Properties

Label 2268.2.bm.i.593.5
Level $2268$
Weight $2$
Character 2268.593
Analytic conductor $18.110$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.5
Root \(-0.385418 + 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 2268.593
Dual form 2268.2.bm.i.1025.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15983 q^{5} +(2.37047 + 1.17511i) q^{7} -1.33513i q^{11} +(2.03534 - 1.17511i) q^{13} +(3.60166 + 6.23825i) q^{17} +(1.03803 + 0.599308i) q^{19} -2.40581i q^{23} -0.335126 q^{25} +(-5.32324 - 3.07338i) q^{29} +(7.11141 + 4.10577i) q^{31} +(5.11982 + 2.53803i) q^{35} +(2.57338 - 4.45722i) q^{37} +(2.23617 + 3.87316i) q^{41} +(0.332437 - 0.575798i) q^{43} +(-1.07992 - 1.87047i) q^{47} +(4.23825 + 5.57111i) q^{49} +(-11.0340 + 6.37047i) q^{53} -2.88365i q^{55} +(4.83424 - 8.37316i) q^{59} +(-10.6468 + 6.14691i) q^{61} +(4.39600 - 2.53803i) q^{65} +(1.86778 - 3.23509i) q^{67} -11.4058i q^{71} +(9.07338 - 5.23852i) q^{73} +(1.56891 - 3.16487i) q^{77} +(4.53803 + 7.86010i) q^{79} +(-5.39958 + 9.35235i) q^{83} +(7.77897 + 13.4736i) q^{85} +(2.59808 - 4.50000i) q^{89} +(6.20560 - 0.393808i) q^{91} +(2.24198 + 1.29440i) q^{95} +(1.07069 + 0.618162i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{19} - 24 q^{37} + 6 q^{43} - 18 q^{61} + 54 q^{73} + 24 q^{79} + 6 q^{85} + 42 q^{91} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.15983 0.965906 0.482953 0.875646i \(-0.339564\pi\)
0.482953 + 0.875646i \(0.339564\pi\)
\(6\) 0 0
\(7\) 2.37047 + 1.17511i 0.895953 + 0.444148i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.33513i 0.402556i −0.979534 0.201278i \(-0.935491\pi\)
0.979534 0.201278i \(-0.0645094\pi\)
\(12\) 0 0
\(13\) 2.03534 1.17511i 0.564503 0.325916i −0.190448 0.981697i \(-0.560994\pi\)
0.754951 + 0.655781i \(0.227661\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.60166 + 6.23825i 0.873530 + 1.51300i 0.858321 + 0.513114i \(0.171508\pi\)
0.0152091 + 0.999884i \(0.495159\pi\)
\(18\) 0 0
\(19\) 1.03803 + 0.599308i 0.238141 + 0.137491i 0.614322 0.789055i \(-0.289430\pi\)
−0.376181 + 0.926546i \(0.622763\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.40581i 0.501647i −0.968033 0.250823i \(-0.919299\pi\)
0.968033 0.250823i \(-0.0807013\pi\)
\(24\) 0 0
\(25\) −0.335126 −0.0670251
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.32324 3.07338i −0.988501 0.570712i −0.0836755 0.996493i \(-0.526666\pi\)
−0.904826 + 0.425781i \(0.859999\pi\)
\(30\) 0 0
\(31\) 7.11141 + 4.10577i 1.27725 + 0.737419i 0.976341 0.216235i \(-0.0693778\pi\)
0.300905 + 0.953654i \(0.402711\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.11982 + 2.53803i 0.865407 + 0.429006i
\(36\) 0 0
\(37\) 2.57338 4.45722i 0.423060 0.732762i −0.573177 0.819432i \(-0.694289\pi\)
0.996237 + 0.0866697i \(0.0276225\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.23617 + 3.87316i 0.349231 + 0.604886i 0.986113 0.166076i \(-0.0531096\pi\)
−0.636882 + 0.770961i \(0.719776\pi\)
\(42\) 0 0
\(43\) 0.332437 0.575798i 0.0506962 0.0878084i −0.839564 0.543261i \(-0.817189\pi\)
0.890260 + 0.455453i \(0.150523\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.07992 1.87047i −0.157522 0.272836i 0.776453 0.630176i \(-0.217017\pi\)
−0.933974 + 0.357340i \(0.883684\pi\)
\(48\) 0 0
\(49\) 4.23825 + 5.57111i 0.605464 + 0.795872i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.0340 + 6.37047i −1.51563 + 0.875051i −0.515802 + 0.856708i \(0.672506\pi\)
−0.999832 + 0.0183431i \(0.994161\pi\)
\(54\) 0 0
\(55\) 2.88365i 0.388831i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.83424 8.37316i 0.629365 1.09009i −0.358314 0.933601i \(-0.616648\pi\)
0.987679 0.156491i \(-0.0500183\pi\)
\(60\) 0 0
\(61\) −10.6468 + 6.14691i −1.36318 + 0.787031i −0.990045 0.140748i \(-0.955049\pi\)
−0.373131 + 0.927778i \(0.621716\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.39600 2.53803i 0.545257 0.314804i
\(66\) 0 0
\(67\) 1.86778 3.23509i 0.228186 0.395229i −0.729085 0.684423i \(-0.760054\pi\)
0.957270 + 0.289194i \(0.0933873\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4058i 1.35362i −0.736157 0.676810i \(-0.763362\pi\)
0.736157 0.676810i \(-0.236638\pi\)
\(72\) 0 0
\(73\) 9.07338 5.23852i 1.06196 0.613122i 0.135985 0.990711i \(-0.456580\pi\)
0.925973 + 0.377589i \(0.123247\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.56891 3.16487i 0.178794 0.360671i
\(78\) 0 0
\(79\) 4.53803 + 7.86010i 0.510569 + 0.884331i 0.999925 + 0.0122468i \(0.00389836\pi\)
−0.489356 + 0.872084i \(0.662768\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.39958 + 9.35235i −0.592681 + 1.02655i 0.401189 + 0.915995i \(0.368597\pi\)
−0.993870 + 0.110558i \(0.964736\pi\)
\(84\) 0 0
\(85\) 7.77897 + 13.4736i 0.843748 + 1.46141i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.59808 4.50000i 0.275396 0.476999i −0.694839 0.719165i \(-0.744525\pi\)
0.970235 + 0.242166i \(0.0778579\pi\)
\(90\) 0 0
\(91\) 6.20560 0.393808i 0.650523 0.0412823i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.24198 + 1.29440i 0.230022 + 0.132803i
\(96\) 0 0
\(97\) 1.07069 + 0.618162i 0.108712 + 0.0627648i 0.553370 0.832935i \(-0.313342\pi\)
−0.444658 + 0.895700i \(0.646675\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.91281 −0.389339 −0.194670 0.980869i \(-0.562363\pi\)
−0.194670 + 0.980869i \(0.562363\pi\)
\(102\) 0 0
\(103\) 4.12928i 0.406870i 0.979088 + 0.203435i \(0.0652106\pi\)
−0.979088 + 0.203435i \(0.934789\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.39823 1.96197i −0.328519 0.189671i 0.326664 0.945140i \(-0.394075\pi\)
−0.655183 + 0.755470i \(0.727409\pi\)
\(108\) 0 0
\(109\) −0.664874 1.15160i −0.0636834 0.110303i 0.832426 0.554137i \(-0.186951\pi\)
−0.896109 + 0.443834i \(0.853618\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.2737 + 8.24094i −1.34276 + 0.775242i −0.987212 0.159416i \(-0.949039\pi\)
−0.355548 + 0.934658i \(0.615706\pi\)
\(114\) 0 0
\(115\) 5.19615i 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.20701 + 19.0199i 0.110646 + 1.74355i
\(120\) 0 0
\(121\) 9.21744 0.837949
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.5230 −1.03065
\(126\) 0 0
\(127\) 14.8877 1.32107 0.660534 0.750796i \(-0.270330\pi\)
0.660534 + 0.750796i \(0.270330\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.8426 −1.38418 −0.692089 0.721812i \(-0.743309\pi\)
−0.692089 + 0.721812i \(0.743309\pi\)
\(132\) 0 0
\(133\) 1.75637 + 2.64044i 0.152297 + 0.228955i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.8116i 1.94893i −0.224542 0.974464i \(-0.572089\pi\)
0.224542 0.974464i \(-0.427911\pi\)
\(138\) 0 0
\(139\) 14.1821 8.18804i 1.20291 0.694500i 0.241709 0.970349i \(-0.422292\pi\)
0.961201 + 0.275849i \(0.0889589\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.56891 2.71744i −0.131199 0.227244i
\(144\) 0 0
\(145\) −11.4973 6.63798i −0.954800 0.551254i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.73556i 0.715645i 0.933790 + 0.357823i \(0.116481\pi\)
−0.933790 + 0.357823i \(0.883519\pi\)
\(150\) 0 0
\(151\) 7.14675 0.581594 0.290797 0.956785i \(-0.406079\pi\)
0.290797 + 0.956785i \(0.406079\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.3594 + 8.86778i 1.23370 + 0.712277i
\(156\) 0 0
\(157\) 10.6060 + 6.12340i 0.846453 + 0.488700i 0.859453 0.511215i \(-0.170805\pi\)
−0.0129992 + 0.999916i \(0.504138\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.82709 5.70291i 0.222806 0.449452i
\(162\) 0 0
\(163\) −8.03803 + 13.9223i −0.629587 + 1.09048i 0.358047 + 0.933703i \(0.383443\pi\)
−0.987635 + 0.156774i \(0.949891\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.68515 + 9.84697i 0.439930 + 0.761981i 0.997684 0.0680253i \(-0.0216699\pi\)
−0.557753 + 0.830007i \(0.688337\pi\)
\(168\) 0 0
\(169\) −3.73825 + 6.47484i −0.287558 + 0.498065i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.35241 + 11.0027i 0.482964 + 0.836519i 0.999809 0.0195605i \(-0.00622671\pi\)
−0.516844 + 0.856079i \(0.672893\pi\)
\(174\) 0 0
\(175\) −0.794405 0.393808i −0.0600514 0.0297691i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.8862 8.01722i 1.03791 0.599235i 0.118666 0.992934i \(-0.462138\pi\)
0.919239 + 0.393699i \(0.128805\pi\)
\(180\) 0 0
\(181\) 14.0729i 1.04603i −0.852324 0.523015i \(-0.824807\pi\)
0.852324 0.523015i \(-0.175193\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.55806 9.62684i 0.408637 0.707780i
\(186\) 0 0
\(187\) 8.32885 4.80866i 0.609066 0.351644i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.7662 13.1441i 1.64730 0.951071i 0.669166 0.743113i \(-0.266652\pi\)
0.978138 0.207958i \(-0.0666817\pi\)
\(192\) 0 0
\(193\) −1.53803 + 2.66395i −0.110710 + 0.191755i −0.916057 0.401049i \(-0.868646\pi\)
0.805347 + 0.592804i \(0.201979\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.08144i 0.647026i −0.946224 0.323513i \(-0.895136\pi\)
0.946224 0.323513i \(-0.104864\pi\)
\(198\) 0 0
\(199\) 19.6468 11.3431i 1.39272 0.804088i 0.399106 0.916905i \(-0.369321\pi\)
0.993616 + 0.112817i \(0.0359874\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.00704 13.5407i −0.632170 0.950372i
\(204\) 0 0
\(205\) 4.82975 + 8.36537i 0.337324 + 0.584263i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.800152 1.38590i 0.0553476 0.0958649i
\(210\) 0 0
\(211\) −4.90850 8.50177i −0.337915 0.585286i 0.646125 0.763231i \(-0.276388\pi\)
−0.984040 + 0.177945i \(0.943055\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.718009 1.24363i 0.0489678 0.0848147i
\(216\) 0 0
\(217\) 12.0327 + 18.0893i 0.816830 + 1.22798i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.6612 + 8.46466i 0.986220 + 0.569394i
\(222\) 0 0
\(223\) −6.10603 3.52532i −0.408890 0.236073i 0.281423 0.959584i \(-0.409194\pi\)
−0.690313 + 0.723511i \(0.742527\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.7554 −1.31122 −0.655608 0.755102i \(-0.727587\pi\)
−0.655608 + 0.755102i \(0.727587\pi\)
\(228\) 0 0
\(229\) 3.33235i 0.220208i −0.993920 0.110104i \(-0.964882\pi\)
0.993920 0.110104i \(-0.0351184\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.48172 + 3.16487i 0.359120 + 0.207338i 0.668695 0.743537i \(-0.266853\pi\)
−0.309575 + 0.950875i \(0.600187\pi\)
\(234\) 0 0
\(235\) −2.33244 4.03990i −0.152151 0.263534i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.1514 + 13.9438i −1.56223 + 0.901952i −0.565196 + 0.824957i \(0.691199\pi\)
−0.997031 + 0.0769957i \(0.975467\pi\)
\(240\) 0 0
\(241\) 8.99916i 0.579687i 0.957074 + 0.289844i \(0.0936033\pi\)
−0.957074 + 0.289844i \(0.906397\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.15391 + 12.0327i 0.584822 + 0.768738i
\(246\) 0 0
\(247\) 2.81700 0.179242
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.5230 0.727324 0.363662 0.931531i \(-0.381526\pi\)
0.363662 + 0.931531i \(0.381526\pi\)
\(252\) 0 0
\(253\) −3.21206 −0.201941
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.13783 0.195732 0.0978662 0.995200i \(-0.468798\pi\)
0.0978662 + 0.995200i \(0.468798\pi\)
\(258\) 0 0
\(259\) 11.3378 7.54171i 0.704497 0.468619i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.4058i 0.703313i −0.936129 0.351656i \(-0.885619\pi\)
0.936129 0.351656i \(-0.114381\pi\)
\(264\) 0 0
\(265\) −23.8315 + 13.7591i −1.46396 + 0.845217i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.6721 + 18.4846i 0.650688 + 1.12702i 0.982956 + 0.183839i \(0.0588526\pi\)
−0.332269 + 0.943185i \(0.607814\pi\)
\(270\) 0 0
\(271\) −15.5434 8.97399i −0.944195 0.545131i −0.0529220 0.998599i \(-0.516853\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.447435i 0.0269813i
\(276\) 0 0
\(277\) −31.7700 −1.90887 −0.954437 0.298412i \(-0.903543\pi\)
−0.954437 + 0.298412i \(0.903543\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.08127 1.77897i −0.183813 0.106125i 0.405270 0.914197i \(-0.367178\pi\)
−0.589083 + 0.808073i \(0.700511\pi\)
\(282\) 0 0
\(283\) −6.71475 3.87676i −0.399151 0.230450i 0.286967 0.957941i \(-0.407353\pi\)
−0.686117 + 0.727491i \(0.740686\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.749397 + 11.8089i 0.0442355 + 0.697060i
\(288\) 0 0
\(289\) −17.4438 + 30.2136i −1.02611 + 1.77727i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.52174 + 4.36778i 0.147322 + 0.255168i 0.930237 0.366960i \(-0.119601\pi\)
−0.782915 + 0.622129i \(0.786268\pi\)
\(294\) 0 0
\(295\) 10.4412 18.0846i 0.607908 1.05293i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.82709 4.89666i −0.163495 0.283181i
\(300\) 0 0
\(301\) 1.46466 0.974263i 0.0844214 0.0561556i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −22.9952 + 13.2763i −1.31670 + 0.760198i
\(306\) 0 0
\(307\) 15.0080i 0.856552i −0.903648 0.428276i \(-0.859121\pi\)
0.903648 0.428276i \(-0.140879\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.04348 8.73556i 0.285989 0.495348i −0.686859 0.726791i \(-0.741011\pi\)
0.972849 + 0.231442i \(0.0743444\pi\)
\(312\) 0 0
\(313\) −15.5761 + 8.99284i −0.880411 + 0.508306i −0.870794 0.491648i \(-0.836395\pi\)
−0.00961724 + 0.999954i \(0.503061\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.09646 + 2.36509i −0.230080 + 0.132837i −0.610609 0.791932i \(-0.709075\pi\)
0.380529 + 0.924769i \(0.375742\pi\)
\(318\) 0 0
\(319\) −4.10334 + 7.10720i −0.229743 + 0.397927i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.63401i 0.480409i
\(324\) 0 0
\(325\) −0.682096 + 0.393808i −0.0378359 + 0.0218445i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.361908 5.70291i −0.0199526 0.314411i
\(330\) 0 0
\(331\) 1.38859 + 2.40511i 0.0763239 + 0.132197i 0.901661 0.432443i \(-0.142348\pi\)
−0.825337 + 0.564640i \(0.809015\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.03409 6.98725i 0.220406 0.381754i
\(336\) 0 0
\(337\) 3.49731 + 6.05752i 0.190511 + 0.329974i 0.945420 0.325855i \(-0.105652\pi\)
−0.754909 + 0.655830i \(0.772319\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.48172 9.49462i 0.296852 0.514163i
\(342\) 0 0
\(343\) 3.50000 + 18.1865i 0.188982 + 0.981981i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.5840 + 10.1521i 0.943959 + 0.544995i 0.891199 0.453612i \(-0.149865\pi\)
0.0527597 + 0.998607i \(0.483198\pi\)
\(348\) 0 0
\(349\) −8.46466 4.88707i −0.453103 0.261599i 0.256037 0.966667i \(-0.417583\pi\)
−0.709140 + 0.705068i \(0.750916\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.8575 −0.684335 −0.342167 0.939639i \(-0.611161\pi\)
−0.342167 + 0.939639i \(0.611161\pi\)
\(354\) 0 0
\(355\) 24.6346i 1.30747i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.7447 9.66756i −0.883752 0.510234i −0.0118583 0.999930i \(-0.503775\pi\)
−0.871894 + 0.489695i \(0.837108\pi\)
\(360\) 0 0
\(361\) −8.78166 15.2103i −0.462193 0.800541i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.5970 11.3143i 1.02575 0.592218i
\(366\) 0 0
\(367\) 26.8908i 1.40369i −0.712330 0.701845i \(-0.752360\pi\)
0.712330 0.701845i \(-0.247640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −33.6417 + 2.13491i −1.74659 + 0.110839i
\(372\) 0 0
\(373\) −38.4456 −1.99064 −0.995320 0.0966369i \(-0.969191\pi\)
−0.995320 + 0.0966369i \(0.969191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.4462 −0.744016
\(378\) 0 0
\(379\) 3.05993 0.157178 0.0785891 0.996907i \(-0.474958\pi\)
0.0785891 + 0.996907i \(0.474958\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.6828 0.699159 0.349579 0.936907i \(-0.386324\pi\)
0.349579 + 0.936907i \(0.386324\pi\)
\(384\) 0 0
\(385\) 3.38859 6.83560i 0.172699 0.348374i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.887691i 0.0450077i 0.999747 + 0.0225039i \(0.00716380\pi\)
−0.999747 + 0.0225039i \(0.992836\pi\)
\(390\) 0 0
\(391\) 15.0081 8.66491i 0.758990 0.438203i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.80139 + 16.9765i 0.493161 + 0.854180i
\(396\) 0 0
\(397\) −29.6114 17.0962i −1.48615 0.858031i −0.486278 0.873804i \(-0.661646\pi\)
−0.999876 + 0.0157726i \(0.994979\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.8877i 1.39264i −0.717729 0.696322i \(-0.754818\pi\)
0.717729 0.696322i \(-0.245182\pi\)
\(402\) 0 0
\(403\) 19.2989 0.961346
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.95095 3.43578i −0.294977 0.170305i
\(408\) 0 0
\(409\) −11.6848 6.74621i −0.577775 0.333579i 0.182473 0.983211i \(-0.441590\pi\)
−0.760249 + 0.649632i \(0.774923\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.2988 14.1676i 1.04804 0.697140i
\(414\) 0 0
\(415\) −11.6622 + 20.1995i −0.572474 + 0.991554i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.9684 24.1939i −0.682400 1.18195i −0.974246 0.225486i \(-0.927603\pi\)
0.291846 0.956465i \(-0.405730\pi\)
\(420\) 0 0
\(421\) −6.27359 + 10.8662i −0.305756 + 0.529585i −0.977429 0.211262i \(-0.932243\pi\)
0.671673 + 0.740848i \(0.265576\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.20701 2.09060i −0.0585484 0.101409i
\(426\) 0 0
\(427\) −32.4611 + 2.05999i −1.57090 + 0.0996897i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.9720 + 8.64406i −0.721174 + 0.416370i −0.815185 0.579201i \(-0.803365\pi\)
0.0940108 + 0.995571i \(0.470031\pi\)
\(432\) 0 0
\(433\) 27.1920i 1.30676i 0.757028 + 0.653382i \(0.226651\pi\)
−0.757028 + 0.653382i \(0.773349\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.44182 2.49731i 0.0689718 0.119463i
\(438\) 0 0
\(439\) −9.49462 + 5.48172i −0.453154 + 0.261628i −0.709161 0.705046i \(-0.750926\pi\)
0.256008 + 0.966675i \(0.417593\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.9697 + 9.22013i −0.758745 + 0.438062i −0.828845 0.559478i \(-0.811001\pi\)
0.0701001 + 0.997540i \(0.477668\pi\)
\(444\) 0 0
\(445\) 5.61141 9.71924i 0.266006 0.460736i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.6179i 1.11460i −0.830312 0.557298i \(-0.811838\pi\)
0.830312 0.557298i \(-0.188162\pi\)
\(450\) 0 0
\(451\) 5.17115 2.98557i 0.243500 0.140585i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.4030 0.850560i 0.628344 0.0398748i
\(456\) 0 0
\(457\) 14.6141 + 25.3124i 0.683619 + 1.18406i 0.973869 + 0.227111i \(0.0729281\pi\)
−0.290250 + 0.956951i \(0.593739\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.95998 + 5.12684i −0.137860 + 0.238781i −0.926686 0.375835i \(-0.877356\pi\)
0.788826 + 0.614616i \(0.210689\pi\)
\(462\) 0 0
\(463\) −17.2174 29.8215i −0.800162 1.38592i −0.919509 0.393069i \(-0.871413\pi\)
0.119347 0.992853i \(-0.461920\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.3114 + 33.4483i −0.893625 + 1.54780i −0.0581276 + 0.998309i \(0.518513\pi\)
−0.835497 + 0.549495i \(0.814820\pi\)
\(468\) 0 0
\(469\) 8.22909 5.47384i 0.379984 0.252759i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.768763 0.443845i −0.0353478 0.0204080i
\(474\) 0 0
\(475\) −0.347871 0.200844i −0.0159614 0.00921533i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.03632 0.138733 0.0693665 0.997591i \(-0.477902\pi\)
0.0693665 + 0.997591i \(0.477902\pi\)
\(480\) 0 0
\(481\) 12.0960i 0.551528i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.31251 + 1.33513i 0.105005 + 0.0606249i
\(486\) 0 0
\(487\) 13.3850 + 23.1835i 0.606532 + 1.05054i 0.991807 + 0.127743i \(0.0407733\pi\)
−0.385275 + 0.922802i \(0.625893\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.49023 5.47919i 0.428288 0.247272i −0.270329 0.962768i \(-0.587132\pi\)
0.698617 + 0.715496i \(0.253799\pi\)
\(492\) 0 0
\(493\) 44.2770i 1.99413i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.4030 27.0371i 0.601209 1.21278i
\(498\) 0 0
\(499\) −30.0998 −1.34745 −0.673725 0.738982i \(-0.735307\pi\)
−0.673725 + 0.738982i \(0.735307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.0941 −0.539250 −0.269625 0.962965i \(-0.586900\pi\)
−0.269625 + 0.962965i \(0.586900\pi\)
\(504\) 0 0
\(505\) −8.45101 −0.376065
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.0531 −1.11046 −0.555230 0.831697i \(-0.687370\pi\)
−0.555230 + 0.831697i \(0.687370\pi\)
\(510\) 0 0
\(511\) 27.6640 1.75556i 1.22378 0.0776614i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.91856i 0.392999i
\(516\) 0 0
\(517\) −2.49731 + 1.44182i −0.109832 + 0.0634113i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.35956 + 14.4792i 0.366239 + 0.634345i 0.988974 0.148088i \(-0.0473119\pi\)
−0.622735 + 0.782433i \(0.713979\pi\)
\(522\) 0 0
\(523\) −22.5327 13.0092i −0.985284 0.568854i −0.0814229 0.996680i \(-0.525946\pi\)
−0.903861 + 0.427826i \(0.859280\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 59.1503i 2.57663i
\(528\) 0 0
\(529\) 17.2121 0.748351
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.10274 + 5.25547i 0.394284 + 0.227640i
\(534\) 0 0
\(535\) −7.33960 4.23752i −0.317319 0.183204i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.43813 5.65860i 0.320383 0.243733i
\(540\) 0 0
\(541\) −15.4973 + 26.8421i −0.666281 + 1.15403i 0.312655 + 0.949867i \(0.398782\pi\)
−0.978936 + 0.204167i \(0.934552\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.43602 2.48725i −0.0615122 0.106542i
\(546\) 0 0
\(547\) 18.1848 31.4970i 0.777525 1.34671i −0.155839 0.987782i \(-0.549808\pi\)
0.933364 0.358931i \(-0.116859\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.68380 6.38053i −0.156935 0.271820i
\(552\) 0 0
\(553\) 1.52081 + 23.9648i 0.0646715 + 1.01909i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.6697 + 10.7790i −0.791062 + 0.456720i −0.840336 0.542066i \(-0.817642\pi\)
0.0492745 + 0.998785i \(0.484309\pi\)
\(558\) 0 0
\(559\) 1.56260i 0.0660908i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.356101 0.616785i 0.0150079 0.0259944i −0.858424 0.512941i \(-0.828556\pi\)
0.873432 + 0.486946i \(0.161889\pi\)
\(564\) 0 0
\(565\) −30.8288 + 17.7990i −1.29698 + 0.748811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.7742 + 17.1902i −1.24820 + 0.720649i −0.970750 0.240091i \(-0.922823\pi\)
−0.277450 + 0.960740i \(0.589489\pi\)
\(570\) 0 0
\(571\) 12.7201 22.0319i 0.532321 0.922007i −0.466967 0.884275i \(-0.654653\pi\)
0.999288 0.0377320i \(-0.0120133\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.806250i 0.0336229i
\(576\) 0 0
\(577\) 7.45928 4.30662i 0.310534 0.179287i −0.336631 0.941636i \(-0.609288\pi\)
0.647165 + 0.762350i \(0.275954\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −23.7895 + 15.8244i −0.986956 + 0.656506i
\(582\) 0 0
\(583\) 8.50538 + 14.7317i 0.352257 + 0.610127i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.8426 27.4403i 0.653896 1.13258i −0.328274 0.944583i \(-0.606467\pi\)
0.982169 0.187998i \(-0.0601998\pi\)
\(588\) 0 0
\(589\) 4.92125 + 8.52385i 0.202776 + 0.351219i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.1456 41.8215i 0.991543 1.71740i 0.383378 0.923592i \(-0.374761\pi\)
0.608165 0.793811i \(-0.291906\pi\)
\(594\) 0 0
\(595\) 2.60693 + 41.0798i 0.106874 + 1.68411i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25.6952 14.8351i −1.04988 0.606147i −0.127262 0.991869i \(-0.540619\pi\)
−0.922615 + 0.385722i \(0.873952\pi\)
\(600\) 0 0
\(601\) −35.5570 20.5289i −1.45040 0.837390i −0.451898 0.892070i \(-0.649253\pi\)
−0.998504 + 0.0546796i \(0.982586\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.9081 0.809380
\(606\) 0 0
\(607\) 22.8649i 0.928057i −0.885820 0.464028i \(-0.846404\pi\)
0.885820 0.464028i \(-0.153596\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.39600 2.53803i −0.177843 0.102678i
\(612\) 0 0
\(613\) −12.7029 22.0021i −0.513066 0.888656i −0.999885 0.0151531i \(-0.995176\pi\)
0.486820 0.873503i \(-0.338157\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.9590 7.48188i 0.521709 0.301209i −0.215924 0.976410i \(-0.569276\pi\)
0.737634 + 0.675201i \(0.235943\pi\)
\(618\) 0 0
\(619\) 16.9472i 0.681166i −0.940214 0.340583i \(-0.889376\pi\)
0.940214 0.340583i \(-0.110624\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.4466 7.61410i 0.458600 0.305052i
\(624\) 0 0
\(625\) −23.2121 −0.928483
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 37.0737 1.47822
\(630\) 0 0
\(631\) −21.3534 −0.850067 −0.425033 0.905178i \(-0.639738\pi\)
−0.425033 + 0.905178i \(0.639738\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 32.1549 1.27603
\(636\) 0 0
\(637\) 15.1729 + 6.35872i 0.601174 + 0.251942i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 44.8098i 1.76988i 0.465703 + 0.884941i \(0.345801\pi\)
−0.465703 + 0.884941i \(0.654199\pi\)
\(642\) 0 0
\(643\) −16.3235 + 9.42436i −0.643735 + 0.371660i −0.786052 0.618161i \(-0.787878\pi\)
0.142317 + 0.989821i \(0.454545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.5404 33.8450i −0.768213 1.33058i −0.938531 0.345194i \(-0.887813\pi\)
0.170319 0.985389i \(-0.445520\pi\)
\(648\) 0 0
\(649\) −11.1792 6.45432i −0.438823 0.253354i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.8532i 0.463853i −0.972733 0.231927i \(-0.925497\pi\)
0.972733 0.231927i \(-0.0745030\pi\)
\(654\) 0 0
\(655\) −34.2174 −1.33699
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.8582 + 16.6613i 1.12416 + 0.649032i 0.942459 0.334323i \(-0.108508\pi\)
0.181697 + 0.983355i \(0.441841\pi\)
\(660\) 0 0
\(661\) 2.69285 + 1.55472i 0.104740 + 0.0604715i 0.551455 0.834205i \(-0.314073\pi\)
−0.446715 + 0.894676i \(0.647406\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.79347 + 5.70291i 0.147104 + 0.221149i
\(666\) 0 0
\(667\) −7.39397 + 12.8067i −0.286296 + 0.495879i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.20689 + 14.2148i 0.316823 + 0.548754i
\(672\) 0 0
\(673\) −1.34050 + 2.32182i −0.0516726 + 0.0894995i −0.890705 0.454582i \(-0.849789\pi\)
0.839032 + 0.544082i \(0.183122\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.2737 + 24.7228i 0.548584 + 0.950175i 0.998372 + 0.0570397i \(0.0181662\pi\)
−0.449788 + 0.893135i \(0.648500\pi\)
\(678\) 0 0
\(679\) 1.81163 + 2.72351i 0.0695238 + 0.104519i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 38.0377 21.9611i 1.45547 0.840317i 0.456688 0.889627i \(-0.349036\pi\)
0.998784 + 0.0493101i \(0.0157022\pi\)
\(684\) 0 0
\(685\) 49.2693i 1.88248i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.9720 + 25.9322i −0.570386 + 0.987938i
\(690\) 0 0
\(691\) −27.1060 + 15.6497i −1.03116 + 0.595342i −0.917317 0.398157i \(-0.869650\pi\)
−0.113845 + 0.993499i \(0.536317\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 30.6309 17.6848i 1.16190 0.670822i
\(696\) 0 0
\(697\) −16.1078 + 27.8996i −0.610127 + 1.05677i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.2591i 0.878483i 0.898369 + 0.439241i \(0.144753\pi\)
−0.898369 + 0.439241i \(0.855247\pi\)
\(702\) 0 0
\(703\) 5.34249 3.08449i 0.201496 0.116334i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.27519 4.59797i −0.348830 0.172924i
\(708\) 0 0
\(709\) −10.2962 17.8335i −0.386682 0.669752i 0.605319 0.795983i \(-0.293045\pi\)
−0.992001 + 0.126231i \(0.959712\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.87772 17.1087i 0.369924 0.640727i
\(714\) 0 0
\(715\) −3.38859 5.86921i −0.126726 0.219496i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.76014 + 6.51275i −0.140229 + 0.242884i −0.927583 0.373617i \(-0.878117\pi\)
0.787354 + 0.616502i \(0.211451\pi\)
\(720\) 0 0
\(721\) −4.85235 + 9.78834i −0.180711 + 0.364537i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.78396 + 1.02997i 0.0662544 + 0.0382520i
\(726\) 0 0
\(727\) 28.8342 + 16.6474i 1.06940 + 0.617420i 0.928018 0.372535i \(-0.121511\pi\)
0.141384 + 0.989955i \(0.454845\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.78930 0.177139
\(732\) 0 0
\(733\) 15.4567i 0.570907i −0.958393 0.285453i \(-0.907856\pi\)
0.958393 0.285453i \(-0.0921441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.31925 2.49372i −0.159102 0.0918574i
\(738\) 0 0
\(739\) −3.10872 5.38446i −0.114356 0.198071i 0.803166 0.595755i \(-0.203147\pi\)
−0.917522 + 0.397685i \(0.869814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.4175 + 6.01453i −0.382180 + 0.220652i −0.678766 0.734354i \(-0.737485\pi\)
0.296586 + 0.955006i \(0.404152\pi\)
\(744\) 0 0
\(745\) 18.8673i 0.691246i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.74987 8.64406i −0.210096 0.315847i
\(750\) 0 0
\(751\) −33.7754 −1.23248 −0.616241 0.787558i \(-0.711345\pi\)
−0.616241 + 0.787558i \(0.711345\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.4358 0.561766
\(756\) 0 0
\(757\) 49.5870 1.80227 0.901135 0.433538i \(-0.142735\pi\)
0.901135 + 0.433538i \(0.142735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39.9294 −1.44744 −0.723719 0.690095i \(-0.757569\pi\)
−0.723719 + 0.690095i \(0.757569\pi\)
\(762\) 0 0
\(763\) −0.222816 3.51112i −0.00806650 0.127111i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.7230i 0.820480i
\(768\) 0 0
\(769\) 13.3968 7.73467i 0.483103 0.278919i −0.238606 0.971116i \(-0.576690\pi\)
0.721709 + 0.692197i \(0.243357\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.3666 30.0798i −0.624633 1.08190i −0.988612 0.150489i \(-0.951915\pi\)
0.363978 0.931407i \(-0.381418\pi\)
\(774\) 0 0
\(775\) −2.38321 1.37595i −0.0856076 0.0494256i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.36062i 0.192064i
\(780\) 0 0
\(781\) −15.2282 −0.544908
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.9072 + 13.2255i 0.817595 + 0.472039i
\(786\) 0 0
\(787\) 22.5814 + 13.0374i 0.804941 + 0.464733i 0.845196 0.534456i \(-0.179484\pi\)
−0.0402547 + 0.999189i \(0.512817\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −43.5194 + 2.76175i −1.54737 + 0.0981965i
\(792\) 0 0
\(793\) −14.4465 + 25.0221i −0.513011 + 0.888562i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.05064 12.2121i −0.249746 0.432573i 0.713709 0.700442i \(-0.247014\pi\)
−0.963455 + 0.267869i \(0.913681\pi\)
\(798\) 0 0
\(799\) 7.77897 13.4736i 0.275200 0.476661i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.99408 12.1141i −0.246816 0.427497i
\(804\) 0 0
\(805\) 6.10603 12.3173i 0.215209 0.434128i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27.4791 15.8651i 0.966115 0.557787i 0.0680656 0.997681i \(-0.478317\pi\)
0.898050 + 0.439894i \(0.144984\pi\)
\(810\) 0 0
\(811\) 18.3590i 0.644671i −0.946625 0.322336i \(-0.895532\pi\)
0.946625 0.322336i \(-0.104468\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −17.3608 + 30.0698i −0.608122 + 1.05330i
\(816\) 0 0
\(817\) 0.690161 0.398465i 0.0241457 0.0139405i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.8858 + 9.74900i −0.589317 + 0.340243i −0.764828 0.644235i \(-0.777176\pi\)
0.175510 + 0.984478i \(0.443843\pi\)
\(822\) 0 0
\(823\) −0.317904 + 0.550626i −0.0110814 + 0.0191936i −0.871513 0.490372i \(-0.836861\pi\)
0.860432 + 0.509566i \(0.170194\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.6939i 0.997786i 0.866664 + 0.498893i \(0.166260\pi\)
−0.866664 + 0.498893i \(0.833740\pi\)
\(828\) 0 0
\(829\) 29.5461 17.0584i 1.02618 0.592464i 0.110291 0.993899i \(-0.464822\pi\)
0.915888 + 0.401435i \(0.131488\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −19.4892 + 46.5045i −0.675262 + 1.61128i
\(834\) 0 0
\(835\) 12.2790 + 21.2678i 0.424931 + 0.736003i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.30523 + 12.6530i −0.252205 + 0.436831i −0.964132 0.265421i \(-0.914489\pi\)
0.711928 + 0.702253i \(0.247822\pi\)
\(840\) 0 0
\(841\) 4.39128 + 7.60592i 0.151423 + 0.262273i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.07399 + 13.9846i −0.277754 + 0.481084i
\(846\) 0 0
\(847\) 21.8497 + 10.8315i 0.750763 + 0.372174i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10.7232 6.19106i −0.367588 0.212227i
\(852\) 0 0
\(853\) −23.5380 13.5897i −0.805927 0.465302i 0.0396125 0.999215i \(-0.487388\pi\)
−0.845539 + 0.533913i \(0.820721\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.61785 0.0894241 0.0447121 0.999000i \(-0.485763\pi\)
0.0447121 + 0.999000i \(0.485763\pi\)
\(858\) 0 0
\(859\) 45.0083i 1.53566i 0.640653 + 0.767831i \(0.278664\pi\)
−0.640653 + 0.767831i \(0.721336\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.8475 + 14.9230i 0.879858 + 0.507986i 0.870611 0.491971i \(-0.163723\pi\)
0.00924613 + 0.999957i \(0.497057\pi\)
\(864\) 0 0
\(865\) 13.7201 + 23.7640i 0.466498 + 0.807999i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.4942 6.05884i 0.355992 0.205532i
\(870\) 0 0
\(871\) 8.77936i 0.297477i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −27.3149 13.5407i −0.923411 0.457760i
\(876\) 0 0
\(877\) 40.7284 1.37530 0.687650 0.726042i \(-0.258642\pi\)
0.687650 + 0.726042i \(0.258642\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.774980 −0.0261097 −0.0130549 0.999915i \(-0.504156\pi\)
−0.0130549 + 0.999915i \(0.504156\pi\)
\(882\) 0 0
\(883\) 7.22819 0.243248 0.121624 0.992576i \(-0.461190\pi\)
0.121624 + 0.992576i \(0.461190\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 53.9175 1.81037 0.905187 0.425015i \(-0.139731\pi\)
0.905187 + 0.425015i \(0.139731\pi\)
\(888\) 0 0
\(889\) 35.2908 + 17.4946i 1.18362 + 0.586751i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.58881i 0.0866312i
\(894\) 0 0
\(895\) 29.9919 17.3159i 1.00252 0.578805i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.2372 43.7121i −0.841707 1.45788i
\(900\) 0 0
\(901\) −79.4812 45.8885i −2.64790 1.52877i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.3951i 1.01037i
\(906\) 0 0
\(907\) 34.2935 1.13870 0.569349 0.822096i \(-0.307195\pi\)
0.569349 + 0.822096i \(0.307195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.08127 + 1.77897i 0.102087 + 0.0589399i 0.550174 0.835050i \(-0.314561\pi\)
−0.448087 + 0.893990i \(0.647895\pi\)
\(912\) 0 0
\(913\) 12.4866 + 7.20912i 0.413245 + 0.238587i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −37.5545 18.6168i −1.24016 0.614780i
\(918\) 0 0
\(919\) −20.3931 + 35.3218i −0.672705 + 1.16516i 0.304429 + 0.952535i \(0.401534\pi\)
−0.977134 + 0.212625i \(0.931799\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13.4030 23.2148i −0.441167 0.764123i
\(924\) 0 0
\(925\) −0.862404 + 1.49373i −0.0283557 + 0.0491135i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.9356 + 20.6731i 0.391596 + 0.678263i 0.992660 0.120937i \(-0.0385899\pi\)
−0.601065 + 0.799200i \(0.705257\pi\)
\(930\) 0 0
\(931\) 1.06063 + 8.32301i 0.0347608 + 0.272776i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 17.9889 10.3859i 0.588300 0.339655i
\(936\) 0 0
\(937\) 48.4063i 1.58136i 0.612228 + 0.790682i \(0.290274\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.44676 7.70201i 0.144960 0.251078i −0.784398 0.620258i \(-0.787028\pi\)
0.929358 + 0.369180i \(0.120361\pi\)
\(942\) 0 0
\(943\) 9.31809 5.37980i 0.303439 0.175191i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.7559 + 9.67403i −0.544494 + 0.314364i −0.746898 0.664938i \(-0.768458\pi\)
0.202404 + 0.979302i \(0.435124\pi\)
\(948\) 0 0
\(949\) 12.3116 21.3244i 0.399652 0.692218i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.7409i 0.704258i 0.935951 + 0.352129i \(0.114542\pi\)
−0.935951 + 0.352129i \(0.885458\pi\)
\(954\) 0 0
\(955\) 49.1711 28.3890i 1.59114 0.918645i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 26.8061 54.0743i 0.865614 1.74615i
\(960\) 0 0
\(961\) 18.2148 + 31.5489i 0.587573 + 1.01771i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.32189 + 5.75368i −0.106935 + 0.185218i
\(966\) 0 0
\(967\) 6.09329 + 10.5539i 0.195947 + 0.339390i 0.947211 0.320612i \(-0.103889\pi\)
−0.751264 + 0.660002i \(0.770555\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.67441 + 4.63222i −0.0858260 + 0.148655i −0.905743 0.423828i \(-0.860686\pi\)
0.819917 + 0.572483i \(0.194020\pi\)
\(972\) 0 0
\(973\) 43.2400 2.74402i 1.38621 0.0879693i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.00851 + 2.31431i 0.128244 + 0.0740415i 0.562749 0.826628i \(-0.309744\pi\)
−0.434506 + 0.900669i \(0.643077\pi\)
\(978\) 0 0
\(979\) −6.00807 3.46876i −0.192019 0.110862i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.06548 0.129669 0.0648344 0.997896i \(-0.479348\pi\)
0.0648344 + 0.997896i \(0.479348\pi\)
\(984\) 0 0
\(985\) 19.6144i 0.624966i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.38526 0.799782i −0.0440488 0.0254316i
\(990\) 0 0
\(991\) −25.7582 44.6144i −0.818235 1.41722i −0.906982 0.421170i \(-0.861619\pi\)
0.0887467 0.996054i \(-0.471714\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 42.4337 24.4991i 1.34524 0.776674i
\(996\) 0 0
\(997\) 6.34775i 0.201035i −0.994935 0.100518i \(-0.967950\pi\)
0.994935 0.100518i \(-0.0320499\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.i.593.5 12
3.2 odd 2 inner 2268.2.bm.i.593.2 12
7.3 odd 6 2268.2.w.i.269.5 12
9.2 odd 6 756.2.t.e.593.5 yes 12
9.4 even 3 2268.2.w.i.1349.2 12
9.5 odd 6 2268.2.w.i.1349.5 12
9.7 even 3 756.2.t.e.593.2 yes 12
21.17 even 6 2268.2.w.i.269.2 12
63.2 odd 6 5292.2.f.e.2645.4 12
63.16 even 3 5292.2.f.e.2645.9 12
63.31 odd 6 inner 2268.2.bm.i.1025.2 12
63.38 even 6 756.2.t.e.269.2 12
63.47 even 6 5292.2.f.e.2645.10 12
63.52 odd 6 756.2.t.e.269.5 yes 12
63.59 even 6 inner 2268.2.bm.i.1025.5 12
63.61 odd 6 5292.2.f.e.2645.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.2 12 63.38 even 6
756.2.t.e.269.5 yes 12 63.52 odd 6
756.2.t.e.593.2 yes 12 9.7 even 3
756.2.t.e.593.5 yes 12 9.2 odd 6
2268.2.w.i.269.2 12 21.17 even 6
2268.2.w.i.269.5 12 7.3 odd 6
2268.2.w.i.1349.2 12 9.4 even 3
2268.2.w.i.1349.5 12 9.5 odd 6
2268.2.bm.i.593.2 12 3.2 odd 2 inner
2268.2.bm.i.593.5 12 1.1 even 1 trivial
2268.2.bm.i.1025.2 12 63.31 odd 6 inner
2268.2.bm.i.1025.5 12 63.59 even 6 inner
5292.2.f.e.2645.3 12 63.61 odd 6
5292.2.f.e.2645.4 12 63.2 odd 6
5292.2.f.e.2645.9 12 63.16 even 3
5292.2.f.e.2645.10 12 63.47 even 6