Properties

Label 2-5292-21.20-c1-0-18
Degree $2$
Conductor $5292$
Sign $0.755 - 0.654i$
Analytic cond. $42.2568$
Root an. cond. $6.50052$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.15·5-s + 1.33i·11-s + 2.35i·13-s + 7.20·17-s − 1.19i·19-s + 2.40i·23-s − 0.335·25-s − 6.14i·29-s − 8.21i·31-s − 5.14·37-s + 4.47·41-s − 0.664·43-s − 2.15·47-s + 12.7i·53-s − 2.88i·55-s + ⋯
L(s)  = 1  − 0.965·5-s + 0.402i·11-s + 0.651i·13-s + 1.74·17-s − 0.274i·19-s + 0.501i·23-s − 0.0670·25-s − 1.14i·29-s − 1.47i·31-s − 0.846·37-s + 0.698·41-s − 0.101·43-s − 0.315·47-s + 1.75i·53-s − 0.388i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5292\)    =    \(2^{2} \cdot 3^{3} \cdot 7^{2}\)
Sign: $0.755 - 0.654i$
Analytic conductor: \(42.2568\)
Root analytic conductor: \(6.50052\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5292} (2645, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5292,\ (\ :1/2),\ 0.755 - 0.654i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.418829954\)
\(L(\frac12)\) \(\approx\) \(1.418829954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2.15T + 5T^{2} \)
11 \( 1 - 1.33iT - 11T^{2} \)
13 \( 1 - 2.35iT - 13T^{2} \)
17 \( 1 - 7.20T + 17T^{2} \)
19 \( 1 + 1.19iT - 19T^{2} \)
23 \( 1 - 2.40iT - 23T^{2} \)
29 \( 1 + 6.14iT - 29T^{2} \)
31 \( 1 + 8.21iT - 31T^{2} \)
37 \( 1 + 5.14T + 37T^{2} \)
41 \( 1 - 4.47T + 41T^{2} \)
43 \( 1 + 0.664T + 43T^{2} \)
47 \( 1 + 2.15T + 47T^{2} \)
53 \( 1 - 12.7iT - 53T^{2} \)
59 \( 1 - 9.66T + 59T^{2} \)
61 \( 1 + 12.2iT - 61T^{2} \)
67 \( 1 + 3.73T + 67T^{2} \)
71 \( 1 - 11.4iT - 71T^{2} \)
73 \( 1 - 10.4iT - 73T^{2} \)
79 \( 1 + 9.07T + 79T^{2} \)
83 \( 1 + 10.7T + 83T^{2} \)
89 \( 1 - 5.19T + 89T^{2} \)
97 \( 1 + 1.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.077563248922878772576549986151, −7.60193064490426827416242372947, −7.07533365042914704153580470862, −6.04694413327712688509743920002, −5.43109361479128280516302587636, −4.38169809407606738582289766860, −3.92256022180451267772829089527, −3.05298531127967734977309485469, −1.99516843324335662204818018881, −0.793690602203814241837718011396, 0.54240346822463969154246225601, 1.61931775524765594594655994785, 3.18769167691775606262498219895, 3.33588529814102965711175073745, 4.37858901618853895650195784370, 5.28778148332534910523147468511, 5.79170836583325193913059193629, 6.88883324514891963317480388242, 7.40687853349767087851362596432, 8.229446473949153082249013378841

Graph of the $Z$-function along the critical line