L(s) = 1 | − 2.15·5-s + 1.33i·11-s + 2.35i·13-s + 7.20·17-s − 1.19i·19-s + 2.40i·23-s − 0.335·25-s − 6.14i·29-s − 8.21i·31-s − 5.14·37-s + 4.47·41-s − 0.664·43-s − 2.15·47-s + 12.7i·53-s − 2.88i·55-s + ⋯ |
L(s) = 1 | − 0.965·5-s + 0.402i·11-s + 0.651i·13-s + 1.74·17-s − 0.274i·19-s + 0.501i·23-s − 0.0670·25-s − 1.14i·29-s − 1.47i·31-s − 0.846·37-s + 0.698·41-s − 0.101·43-s − 0.315·47-s + 1.75i·53-s − 0.388i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.418829954\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.418829954\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2.15T + 5T^{2} \) |
| 11 | \( 1 - 1.33iT - 11T^{2} \) |
| 13 | \( 1 - 2.35iT - 13T^{2} \) |
| 17 | \( 1 - 7.20T + 17T^{2} \) |
| 19 | \( 1 + 1.19iT - 19T^{2} \) |
| 23 | \( 1 - 2.40iT - 23T^{2} \) |
| 29 | \( 1 + 6.14iT - 29T^{2} \) |
| 31 | \( 1 + 8.21iT - 31T^{2} \) |
| 37 | \( 1 + 5.14T + 37T^{2} \) |
| 41 | \( 1 - 4.47T + 41T^{2} \) |
| 43 | \( 1 + 0.664T + 43T^{2} \) |
| 47 | \( 1 + 2.15T + 47T^{2} \) |
| 53 | \( 1 - 12.7iT - 53T^{2} \) |
| 59 | \( 1 - 9.66T + 59T^{2} \) |
| 61 | \( 1 + 12.2iT - 61T^{2} \) |
| 67 | \( 1 + 3.73T + 67T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 - 10.4iT - 73T^{2} \) |
| 79 | \( 1 + 9.07T + 79T^{2} \) |
| 83 | \( 1 + 10.7T + 83T^{2} \) |
| 89 | \( 1 - 5.19T + 89T^{2} \) |
| 97 | \( 1 + 1.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.077563248922878772576549986151, −7.60193064490426827416242372947, −7.07533365042914704153580470862, −6.04694413327712688509743920002, −5.43109361479128280516302587636, −4.38169809407606738582289766860, −3.92256022180451267772829089527, −3.05298531127967734977309485469, −1.99516843324335662204818018881, −0.793690602203814241837718011396,
0.54240346822463969154246225601, 1.61931775524765594594655994785, 3.18769167691775606262498219895, 3.33588529814102965711175073745, 4.37858901618853895650195784370, 5.28778148332534910523147468511, 5.79170836583325193913059193629, 6.88883324514891963317480388242, 7.40687853349767087851362596432, 8.229446473949153082249013378841