.544995i \(0.183468\pi\)
−0.838439 + 0.544995i \(0.816532\pi\)
\(348\) 0 0
\(349\) 9.77414i 0.523198i 0.965177 + 0.261599i \(0.0842498\pi\)
−0.965177 + 0.261599i \(0.915750\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.8575 0.684335 0.342167 0.939639i \(-0.388839\pi\)
0.342167 + 0.939639i \(0.388839\pi\)
\(354\) 0 0
\(355\) − 24.6346i − 1.30747i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 19.3351i − 1.02047i −0.860035 0.510234i \(-0.829559\pi\)
0.860035 0.510234i \(-0.170441\pi\)
\(360\) 0 0
\(361\) 17.5633 0.924385
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 22.6286i − 1.18444i
\(366\) 0 0
\(367\) − 26.8908i − 1.40369i −0.712330 0.701845i \(-0.752360\pi\)
0.712330 0.701845i \(-0.247640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.4456 −1.99064 −0.995320 0.0966369i \(-0.969191\pi\)
−0.995320 + 0.0966369i \(0.969191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.4462 0.744016
\(378\) 0 0
\(379\) 3.05993 0.157178 0.0785891 0.996907i \(-0.474958\pi\)
0.0785891 + 0.996907i \(0.474958\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.6828 −0.699159 −0.349579 0.936907i \(-0.613676\pi\)
−0.349579 + 0.936907i \(0.613676\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 0.887691i − 0.0450077i −0.999747 0.0225039i \(-0.992836\pi\)
0.999747 0.0225039i \(-0.00716380\pi\)
\(390\) 0 0
\(391\) 17.3298i 0.876407i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.6028 0.986323
\(396\) 0 0
\(397\) 34.1923i 1.71606i 0.513597 + 0.858031i \(0.328313\pi\)
−0.513597 + 0.858031i \(0.671687\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.8877i 1.39264i 0.717729 + 0.696322i \(0.245182\pi\)
−0.717729 + 0.696322i \(0.754818\pi\)
\(402\) 0 0
\(403\) 19.2989 0.961346
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 6.87156i − 0.340611i
\(408\) 0 0
\(409\) 13.4924i 0.667158i 0.942722 + 0.333579i \(0.108256\pi\)
−0.942722 + 0.333579i \(0.891744\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 23.3244 1.14495
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −27.9368 −1.36480 −0.682400 0.730979i \(-0.739064\pi\)
−0.682400 + 0.730979i \(0.739064\pi\)
\(420\) 0 0
\(421\) 12.5472 0.611513 0.305756 0.952110i \(-0.401091\pi\)
0.305756 + 0.952110i \(0.401091\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.41401 −0.117097
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.2881i 0.832740i 0.909195 + 0.416370i \(0.136698\pi\)
−0.909195 + 0.416370i \(0.863302\pi\)
\(432\) 0 0
\(433\) 27.1920i 1.30676i 0.757028 + 0.653382i \(0.226651\pi\)
−0.757028 + 0.653382i \(0.773349\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.88365 0.137944
\(438\) 0 0
\(439\) − 10.9634i − 0.523257i −0.965169 0.261628i \(-0.915741\pi\)
0.965169 0.261628i \(-0.0842595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.4403i 0.876123i 0.898945 + 0.438062i \(0.144335\pi\)
−0.898945 + 0.438062i \(0.855665\pi\)
\(444\) 0 0
\(445\) −11.2228 −0.532013
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.6179i 1.11460i 0.830312 + 0.557298i \(0.188162\pi\)
−0.830312 + 0.557298i \(0.811838\pi\)
\(450\) 0 0
\(451\) 5.97113i 0.281170i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.2282 −1.36724 −0.683619 0.729839i \(-0.739595\pi\)
−0.683619 + 0.729839i \(0.739595\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.91997 −0.275720 −0.137860 0.990452i \(-0.544022\pi\)
−0.137860 + 0.990452i \(0.544022\pi\)
\(462\) 0 0
\(463\) 34.4349 1.60032 0.800162 0.599784i \(-0.204747\pi\)
0.800162 + 0.599784i \(0.204747\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −38.6228 −1.78725 −0.893625 0.448815i \(-0.851846\pi\)
−0.893625 + 0.448815i \(0.851846\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 0.887691i − 0.0408161i
\(474\) 0 0
\(475\) 0.401687i 0.0184307i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.03632 −0.138733 −0.0693665 0.997591i \(-0.522098\pi\)
−0.0693665 + 0.997591i \(0.522098\pi\)
\(480\) 0 0
\(481\) − 12.0960i − 0.551528i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.67025i 0.121250i
\(486\) 0 0
\(487\) −26.7700 −1.21306 −0.606532 0.795059i \(-0.707440\pi\)
−0.606532 + 0.795059i \(0.707440\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 10.9584i − 0.494545i −0.968946 0.247272i \(-0.920466\pi\)
0.968946 0.247272i \(-0.0795342\pi\)
\(492\) 0 0
\(493\) − 44.2770i − 1.99413i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −30.0998 −1.34745 −0.673725 0.738982i \(-0.735307\pi\)
−0.673725 + 0.738982i \(0.735307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0941 0.539250 0.269625 0.962965i \(-0.413100\pi\)
0.269625 + 0.962965i \(0.413100\pi\)
\(504\) 0 0
\(505\) −8.45101 −0.376065
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.0531 1.11046 0.555230 0.831697i \(-0.312630\pi\)
0.555230 + 0.831697i \(0.312630\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 8.91856i − 0.392999i
\(516\) 0 0
\(517\) − 2.88365i − 0.126823i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.7191 0.732478 0.366239 0.930521i \(-0.380645\pi\)
0.366239 + 0.930521i \(0.380645\pi\)
\(522\) 0 0
\(523\) 26.0185i 1.13771i 0.822438 + 0.568854i \(0.192613\pi\)
−0.822438 + 0.568854i \(0.807387\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 59.1503i − 2.57663i
\(528\) 0 0
\(529\) 17.2121 0.748351
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.5109i 0.455280i
\(534\) 0 0
\(535\) 8.47504i 0.366408i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.9946 1.33256 0.666281 0.745700i \(-0.267885\pi\)
0.666281 + 0.745700i \(0.267885\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.87203 −0.123024
\(546\) 0 0
\(547\) −36.3696 −1.55505 −0.777525 0.628852i \(-0.783525\pi\)
−0.777525 + 0.628852i \(0.783525\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.36760 −0.313870
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.5579i 0.913439i 0.889611 + 0.456720i \(0.150976\pi\)
−0.889611 + 0.456720i \(0.849024\pi\)
\(558\) 0 0
\(559\) − 1.56260i − 0.0660908i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.712202 0.0300157 0.0150079 0.999887i \(-0.495223\pi\)
0.0150079 + 0.999887i \(0.495223\pi\)
\(564\) 0 0
\(565\) − 35.5981i − 1.49762i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.3803i 1.44130i 0.693300 + 0.720649i \(0.256156\pi\)
−0.693300 + 0.720649i \(0.743844\pi\)
\(570\) 0 0
\(571\) −25.4403 −1.06464 −0.532321 0.846543i \(-0.678680\pi\)
−0.532321 + 0.846543i \(0.678680\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 0.806250i − 0.0336229i
\(576\) 0 0
\(577\) 8.61323i 0.358574i 0.983797 + 0.179287i \(0.0573790\pi\)
−0.983797 + 0.179287i \(0.942621\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −17.0108 −0.704513
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.6853 1.30779 0.653896 0.756585i \(-0.273134\pi\)
0.653896 + 0.756585i \(0.273134\pi\)
\(588\) 0 0
\(589\) −9.84249 −0.405553
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 48.2913 1.98309 0.991543 0.129781i \(-0.0414274\pi\)
0.991543 + 0.129781i \(0.0414274\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 29.6703i − 1.21229i −0.795353 0.606147i \(-0.792714\pi\)
0.795353 0.606147i \(-0.207286\pi\)
\(600\) 0 0
\(601\) 41.0577i 1.67478i 0.546606 + 0.837390i \(0.315920\pi\)
−0.546606 + 0.837390i \(0.684080\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19.9081 −0.809380
\(606\) 0 0
\(607\) − 22.8649i − 0.928057i −0.885820 0.464028i \(-0.846404\pi\)
0.885820 0.464028i \(-0.153596\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 5.07606i − 0.205356i
\(612\) 0 0
\(613\) 25.4058 1.02613 0.513066 0.858349i \(-0.328510\pi\)
0.513066 + 0.858349i \(0.328510\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 14.9638i − 0.602418i −0.953558 0.301209i \(-0.902610\pi\)
0.953558 0.301209i \(-0.0973902\pi\)
\(618\) 0 0
\(619\) − 16.9472i − 0.681166i −0.940214 0.340583i \(-0.889376\pi\)
0.940214 0.340583i \(-0.110624\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −23.2121 −0.928483
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −37.0737 −1.47822
\(630\) 0 0
\(631\) −21.3534 −0.850067 −0.425033 0.905178i \(-0.639738\pi\)
−0.425033 + 0.905178i \(0.639738\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −32.1549 −1.27603
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 44.8098i − 1.76988i −0.465703 0.884941i \(-0.654199\pi\)
0.465703 0.884941i \(-0.345801\pi\)
\(642\) 0 0
\(643\) − 18.8487i − 0.743321i −0.928369 0.371660i \(-0.878789\pi\)
0.928369 0.371660i \(-0.121211\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.0808 −1.53643 −0.768213 0.640195i \(-0.778854\pi\)
−0.768213 + 0.640195i \(0.778854\pi\)
\(648\) 0 0
\(649\) 12.9086i 0.506709i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.8532i 0.463853i 0.972733 + 0.231927i \(0.0745030\pi\)
−0.972733 + 0.231927i \(0.925497\pi\)
\(654\) 0 0
\(655\) −34.2174 −1.33699
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.3226i 1.29806i 0.760762 + 0.649032i \(0.224826\pi\)
−0.760762 + 0.649032i \(0.775174\pi\)
\(660\) 0 0
\(661\) − 3.10943i − 0.120943i −0.998170 0.0604715i \(-0.980740\pi\)
0.998170 0.0604715i \(-0.0192604\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 14.7879 0.572591
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.4138 0.633647
\(672\) 0 0
\(673\) 2.68100 0.103345 0.0516726 0.998664i \(-0.483545\pi\)
0.0516726 + 0.998664i \(0.483545\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.5474 1.09717 0.548584 0.836096i \(-0.315167\pi\)
0.548584 + 0.836096i \(0.315167\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 43.9221i − 1.68063i −0.542096 0.840317i \(-0.682369\pi\)
0.542096 0.840317i \(-0.317631\pi\)
\(684\) 0 0
\(685\) − 49.2693i − 1.88248i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −29.9439 −1.14077
\(690\) 0 0
\(691\) − 31.2993i − 1.19068i −0.803473 0.595342i \(-0.797017\pi\)
0.803473 0.595342i \(-0.202983\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 35.3696i − 1.34164i
\(696\) 0 0
\(697\) 32.2156 1.22025
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 23.2591i − 0.878483i −0.898369 0.439241i \(-0.855247\pi\)
0.898369 0.439241i \(-0.144753\pi\)
\(702\) 0 0
\(703\) 6.16898i 0.232668i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 20.5924 0.773363 0.386682 0.922213i \(-0.373621\pi\)
0.386682 + 0.922213i \(0.373621\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.7554 0.739847
\(714\) 0 0
\(715\) 6.77718 0.253452
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.52027 −0.280459 −0.140229 0.990119i \(-0.544784\pi\)
−0.140229 + 0.990119i \(0.544784\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.05993i 0.0765040i
\(726\) 0 0
\(727\) − 33.2949i − 1.23484i −0.786634 0.617420i \(-0.788178\pi\)
0.786634 0.617420i \(-0.211822\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.78930 −0.177139
\(732\) 0 0
\(733\) − 15.4567i − 0.570907i −0.958393 0.285453i \(-0.907856\pi\)
0.958393 0.285453i \(-0.0921441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.98744i − 0.183715i
\(738\) 0 0
\(739\) 6.21744 0.228712 0.114356 0.993440i \(-0.463520\pi\)
0.114356 + 0.993440i \(0.463520\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0291i 0.441304i 0.975353 + 0.220652i \(0.0708184\pi\)
−0.975353 + 0.220652i \(0.929182\pi\)
\(744\) 0 0
\(745\) 18.8673i 0.691246i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −33.7754 −1.23248 −0.616241 0.787558i \(-0.711345\pi\)
−0.616241 + 0.787558i \(0.711345\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.4358 −0.561766
\(756\) 0 0
\(757\) 49.5870 1.80227 0.901135 0.433538i \(-0.142735\pi\)
0.901135 + 0.433538i \(0.142735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.9294 1.44744 0.723719 0.690095i \(-0.242431\pi\)
0.723719 + 0.690095i \(0.242431\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.7230i 0.820480i
\(768\) 0 0
\(769\) 15.4693i 0.557839i 0.960315 + 0.278919i \(0.0899762\pi\)
−0.960315 + 0.278919i \(0.910024\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.7332 −1.24927 −0.624633 0.780918i \(-0.714752\pi\)
−0.624633 + 0.780918i \(0.714752\pi\)
\(774\) 0 0
\(775\) 2.75190i 0.0988512i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 5.36062i − 0.192064i
\(780\) 0 0
\(781\) −15.2282 −0.544908
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 26.4510i 0.944077i
\(786\) 0 0
\(787\) − 26.0748i − 0.929466i −0.885451 0.464733i \(-0.846150\pi\)
0.885451 0.464733i \(-0.153850\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 28.8931 1.02602
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.1013 −0.499493 −0.249746 0.968311i \(-0.580347\pi\)
−0.249746 + 0.968311i \(0.580347\pi\)
\(798\) 0 0
\(799\) −15.5579 −0.550400
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.9882 −0.493631
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 31.7302i − 1.11557i −0.829984 0.557787i \(-0.811651\pi\)
0.829984 0.557787i \(-0.188349\pi\)
\(810\) 0 0
\(811\) − 18.3590i − 0.644671i −0.946625 0.322336i \(-0.895532\pi\)
0.946625 0.322336i \(-0.104468\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −34.7216 −1.21624
\(816\) 0 0
\(817\) 0.796929i 0.0278810i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.4980i 0.680485i 0.940338 + 0.340243i \(0.110509\pi\)
−0.940338 + 0.340243i \(0.889491\pi\)
\(822\) 0 0
\(823\) 0.635808 0.0221629 0.0110814 0.999939i \(-0.496473\pi\)
0.0110814 + 0.999939i \(0.496473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 28.6939i − 0.997786i −0.866664 0.498893i \(-0.833740\pi\)
0.866664 0.498893i \(-0.166260\pi\)
\(828\) 0 0
\(829\) 34.1169i 1.18493i 0.805597 + 0.592464i \(0.201845\pi\)
−0.805597 + 0.592464i \(0.798155\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −24.5579 −0.849863
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.6105 −0.504409 −0.252205 0.967674i \(-0.581156\pi\)
−0.252205 + 0.967674i \(0.581156\pi\)
\(840\) 0 0
\(841\) −8.78256 −0.302847
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16.1480 −0.555508
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 12.3821i − 0.424454i
\(852\) 0 0
\(853\) 27.1794i 0.930604i 0.885152 + 0.465302i \(0.154054\pi\)
−0.885152 + 0.465302i \(0.845946\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.61785 −0.0894241 −0.0447121 0.999000i \(-0.514237\pi\)
−0.0447121 + 0.999000i \(0.514237\pi\)
\(858\) 0 0
\(859\) 45.0083i 1.53566i 0.640653 + 0.767831i \(0.278664\pi\)
−0.640653 + 0.767831i \(0.721336\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29.8461i 1.01597i 0.861365 + 0.507986i \(0.169610\pi\)
−0.861365 + 0.507986i \(0.830390\pi\)
\(864\) 0 0
\(865\) −27.4403 −0.932997
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 12.1177i − 0.411064i
\(870\) 0 0
\(871\) − 8.77936i − 0.297477i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.7284 1.37530 0.687650 0.726042i \(-0.258642\pi\)
0.687650 + 0.726042i \(0.258642\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.774980 0.0261097 0.0130549 0.999915i \(-0.495844\pi\)
0.0130549 + 0.999915i \(0.495844\pi\)
\(882\) 0 0
\(883\) 7.22819 0.243248 0.121624 0.992576i \(-0.461190\pi\)
0.121624 + 0.992576i \(0.461190\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.9175 −1.81037 −0.905187 0.425015i \(-0.860269\pi\)
−0.905187 + 0.425015i \(0.860269\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.58881i 0.0866312i
\(894\) 0 0
\(895\) 34.6317i 1.15761i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −50.4743 −1.68341
\(900\) 0 0
\(901\) 91.7769i 3.05753i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.3951i 1.01037i
\(906\) 0 0
\(907\) 34.2935 1.13870 0.569349 0.822096i \(-0.307195\pi\)
0.569349 + 0.822096i \(0.307195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.55794i 0.117880i 0.998262 + 0.0589399i \(0.0187720\pi\)
−0.998262 + 0.0589399i \(0.981228\pi\)
\(912\) 0 0
\(913\) − 14.4182i − 0.477174i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 40.7861 1.34541 0.672705 0.739911i \(-0.265132\pi\)
0.672705 + 0.739911i \(0.265132\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −26.8061 −0.882333
\(924\) 0 0
\(925\) 1.72481 0.0567114
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.8713 0.783191 0.391596 0.920137i \(-0.371923\pi\)
0.391596 + 0.920137i \(0.371923\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 20.7718i − 0.679311i
\(936\) 0 0
\(937\) 48.4063i 1.58136i 0.612228 + 0.790682i \(0.290274\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.89351 0.289920 0.144960 0.989438i \(-0.453695\pi\)
0.144960 + 0.989438i \(0.453695\pi\)
\(942\) 0 0
\(943\) 10.7596i 0.350381i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.3481i 0.628728i 0.949303 + 0.314364i \(0.101791\pi\)
−0.949303 + 0.314364i \(0.898209\pi\)
\(948\) 0 0
\(949\) −24.6233 −0.799305
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 21.7409i − 0.704258i −0.935951 0.352129i \(-0.885458\pi\)
0.935951 0.352129i \(-0.114542\pi\)
\(954\) 0 0
\(955\) 56.7779i 1.83729i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −36.4295 −1.17515
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.64378 −0.213871
\(966\) 0 0
\(967\) −12.1866 −0.391894 −0.195947 0.980615i \(-0.562778\pi\)
−0.195947 + 0.980615i \(0.562778\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.34883 −0.171652 −0.0858260 0.996310i \(-0.527353\pi\)
−0.0858260 + 0.996310i \(0.527353\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.62863i 0.148083i 0.997255 + 0.0740415i \(0.0235897\pi\)
−0.997255 + 0.0740415i \(0.976410\pi\)
\(978\) 0 0
\(979\) 6.93752i 0.221724i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.06548 −0.129669 −0.0648344 0.997896i \(-0.520652\pi\)
−0.0648344 + 0.997896i \(0.520652\pi\)
\(984\) 0 0
\(985\) − 19.6144i − 0.624966i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.59956i − 0.0508632i
\(990\) 0 0
\(991\) 51.5163 1.63647 0.818235 0.574884i \(-0.194953\pi\)
0.818235 + 0.574884i \(0.194953\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 48.9982i − 1.55335i
\(996\) 0 0
\(997\) − 6.34775i − 0.201035i −0.994935 0.100518i \(-0.967950\pi\)
0.994935 0.100518i \(-0.0320499\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.f.e.2645.4 12
3.2 odd 2 inner 5292.2.f.e.2645.9 12
7.4 even 3 756.2.t.e.593.5 yes 12
7.5 odd 6 756.2.t.e.269.2 12
7.6 odd 2 inner 5292.2.f.e.2645.10 12
21.5 even 6 756.2.t.e.269.5 yes 12
21.11 odd 6 756.2.t.e.593.2 yes 12
21.20 even 2 inner 5292.2.f.e.2645.3 12
63.4 even 3 2268.2.bm.i.593.2 12
63.5 even 6 2268.2.w.i.269.5 12
63.11 odd 6 2268.2.w.i.1349.2 12
63.25 even 3 2268.2.w.i.1349.5 12
63.32 odd 6 2268.2.bm.i.593.5 12
63.40 odd 6 2268.2.w.i.269.2 12
63.47 even 6 2268.2.bm.i.1025.2 12
63.61 odd 6 2268.2.bm.i.1025.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.2 12 7.5 odd 6
756.2.t.e.269.5 yes 12 21.5 even 6
756.2.t.e.593.2 yes 12 21.11 odd 6
756.2.t.e.593.5 yes 12 7.4 even 3
2268.2.w.i.269.2 12 63.40 odd 6
2268.2.w.i.269.5 12 63.5 even 6
2268.2.w.i.1349.2 12 63.11 odd 6
2268.2.w.i.1349.5 12 63.25 even 3
2268.2.bm.i.593.2 12 63.4 even 3
2268.2.bm.i.593.5 12 63.32 odd 6
2268.2.bm.i.1025.2 12 63.47 even 6
2268.2.bm.i.1025.5 12 63.61 odd 6
5292.2.f.e.2645.3 12 21.20 even 2 inner
5292.2.f.e.2645.4 12 1.1 even 1 trivial
5292.2.f.e.2645.9 12 3.2 odd 2 inner
5292.2.f.e.2645.10 12 7.6 odd 2 inner