Properties

Label 525.3.f.b.449.4
Level $525$
Weight $3$
Character 525.449
Analytic conductor $14.305$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,3,Mod(449,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,56,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.4
Character \(\chi\) \(=\) 525.449
Dual form 525.3.f.b.449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.57278 q^{2} +(-0.176471 - 2.99481i) q^{3} +8.76473 q^{4} +(0.630492 + 10.6998i) q^{6} +2.64575i q^{7} -17.0233 q^{8} +(-8.93772 + 1.05699i) q^{9} +12.0685i q^{11} +(-1.54672 - 26.2487i) q^{12} -12.7142i q^{13} -9.45268i q^{14} +25.7616 q^{16} -22.2556 q^{17} +(31.9325 - 3.77640i) q^{18} +28.9289 q^{19} +(7.92351 - 0.466899i) q^{21} -43.1180i q^{22} +21.9101 q^{23} +(3.00412 + 50.9815i) q^{24} +45.4249i q^{26} +(4.74274 + 26.5802i) q^{27} +23.1893i q^{28} -11.4122i q^{29} -4.93977 q^{31} -23.9470 q^{32} +(36.1428 - 2.12974i) q^{33} +79.5144 q^{34} +(-78.3367 + 9.26426i) q^{36} +36.7045i q^{37} -103.356 q^{38} +(-38.0765 + 2.24369i) q^{39} -57.6874i q^{41} +(-28.3089 + 1.66812i) q^{42} +57.7493i q^{43} +105.777i q^{44} -78.2798 q^{46} +15.6773 q^{47} +(-4.54617 - 77.1508i) q^{48} -7.00000 q^{49} +(3.92747 + 66.6513i) q^{51} -111.436i q^{52} +91.2304 q^{53} +(-16.9447 - 94.9651i) q^{54} -45.0394i q^{56} +(-5.10511 - 86.6363i) q^{57} +40.7733i q^{58} -34.3101i q^{59} +71.1225 q^{61} +17.6487 q^{62} +(-2.79654 - 23.6470i) q^{63} -17.4888 q^{64} +(-129.130 + 7.60909i) q^{66} -20.1716i q^{67} -195.065 q^{68} +(-3.86649 - 65.6164i) q^{69} -69.7718i q^{71} +(152.150 - 17.9935i) q^{72} -96.8693i q^{73} -131.137i q^{74} +253.554 q^{76} -31.9302 q^{77} +(136.039 - 8.01619i) q^{78} +84.2348 q^{79} +(78.7655 - 18.8942i) q^{81} +206.104i q^{82} +20.4474 q^{83} +(69.4474 - 4.09224i) q^{84} -206.325i q^{86} +(-34.1774 + 2.01393i) q^{87} -205.446i q^{88} +1.65255i q^{89} +33.6386 q^{91} +192.036 q^{92} +(0.871726 + 14.7936i) q^{93} -56.0116 q^{94} +(4.22596 + 71.7167i) q^{96} -29.7125i q^{97} +25.0094 q^{98} +(-12.7563 - 107.865i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 56 q^{4} - 56 q^{6} - 44 q^{9} + 184 q^{16} + 32 q^{19} - 28 q^{21} - 256 q^{24} - 144 q^{31} + 352 q^{34} - 152 q^{36} - 180 q^{39} + 144 q^{46} - 224 q^{49} + 76 q^{51} - 416 q^{54} - 112 q^{61}+ \cdots + 332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.57278 −1.78639 −0.893194 0.449671i \(-0.851541\pi\)
−0.893194 + 0.449671i \(0.851541\pi\)
\(3\) −0.176471 2.99481i −0.0588237 0.998268i
\(4\) 8.76473 2.19118
\(5\) 0 0
\(6\) 0.630492 + 10.6998i 0.105082 + 1.78329i
\(7\) 2.64575i 0.377964i
\(8\) −17.0233 −2.12791
\(9\) −8.93772 + 1.05699i −0.993080 + 0.117444i
\(10\) 0 0
\(11\) 12.0685i 1.09714i 0.836106 + 0.548568i \(0.184827\pi\)
−0.836106 + 0.548568i \(0.815173\pi\)
\(12\) −1.54672 26.2487i −0.128893 2.18739i
\(13\) 12.7142i 0.978014i −0.872280 0.489007i \(-0.837359\pi\)
0.872280 0.489007i \(-0.162641\pi\)
\(14\) 9.45268i 0.675191i
\(15\) 0 0
\(16\) 25.7616 1.61010
\(17\) −22.2556 −1.30915 −0.654577 0.755995i \(-0.727153\pi\)
−0.654577 + 0.755995i \(0.727153\pi\)
\(18\) 31.9325 3.77640i 1.77403 0.209800i
\(19\) 28.9289 1.52257 0.761286 0.648417i \(-0.224568\pi\)
0.761286 + 0.648417i \(0.224568\pi\)
\(20\) 0 0
\(21\) 7.92351 0.466899i 0.377310 0.0222333i
\(22\) 43.1180i 1.95991i
\(23\) 21.9101 0.952612 0.476306 0.879280i \(-0.341975\pi\)
0.476306 + 0.879280i \(0.341975\pi\)
\(24\) 3.00412 + 50.9815i 0.125172 + 2.12423i
\(25\) 0 0
\(26\) 45.4249i 1.74711i
\(27\) 4.74274 + 26.5802i 0.175657 + 0.984451i
\(28\) 23.1893i 0.828189i
\(29\) 11.4122i 0.393525i −0.980451 0.196763i \(-0.936957\pi\)
0.980451 0.196763i \(-0.0630428\pi\)
\(30\) 0 0
\(31\) −4.93977 −0.159347 −0.0796737 0.996821i \(-0.525388\pi\)
−0.0796737 + 0.996821i \(0.525388\pi\)
\(32\) −23.9470 −0.748345
\(33\) 36.1428 2.12974i 1.09524 0.0645376i
\(34\) 79.5144 2.33866
\(35\) 0 0
\(36\) −78.3367 + 9.26426i −2.17602 + 0.257340i
\(37\) 36.7045i 0.992014i 0.868319 + 0.496007i \(0.165201\pi\)
−0.868319 + 0.496007i \(0.834799\pi\)
\(38\) −103.356 −2.71990
\(39\) −38.0765 + 2.24369i −0.976321 + 0.0575304i
\(40\) 0 0
\(41\) 57.6874i 1.40701i −0.710691 0.703504i \(-0.751618\pi\)
0.710691 0.703504i \(-0.248382\pi\)
\(42\) −28.3089 + 1.66812i −0.674022 + 0.0397172i
\(43\) 57.7493i 1.34301i 0.741002 + 0.671503i \(0.234351\pi\)
−0.741002 + 0.671503i \(0.765649\pi\)
\(44\) 105.777i 2.40403i
\(45\) 0 0
\(46\) −78.2798 −1.70173
\(47\) 15.6773 0.333561 0.166780 0.985994i \(-0.446663\pi\)
0.166780 + 0.985994i \(0.446663\pi\)
\(48\) −4.54617 77.1508i −0.0947119 1.60731i
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 3.92747 + 66.6513i 0.0770093 + 1.30689i
\(52\) 111.436i 2.14301i
\(53\) 91.2304 1.72133 0.860664 0.509173i \(-0.170049\pi\)
0.860664 + 0.509173i \(0.170049\pi\)
\(54\) −16.9447 94.9651i −0.313791 1.75861i
\(55\) 0 0
\(56\) 45.0394i 0.804276i
\(57\) −5.10511 86.6363i −0.0895633 1.51993i
\(58\) 40.7733i 0.702989i
\(59\) 34.3101i 0.581527i −0.956795 0.290763i \(-0.906091\pi\)
0.956795 0.290763i \(-0.0939093\pi\)
\(60\) 0 0
\(61\) 71.1225 1.16594 0.582971 0.812493i \(-0.301890\pi\)
0.582971 + 0.812493i \(0.301890\pi\)
\(62\) 17.6487 0.284656
\(63\) −2.79654 23.6470i −0.0443895 0.375349i
\(64\) −17.4888 −0.273263
\(65\) 0 0
\(66\) −129.130 + 7.60909i −1.95652 + 0.115289i
\(67\) 20.1716i 0.301069i −0.988605 0.150534i \(-0.951901\pi\)
0.988605 0.150534i \(-0.0480994\pi\)
\(68\) −195.065 −2.86860
\(69\) −3.86649 65.6164i −0.0560362 0.950963i
\(70\) 0 0
\(71\) 69.7718i 0.982702i −0.870962 0.491351i \(-0.836503\pi\)
0.870962 0.491351i \(-0.163497\pi\)
\(72\) 152.150 17.9935i 2.11319 0.249910i
\(73\) 96.8693i 1.32698i −0.748186 0.663489i \(-0.769075\pi\)
0.748186 0.663489i \(-0.230925\pi\)
\(74\) 131.137i 1.77212i
\(75\) 0 0
\(76\) 253.554 3.33623
\(77\) −31.9302 −0.414679
\(78\) 136.039 8.01619i 1.74409 0.102772i
\(79\) 84.2348 1.06626 0.533132 0.846032i \(-0.321015\pi\)
0.533132 + 0.846032i \(0.321015\pi\)
\(80\) 0 0
\(81\) 78.7655 18.8942i 0.972414 0.233262i
\(82\) 206.104i 2.51346i
\(83\) 20.4474 0.246354 0.123177 0.992385i \(-0.460692\pi\)
0.123177 + 0.992385i \(0.460692\pi\)
\(84\) 69.4474 4.09224i 0.826755 0.0487171i
\(85\) 0 0
\(86\) 206.325i 2.39913i
\(87\) −34.1774 + 2.01393i −0.392844 + 0.0231486i
\(88\) 205.446i 2.33461i
\(89\) 1.65255i 0.0185680i 0.999957 + 0.00928398i \(0.00295523\pi\)
−0.999957 + 0.00928398i \(0.997045\pi\)
\(90\) 0 0
\(91\) 33.6386 0.369655
\(92\) 192.036 2.08735
\(93\) 0.871726 + 14.7936i 0.00937340 + 0.159071i
\(94\) −56.0116 −0.595869
\(95\) 0 0
\(96\) 4.22596 + 71.7167i 0.0440204 + 0.747049i
\(97\) 29.7125i 0.306314i −0.988202 0.153157i \(-0.951056\pi\)
0.988202 0.153157i \(-0.0489440\pi\)
\(98\) 25.0094 0.255198
\(99\) −12.7563 107.865i −0.128852 1.08954i
\(100\) 0 0
\(101\) 33.7684i 0.334341i −0.985928 0.167170i \(-0.946537\pi\)
0.985928 0.167170i \(-0.0534630\pi\)
\(102\) −14.0320 238.130i −0.137569 2.33461i
\(103\) 120.360i 1.16855i −0.811557 0.584274i \(-0.801379\pi\)
0.811557 0.584274i \(-0.198621\pi\)
\(104\) 216.438i 2.08113i
\(105\) 0 0
\(106\) −325.946 −3.07496
\(107\) 174.545 1.63126 0.815632 0.578570i \(-0.196389\pi\)
0.815632 + 0.578570i \(0.196389\pi\)
\(108\) 41.5688 + 232.968i 0.384896 + 2.15711i
\(109\) −25.2313 −0.231480 −0.115740 0.993280i \(-0.536924\pi\)
−0.115740 + 0.993280i \(0.536924\pi\)
\(110\) 0 0
\(111\) 109.923 6.47728i 0.990296 0.0583539i
\(112\) 68.1587i 0.608560i
\(113\) −126.424 −1.11880 −0.559400 0.828898i \(-0.688969\pi\)
−0.559400 + 0.828898i \(0.688969\pi\)
\(114\) 18.2394 + 309.532i 0.159995 + 2.71519i
\(115\) 0 0
\(116\) 100.025i 0.862285i
\(117\) 13.4388 + 113.636i 0.114862 + 0.971246i
\(118\) 122.582i 1.03883i
\(119\) 58.8829i 0.494814i
\(120\) 0 0
\(121\) −24.6487 −0.203708
\(122\) −254.105 −2.08283
\(123\) −172.762 + 10.1801i −1.40457 + 0.0827654i
\(124\) −43.2957 −0.349159
\(125\) 0 0
\(126\) 9.99141 + 84.4853i 0.0792969 + 0.670519i
\(127\) 7.33093i 0.0577238i 0.999583 + 0.0288619i \(0.00918831\pi\)
−0.999583 + 0.0288619i \(0.990812\pi\)
\(128\) 158.272 1.23650
\(129\) 172.948 10.1911i 1.34068 0.0790006i
\(130\) 0 0
\(131\) 96.8346i 0.739195i −0.929192 0.369598i \(-0.879495\pi\)
0.929192 0.369598i \(-0.120505\pi\)
\(132\) 316.782 18.6666i 2.39986 0.141414i
\(133\) 76.5386i 0.575478i
\(134\) 72.0687i 0.537826i
\(135\) 0 0
\(136\) 378.865 2.78577
\(137\) −228.866 −1.67055 −0.835277 0.549830i \(-0.814693\pi\)
−0.835277 + 0.549830i \(0.814693\pi\)
\(138\) 13.8141 + 234.433i 0.100102 + 1.69879i
\(139\) −162.799 −1.17121 −0.585606 0.810596i \(-0.699144\pi\)
−0.585606 + 0.810596i \(0.699144\pi\)
\(140\) 0 0
\(141\) −2.76660 46.9506i −0.0196213 0.332983i
\(142\) 249.279i 1.75549i
\(143\) 153.441 1.07301
\(144\) −230.249 + 27.2298i −1.59895 + 0.189096i
\(145\) 0 0
\(146\) 346.092i 2.37050i
\(147\) 1.23530 + 20.9636i 0.00840338 + 0.142610i
\(148\) 321.705i 2.17368i
\(149\) 1.91716i 0.0128668i −0.999979 0.00643341i \(-0.997952\pi\)
0.999979 0.00643341i \(-0.00204783\pi\)
\(150\) 0 0
\(151\) 3.34803 0.0221724 0.0110862 0.999939i \(-0.496471\pi\)
0.0110862 + 0.999939i \(0.496471\pi\)
\(152\) −492.465 −3.23990
\(153\) 198.915 23.5240i 1.30009 0.153752i
\(154\) 114.080 0.740777
\(155\) 0 0
\(156\) −333.730 + 19.6653i −2.13930 + 0.126060i
\(157\) 3.98288i 0.0253687i −0.999920 0.0126843i \(-0.995962\pi\)
0.999920 0.0126843i \(-0.00403766\pi\)
\(158\) −300.952 −1.90476
\(159\) −16.0995 273.217i −0.101255 1.71835i
\(160\) 0 0
\(161\) 57.9686i 0.360054i
\(162\) −281.412 + 67.5048i −1.73711 + 0.416696i
\(163\) 238.081i 1.46062i −0.683116 0.730310i \(-0.739376\pi\)
0.683116 0.730310i \(-0.260624\pi\)
\(164\) 505.614i 3.08301i
\(165\) 0 0
\(166\) −73.0540 −0.440084
\(167\) 93.0174 0.556990 0.278495 0.960438i \(-0.410164\pi\)
0.278495 + 0.960438i \(0.410164\pi\)
\(168\) −134.884 + 7.94816i −0.802883 + 0.0473105i
\(169\) 7.34951 0.0434882
\(170\) 0 0
\(171\) −258.558 + 30.5776i −1.51203 + 0.178816i
\(172\) 506.157i 2.94277i
\(173\) 20.2396 0.116992 0.0584959 0.998288i \(-0.481370\pi\)
0.0584959 + 0.998288i \(0.481370\pi\)
\(174\) 122.108 7.19531i 0.701771 0.0413524i
\(175\) 0 0
\(176\) 310.903i 1.76650i
\(177\) −102.752 + 6.05474i −0.580520 + 0.0342076i
\(178\) 5.90419i 0.0331696i
\(179\) 115.119i 0.643122i 0.946889 + 0.321561i \(0.104207\pi\)
−0.946889 + 0.321561i \(0.895793\pi\)
\(180\) 0 0
\(181\) −35.1309 −0.194093 −0.0970467 0.995280i \(-0.530940\pi\)
−0.0970467 + 0.995280i \(0.530940\pi\)
\(182\) −120.183 −0.660347
\(183\) −12.5511 212.998i −0.0685850 1.16392i
\(184\) −372.982 −2.02708
\(185\) 0 0
\(186\) −3.11448 52.8544i −0.0167445 0.284163i
\(187\) 268.592i 1.43632i
\(188\) 137.408 0.730892
\(189\) −70.3246 + 12.5481i −0.372088 + 0.0663921i
\(190\) 0 0
\(191\) 128.664i 0.673631i 0.941571 + 0.336816i \(0.109350\pi\)
−0.941571 + 0.336816i \(0.890650\pi\)
\(192\) 3.08627 + 52.3756i 0.0160743 + 0.272790i
\(193\) 149.261i 0.773373i 0.922211 + 0.386686i \(0.126380\pi\)
−0.922211 + 0.386686i \(0.873620\pi\)
\(194\) 106.156i 0.547196i
\(195\) 0 0
\(196\) −61.3531 −0.313026
\(197\) 304.740 1.54691 0.773453 0.633854i \(-0.218528\pi\)
0.773453 + 0.633854i \(0.218528\pi\)
\(198\) 45.5755 + 385.377i 0.230179 + 1.94635i
\(199\) 98.5989 0.495472 0.247736 0.968828i \(-0.420313\pi\)
0.247736 + 0.968828i \(0.420313\pi\)
\(200\) 0 0
\(201\) −60.4101 + 3.55971i −0.300548 + 0.0177100i
\(202\) 120.647i 0.597263i
\(203\) 30.1939 0.148739
\(204\) 34.4233 + 584.180i 0.168741 + 2.86363i
\(205\) 0 0
\(206\) 430.021i 2.08748i
\(207\) −195.826 + 23.1588i −0.946020 + 0.111878i
\(208\) 327.537i 1.57470i
\(209\) 349.128i 1.67047i
\(210\) 0 0
\(211\) 255.428 1.21056 0.605280 0.796013i \(-0.293061\pi\)
0.605280 + 0.796013i \(0.293061\pi\)
\(212\) 799.610 3.77175
\(213\) −208.953 + 12.3127i −0.981000 + 0.0578061i
\(214\) −623.611 −2.91407
\(215\) 0 0
\(216\) −80.7371 452.483i −0.373783 2.09483i
\(217\) 13.0694i 0.0602276i
\(218\) 90.1459 0.413514
\(219\) −290.105 + 17.0946i −1.32468 + 0.0780577i
\(220\) 0 0
\(221\) 282.962i 1.28037i
\(222\) −392.730 + 23.1419i −1.76905 + 0.104243i
\(223\) 30.8285i 0.138244i −0.997608 0.0691222i \(-0.977980\pi\)
0.997608 0.0691222i \(-0.0220198\pi\)
\(224\) 63.3579i 0.282848i
\(225\) 0 0
\(226\) 451.686 1.99861
\(227\) −123.793 −0.545343 −0.272672 0.962107i \(-0.587907\pi\)
−0.272672 + 0.962107i \(0.587907\pi\)
\(228\) −44.7449 759.344i −0.196249 3.33045i
\(229\) 38.8512 0.169656 0.0848279 0.996396i \(-0.472966\pi\)
0.0848279 + 0.996396i \(0.472966\pi\)
\(230\) 0 0
\(231\) 5.63476 + 95.6249i 0.0243929 + 0.413960i
\(232\) 194.274i 0.837388i
\(233\) 194.201 0.833479 0.416740 0.909026i \(-0.363173\pi\)
0.416740 + 0.909026i \(0.363173\pi\)
\(234\) −48.0138 405.995i −0.205187 1.73502i
\(235\) 0 0
\(236\) 300.719i 1.27423i
\(237\) −14.8650 252.267i −0.0627215 1.06442i
\(238\) 210.375i 0.883930i
\(239\) 228.989i 0.958115i 0.877784 + 0.479057i \(0.159021\pi\)
−0.877784 + 0.479057i \(0.840979\pi\)
\(240\) 0 0
\(241\) 407.123 1.68931 0.844654 0.535313i \(-0.179806\pi\)
0.844654 + 0.535313i \(0.179806\pi\)
\(242\) 88.0642 0.363902
\(243\) −70.4843 232.553i −0.290059 0.957009i
\(244\) 623.369 2.55479
\(245\) 0 0
\(246\) 617.241 36.3714i 2.50911 0.147851i
\(247\) 367.807i 1.48910i
\(248\) 84.0912 0.339077
\(249\) −3.60838 61.2360i −0.0144915 0.245928i
\(250\) 0 0
\(251\) 164.458i 0.655211i 0.944815 + 0.327605i \(0.106242\pi\)
−0.944815 + 0.327605i \(0.893758\pi\)
\(252\) −24.5109 207.259i −0.0972655 0.822458i
\(253\) 264.422i 1.04515i
\(254\) 26.1918i 0.103117i
\(255\) 0 0
\(256\) −495.514 −1.93560
\(257\) 384.159 1.49478 0.747390 0.664385i \(-0.231307\pi\)
0.747390 + 0.664385i \(0.231307\pi\)
\(258\) −617.904 + 36.4104i −2.39498 + 0.141126i
\(259\) −97.1110 −0.374946
\(260\) 0 0
\(261\) 12.0626 + 101.999i 0.0462170 + 0.390802i
\(262\) 345.968i 1.32049i
\(263\) 198.192 0.753582 0.376791 0.926298i \(-0.377028\pi\)
0.376791 + 0.926298i \(0.377028\pi\)
\(264\) −615.270 + 36.2552i −2.33057 + 0.137330i
\(265\) 0 0
\(266\) 273.455i 1.02803i
\(267\) 4.94906 0.291627i 0.0185358 0.00109224i
\(268\) 176.799i 0.659697i
\(269\) 14.3502i 0.0533465i 0.999644 + 0.0266732i \(0.00849136\pi\)
−0.999644 + 0.0266732i \(0.991509\pi\)
\(270\) 0 0
\(271\) −26.2455 −0.0968468 −0.0484234 0.998827i \(-0.515420\pi\)
−0.0484234 + 0.998827i \(0.515420\pi\)
\(272\) −573.340 −2.10787
\(273\) −5.93623 100.741i −0.0217444 0.369015i
\(274\) 817.686 2.98426
\(275\) 0 0
\(276\) −33.8888 575.110i −0.122785 2.08373i
\(277\) 21.2740i 0.0768014i −0.999262 0.0384007i \(-0.987774\pi\)
0.999262 0.0384007i \(-0.0122263\pi\)
\(278\) 581.643 2.09224
\(279\) 44.1503 5.22130i 0.158245 0.0187143i
\(280\) 0 0
\(281\) 322.063i 1.14613i −0.819509 0.573066i \(-0.805754\pi\)
0.819509 0.573066i \(-0.194246\pi\)
\(282\) 9.88443 + 167.744i 0.0350512 + 0.594837i
\(283\) 259.309i 0.916288i −0.888878 0.458144i \(-0.848514\pi\)
0.888878 0.458144i \(-0.151486\pi\)
\(284\) 611.531i 2.15328i
\(285\) 0 0
\(286\) −548.211 −1.91682
\(287\) 152.626 0.531799
\(288\) 214.032 25.3119i 0.743166 0.0878884i
\(289\) 206.313 0.713886
\(290\) 0 0
\(291\) −88.9830 + 5.24339i −0.305784 + 0.0180185i
\(292\) 849.034i 2.90765i
\(293\) 301.196 1.02797 0.513986 0.857798i \(-0.328168\pi\)
0.513986 + 0.857798i \(0.328168\pi\)
\(294\) −4.41344 74.8984i −0.0150117 0.254756i
\(295\) 0 0
\(296\) 624.832i 2.11092i
\(297\) −320.783 + 57.2377i −1.08008 + 0.192720i
\(298\) 6.84957i 0.0229851i
\(299\) 278.569i 0.931668i
\(300\) 0 0
\(301\) −152.790 −0.507609
\(302\) −11.9618 −0.0396084
\(303\) −101.130 + 5.95915i −0.333762 + 0.0196672i
\(304\) 745.252 2.45149
\(305\) 0 0
\(306\) −710.677 + 84.0461i −2.32247 + 0.274661i
\(307\) 262.697i 0.855690i 0.903852 + 0.427845i \(0.140727\pi\)
−0.903852 + 0.427845i \(0.859273\pi\)
\(308\) −279.860 −0.908636
\(309\) −360.456 + 21.2401i −1.16652 + 0.0687383i
\(310\) 0 0
\(311\) 248.536i 0.799151i −0.916700 0.399575i \(-0.869158\pi\)
0.916700 0.399575i \(-0.130842\pi\)
\(312\) 648.188 38.1950i 2.07753 0.122420i
\(313\) 426.733i 1.36336i 0.731648 + 0.681682i \(0.238751\pi\)
−0.731648 + 0.681682i \(0.761249\pi\)
\(314\) 14.2299i 0.0453183i
\(315\) 0 0
\(316\) 738.295 2.33638
\(317\) 107.379 0.338735 0.169367 0.985553i \(-0.445828\pi\)
0.169367 + 0.985553i \(0.445828\pi\)
\(318\) 57.5200 + 976.144i 0.180881 + 3.06964i
\(319\) 137.728 0.431751
\(320\) 0 0
\(321\) −30.8022 522.729i −0.0959570 1.62844i
\(322\) 207.109i 0.643195i
\(323\) −643.830 −1.99328
\(324\) 690.359 165.603i 2.13074 0.511119i
\(325\) 0 0
\(326\) 850.610i 2.60923i
\(327\) 4.45260 + 75.5630i 0.0136165 + 0.231079i
\(328\) 982.030i 2.99399i
\(329\) 41.4784i 0.126074i
\(330\) 0 0
\(331\) −451.938 −1.36537 −0.682687 0.730711i \(-0.739189\pi\)
−0.682687 + 0.730711i \(0.739189\pi\)
\(332\) 179.216 0.539807
\(333\) −38.7964 328.054i −0.116506 0.985148i
\(334\) −332.330 −0.995001
\(335\) 0 0
\(336\) 204.122 12.0280i 0.607506 0.0357977i
\(337\) 638.072i 1.89339i 0.322133 + 0.946695i \(0.395600\pi\)
−0.322133 + 0.946695i \(0.604400\pi\)
\(338\) −26.2582 −0.0776869
\(339\) 22.3103 + 378.617i 0.0658120 + 1.11686i
\(340\) 0 0
\(341\) 59.6156i 0.174826i
\(342\) 923.770 109.247i 2.70108 0.319435i
\(343\) 18.5203i 0.0539949i
\(344\) 983.084i 2.85780i
\(345\) 0 0
\(346\) −72.3115 −0.208993
\(347\) 129.949 0.374493 0.187246 0.982313i \(-0.440044\pi\)
0.187246 + 0.982313i \(0.440044\pi\)
\(348\) −299.556 + 17.6515i −0.860792 + 0.0507228i
\(349\) 15.1067 0.0432856 0.0216428 0.999766i \(-0.493110\pi\)
0.0216428 + 0.999766i \(0.493110\pi\)
\(350\) 0 0
\(351\) 337.945 60.3000i 0.962807 0.171795i
\(352\) 289.005i 0.821036i
\(353\) −688.966 −1.95174 −0.975872 0.218343i \(-0.929935\pi\)
−0.975872 + 0.218343i \(0.929935\pi\)
\(354\) 367.110 21.6322i 1.03703 0.0611080i
\(355\) 0 0
\(356\) 14.4841i 0.0406858i
\(357\) −176.343 + 10.3911i −0.493957 + 0.0291068i
\(358\) 411.294i 1.14886i
\(359\) 596.806i 1.66241i 0.555965 + 0.831206i \(0.312349\pi\)
−0.555965 + 0.831206i \(0.687651\pi\)
\(360\) 0 0
\(361\) 475.879 1.31822
\(362\) 125.515 0.346726
\(363\) 4.34978 + 73.8180i 0.0119829 + 0.203355i
\(364\) 294.833 0.809981
\(365\) 0 0
\(366\) 44.8421 + 760.994i 0.122519 + 2.07922i
\(367\) 653.268i 1.78002i −0.455939 0.890011i \(-0.650696\pi\)
0.455939 0.890011i \(-0.349304\pi\)
\(368\) 564.438 1.53380
\(369\) 60.9751 + 515.593i 0.165244 + 1.39727i
\(370\) 0 0
\(371\) 241.373i 0.650601i
\(372\) 7.64044 + 129.662i 0.0205388 + 0.348555i
\(373\) 106.838i 0.286430i −0.989692 0.143215i \(-0.954256\pi\)
0.989692 0.143215i \(-0.0457441\pi\)
\(374\) 959.619i 2.56583i
\(375\) 0 0
\(376\) −266.880 −0.709788
\(377\) −145.097 −0.384873
\(378\) 251.254 44.8316i 0.664693 0.118602i
\(379\) 152.839 0.403270 0.201635 0.979461i \(-0.435375\pi\)
0.201635 + 0.979461i \(0.435375\pi\)
\(380\) 0 0
\(381\) 21.9547 1.29370i 0.0576239 0.00339553i
\(382\) 459.686i 1.20337i
\(383\) 201.860 0.527050 0.263525 0.964653i \(-0.415115\pi\)
0.263525 + 0.964653i \(0.415115\pi\)
\(384\) −27.9304 473.993i −0.0727354 1.23436i
\(385\) 0 0
\(386\) 533.276i 1.38154i
\(387\) −61.0406 516.147i −0.157728 1.33371i
\(388\) 260.422i 0.671190i
\(389\) 414.977i 1.06678i 0.845870 + 0.533389i \(0.179082\pi\)
−0.845870 + 0.533389i \(0.820918\pi\)
\(390\) 0 0
\(391\) −487.623 −1.24712
\(392\) 119.163 0.303988
\(393\) −290.001 + 17.0885i −0.737915 + 0.0434822i
\(394\) −1088.77 −2.76337
\(395\) 0 0
\(396\) −111.806 945.406i −0.282338 2.38739i
\(397\) 410.015i 1.03278i 0.856353 + 0.516391i \(0.172725\pi\)
−0.856353 + 0.516391i \(0.827275\pi\)
\(398\) −352.272 −0.885105
\(399\) 229.218 13.5068i 0.574481 0.0338517i
\(400\) 0 0
\(401\) 347.186i 0.865801i 0.901442 + 0.432901i \(0.142510\pi\)
−0.901442 + 0.432901i \(0.857490\pi\)
\(402\) 215.832 12.7180i 0.536895 0.0316369i
\(403\) 62.8051i 0.155844i
\(404\) 295.971i 0.732602i
\(405\) 0 0
\(406\) −107.876 −0.265705
\(407\) −442.968 −1.08837
\(408\) −66.8586 1134.63i −0.163869 2.78094i
\(409\) 103.523 0.253112 0.126556 0.991959i \(-0.459608\pi\)
0.126556 + 0.991959i \(0.459608\pi\)
\(410\) 0 0
\(411\) 40.3882 + 685.409i 0.0982681 + 1.66766i
\(412\) 1054.93i 2.56050i
\(413\) 90.7760 0.219797
\(414\) 699.643 82.7412i 1.68996 0.199858i
\(415\) 0 0
\(416\) 304.467i 0.731892i
\(417\) 28.7292 + 487.550i 0.0688951 + 1.16918i
\(418\) 1247.36i 2.98411i
\(419\) 85.1144i 0.203137i 0.994829 + 0.101569i \(0.0323861\pi\)
−0.994829 + 0.101569i \(0.967614\pi\)
\(420\) 0 0
\(421\) −489.724 −1.16324 −0.581620 0.813461i \(-0.697581\pi\)
−0.581620 + 0.813461i \(0.697581\pi\)
\(422\) −912.588 −2.16253
\(423\) −140.120 + 16.5708i −0.331252 + 0.0391746i
\(424\) −1553.04 −3.66284
\(425\) 0 0
\(426\) 746.542 43.9905i 1.75245 0.103264i
\(427\) 188.172i 0.440685i
\(428\) 1529.84 3.57440
\(429\) −27.0779 459.526i −0.0631187 1.07116i
\(430\) 0 0
\(431\) 577.191i 1.33919i −0.742727 0.669595i \(-0.766468\pi\)
0.742727 0.669595i \(-0.233532\pi\)
\(432\) 122.180 + 684.747i 0.282825 + 1.58506i
\(433\) 94.5352i 0.218326i 0.994024 + 0.109163i \(0.0348171\pi\)
−0.994024 + 0.109163i \(0.965183\pi\)
\(434\) 46.6940i 0.107590i
\(435\) 0 0
\(436\) −221.146 −0.507215
\(437\) 633.834 1.45042
\(438\) 1036.48 61.0753i 2.36639 0.139441i
\(439\) −159.446 −0.363202 −0.181601 0.983372i \(-0.558128\pi\)
−0.181601 + 0.983372i \(0.558128\pi\)
\(440\) 0 0
\(441\) 62.5640 7.39895i 0.141869 0.0167777i
\(442\) 1010.96i 2.28724i
\(443\) −129.501 −0.292326 −0.146163 0.989261i \(-0.546692\pi\)
−0.146163 + 0.989261i \(0.546692\pi\)
\(444\) 963.444 56.7716i 2.16992 0.127864i
\(445\) 0 0
\(446\) 110.143i 0.246958i
\(447\) −5.74151 + 0.338323i −0.0128445 + 0.000756874i
\(448\) 46.2711i 0.103284i
\(449\) 306.203i 0.681967i −0.940069 0.340984i \(-0.889240\pi\)
0.940069 0.340984i \(-0.110760\pi\)
\(450\) 0 0
\(451\) 696.200 1.54368
\(452\) −1108.08 −2.45150
\(453\) −0.590830 10.0267i −0.00130426 0.0221340i
\(454\) 442.284 0.974195
\(455\) 0 0
\(456\) 86.9058 + 1474.84i 0.190583 + 3.23429i
\(457\) 143.189i 0.313325i 0.987652 + 0.156662i \(0.0500735\pi\)
−0.987652 + 0.156662i \(0.949927\pi\)
\(458\) −138.807 −0.303071
\(459\) −105.553 591.559i −0.229962 1.28880i
\(460\) 0 0
\(461\) 743.362i 1.61250i 0.591575 + 0.806250i \(0.298506\pi\)
−0.591575 + 0.806250i \(0.701494\pi\)
\(462\) −20.1318 341.646i −0.0435752 0.739494i
\(463\) 577.246i 1.24675i −0.781923 0.623375i \(-0.785761\pi\)
0.781923 0.623375i \(-0.214239\pi\)
\(464\) 293.997i 0.633614i
\(465\) 0 0
\(466\) −693.835 −1.48892
\(467\) 338.396 0.724617 0.362308 0.932058i \(-0.381989\pi\)
0.362308 + 0.932058i \(0.381989\pi\)
\(468\) 117.787 + 995.987i 0.251683 + 2.12818i
\(469\) 53.3691 0.113793
\(470\) 0 0
\(471\) −11.9280 + 0.702863i −0.0253247 + 0.00149228i
\(472\) 584.071i 1.23744i
\(473\) −696.947 −1.47346
\(474\) 53.1093 + 901.293i 0.112045 + 1.90146i
\(475\) 0 0
\(476\) 516.092i 1.08423i
\(477\) −815.392 + 96.4299i −1.70942 + 0.202159i
\(478\) 818.128i 1.71156i
\(479\) 239.609i 0.500228i 0.968216 + 0.250114i \(0.0804681\pi\)
−0.968216 + 0.250114i \(0.919532\pi\)
\(480\) 0 0
\(481\) 466.668 0.970203
\(482\) −1454.56 −3.01776
\(483\) 173.605 10.2298i 0.359430 0.0211797i
\(484\) −216.039 −0.446362
\(485\) 0 0
\(486\) 251.825 + 830.860i 0.518158 + 1.70959i
\(487\) 95.6658i 0.196439i 0.995165 + 0.0982195i \(0.0313147\pi\)
−0.995165 + 0.0982195i \(0.968685\pi\)
\(488\) −1210.74 −2.48102
\(489\) −713.007 + 42.0144i −1.45809 + 0.0859191i
\(490\) 0 0
\(491\) 352.470i 0.717861i −0.933364 0.358930i \(-0.883142\pi\)
0.933364 0.358930i \(-0.116858\pi\)
\(492\) −1514.22 + 89.2263i −3.07767 + 0.181354i
\(493\) 253.986i 0.515185i
\(494\) 1314.09i 2.66010i
\(495\) 0 0
\(496\) −127.256 −0.256565
\(497\) 184.599 0.371426
\(498\) 12.8919 + 218.783i 0.0258874 + 0.439322i
\(499\) 317.440 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(500\) 0 0
\(501\) −16.4149 278.569i −0.0327642 0.556026i
\(502\) 587.571i 1.17046i
\(503\) 244.292 0.485670 0.242835 0.970068i \(-0.421923\pi\)
0.242835 + 0.970068i \(0.421923\pi\)
\(504\) 47.6064 + 402.550i 0.0944571 + 0.798710i
\(505\) 0 0
\(506\) 944.720i 1.86704i
\(507\) −1.29698 22.0104i −0.00255814 0.0434129i
\(508\) 64.2536i 0.126483i
\(509\) 4.58079i 0.00899959i 0.999990 + 0.00449979i \(0.00143233\pi\)
−0.999990 + 0.00449979i \(0.998568\pi\)
\(510\) 0 0
\(511\) 256.292 0.501550
\(512\) 1137.27 2.22124
\(513\) 137.202 + 768.935i 0.267450 + 1.49890i
\(514\) −1372.51 −2.67026
\(515\) 0 0
\(516\) 1515.84 89.3220i 2.93768 0.173105i
\(517\) 189.202i 0.365961i
\(518\) 346.956 0.669799
\(519\) −3.57170 60.6136i −0.00688189 0.116789i
\(520\) 0 0
\(521\) 813.583i 1.56158i 0.624794 + 0.780789i \(0.285183\pi\)
−0.624794 + 0.780789i \(0.714817\pi\)
\(522\) −43.0971 364.421i −0.0825616 0.698124i
\(523\) 6.71882i 0.0128467i −0.999979 0.00642335i \(-0.997955\pi\)
0.999979 0.00642335i \(-0.00204463\pi\)
\(524\) 848.729i 1.61971i
\(525\) 0 0
\(526\) −708.096 −1.34619
\(527\) 109.938 0.208610
\(528\) 931.095 54.8654i 1.76344 0.103912i
\(529\) −48.9484 −0.0925301
\(530\) 0 0
\(531\) 36.2655 + 306.654i 0.0682966 + 0.577502i
\(532\) 670.840i 1.26098i
\(533\) −733.448 −1.37607
\(534\) −17.6819 + 1.04192i −0.0331122 + 0.00195116i
\(535\) 0 0
\(536\) 343.388i 0.640649i
\(537\) 344.758 20.3151i 0.642008 0.0378308i
\(538\) 51.2701i 0.0952975i
\(539\) 84.4795i 0.156734i
\(540\) 0 0
\(541\) 18.1305 0.0335129 0.0167565 0.999860i \(-0.494666\pi\)
0.0167565 + 0.999860i \(0.494666\pi\)
\(542\) 93.7692 0.173006
\(543\) 6.19959 + 105.210i 0.0114173 + 0.193757i
\(544\) 532.957 0.979699
\(545\) 0 0
\(546\) 21.2088 + 359.925i 0.0388440 + 0.659203i
\(547\) 111.345i 0.203556i −0.994807 0.101778i \(-0.967547\pi\)
0.994807 0.101778i \(-0.0324531\pi\)
\(548\) −2005.95 −3.66049
\(549\) −635.673 + 75.1760i −1.15787 + 0.136933i
\(550\) 0 0
\(551\) 330.143i 0.599170i
\(552\) 65.8205 + 1117.01i 0.119240 + 2.02357i
\(553\) 222.864i 0.403010i
\(554\) 76.0072i 0.137197i
\(555\) 0 0
\(556\) −1426.89 −2.56634
\(557\) −100.916 −0.181177 −0.0905885 0.995888i \(-0.528875\pi\)
−0.0905885 + 0.995888i \(0.528875\pi\)
\(558\) −157.739 + 18.6545i −0.282686 + 0.0334311i
\(559\) 734.235 1.31348
\(560\) 0 0
\(561\) −804.381 + 47.3987i −1.43383 + 0.0844897i
\(562\) 1150.66i 2.04744i
\(563\) 942.043 1.67326 0.836628 0.547772i \(-0.184524\pi\)
0.836628 + 0.547772i \(0.184524\pi\)
\(564\) −24.2485 411.509i −0.0429938 0.729626i
\(565\) 0 0
\(566\) 926.455i 1.63685i
\(567\) 49.9894 + 208.394i 0.0881647 + 0.367538i
\(568\) 1187.75i 2.09110i
\(569\) 1113.81i 1.95749i −0.205086 0.978744i \(-0.565747\pi\)
0.205086 0.978744i \(-0.434253\pi\)
\(570\) 0 0
\(571\) −489.370 −0.857041 −0.428520 0.903532i \(-0.640965\pi\)
−0.428520 + 0.903532i \(0.640965\pi\)
\(572\) 1344.87 2.35117
\(573\) 385.322 22.7054i 0.672465 0.0396255i
\(574\) −545.300 −0.950000
\(575\) 0 0
\(576\) 156.310 18.4856i 0.271372 0.0320930i
\(577\) 176.145i 0.305277i −0.988282 0.152638i \(-0.951223\pi\)
0.988282 0.152638i \(-0.0487770\pi\)
\(578\) −737.111 −1.27528
\(579\) 447.008 26.3402i 0.772034 0.0454926i
\(580\) 0 0
\(581\) 54.0988i 0.0931132i
\(582\) 317.916 18.7335i 0.546248 0.0321881i
\(583\) 1101.01i 1.88853i
\(584\) 1649.04i 2.82369i
\(585\) 0 0
\(586\) −1076.11 −1.83636
\(587\) −120.248 −0.204852 −0.102426 0.994741i \(-0.532660\pi\)
−0.102426 + 0.994741i \(0.532660\pi\)
\(588\) 10.8270 + 183.741i 0.0184133 + 0.312484i
\(589\) −142.902 −0.242618
\(590\) 0 0
\(591\) −53.7779 912.638i −0.0909947 1.54423i
\(592\) 945.565i 1.59724i
\(593\) 808.407 1.36325 0.681625 0.731702i \(-0.261274\pi\)
0.681625 + 0.731702i \(0.261274\pi\)
\(594\) 1146.09 204.498i 1.92944 0.344272i
\(595\) 0 0
\(596\) 16.8034i 0.0281936i
\(597\) −17.3999 295.285i −0.0291455 0.494614i
\(598\) 995.264i 1.66432i
\(599\) 679.382i 1.13419i 0.823651 + 0.567097i \(0.191934\pi\)
−0.823651 + 0.567097i \(0.808066\pi\)
\(600\) 0 0
\(601\) 349.965 0.582305 0.291153 0.956677i \(-0.405961\pi\)
0.291153 + 0.956677i \(0.405961\pi\)
\(602\) 545.885 0.906786
\(603\) 21.3213 + 180.288i 0.0353586 + 0.298985i
\(604\) 29.3446 0.0485837
\(605\) 0 0
\(606\) 361.314 21.2907i 0.596228 0.0351332i
\(607\) 463.847i 0.764163i −0.924129 0.382082i \(-0.875207\pi\)
0.924129 0.382082i \(-0.124793\pi\)
\(608\) −692.761 −1.13941
\(609\) −5.32835 90.4249i −0.00874935 0.148481i
\(610\) 0 0
\(611\) 199.325i 0.326227i
\(612\) 1743.43 206.182i 2.84874 0.336898i
\(613\) 137.987i 0.225102i −0.993646 0.112551i \(-0.964098\pi\)
0.993646 0.112551i \(-0.0359022\pi\)
\(614\) 938.557i 1.52859i
\(615\) 0 0
\(616\) 543.559 0.882400
\(617\) 90.3121 0.146373 0.0731864 0.997318i \(-0.476683\pi\)
0.0731864 + 0.997318i \(0.476683\pi\)
\(618\) 1287.83 75.8862i 2.08387 0.122793i
\(619\) 558.874 0.902866 0.451433 0.892305i \(-0.350913\pi\)
0.451433 + 0.892305i \(0.350913\pi\)
\(620\) 0 0
\(621\) 103.914 + 582.374i 0.167333 + 0.937800i
\(622\) 887.963i 1.42759i
\(623\) −4.37223 −0.00701803
\(624\) −980.910 + 57.8008i −1.57197 + 0.0926295i
\(625\) 0 0
\(626\) 1524.62i 2.43550i
\(627\) 1045.57 61.6110i 1.66758 0.0982631i
\(628\) 34.9089i 0.0555874i
\(629\) 816.882i 1.29870i
\(630\) 0 0
\(631\) −699.239 −1.10814 −0.554072 0.832469i \(-0.686927\pi\)
−0.554072 + 0.832469i \(0.686927\pi\)
\(632\) −1433.95 −2.26892
\(633\) −45.0757 764.958i −0.0712096 1.20846i
\(634\) −383.641 −0.605112
\(635\) 0 0
\(636\) −141.108 2394.68i −0.221868 3.76521i
\(637\) 88.9993i 0.139716i
\(638\) −492.073 −0.771274
\(639\) 73.7483 + 623.601i 0.115412 + 0.975901i
\(640\) 0 0
\(641\) 773.823i 1.20721i −0.797283 0.603606i \(-0.793730\pi\)
0.797283 0.603606i \(-0.206270\pi\)
\(642\) 110.049 + 1867.59i 0.171416 + 2.90903i
\(643\) 93.1342i 0.144843i 0.997374 + 0.0724216i \(0.0230727\pi\)
−0.997374 + 0.0724216i \(0.976927\pi\)
\(644\) 508.079i 0.788943i
\(645\) 0 0
\(646\) 2300.26 3.56077
\(647\) −1130.06 −1.74662 −0.873311 0.487164i \(-0.838031\pi\)
−0.873311 + 0.487164i \(0.838031\pi\)
\(648\) −1340.85 + 321.642i −2.06921 + 0.496361i
\(649\) 414.071 0.638014
\(650\) 0 0
\(651\) −39.1403 + 2.30637i −0.0601234 + 0.00354281i
\(652\) 2086.72i 3.20049i
\(653\) 482.760 0.739296 0.369648 0.929172i \(-0.379478\pi\)
0.369648 + 0.929172i \(0.379478\pi\)
\(654\) −15.9082 269.970i −0.0243244 0.412797i
\(655\) 0 0
\(656\) 1486.12i 2.26542i
\(657\) 102.390 + 865.791i 0.155845 + 1.31779i
\(658\) 148.193i 0.225217i
\(659\) 39.2039i 0.0594901i −0.999558 0.0297450i \(-0.990530\pi\)
0.999558 0.0297450i \(-0.00946953\pi\)
\(660\) 0 0
\(661\) −638.260 −0.965598 −0.482799 0.875731i \(-0.660380\pi\)
−0.482799 + 0.875731i \(0.660380\pi\)
\(662\) 1614.67 2.43909
\(663\) 847.417 49.9346i 1.27815 0.0753162i
\(664\) −348.083 −0.524221
\(665\) 0 0
\(666\) 138.611 + 1172.06i 0.208124 + 1.75986i
\(667\) 250.043i 0.374877i
\(668\) 815.272 1.22047
\(669\) −92.3253 + 5.44033i −0.138005 + 0.00813204i
\(670\) 0 0
\(671\) 858.342i 1.27920i
\(672\) −189.745 + 11.1808i −0.282358 + 0.0166382i
\(673\) 233.289i 0.346641i 0.984866 + 0.173320i \(0.0554496\pi\)
−0.984866 + 0.173320i \(0.944550\pi\)
\(674\) 2279.69i 3.38233i
\(675\) 0 0
\(676\) 64.4165 0.0952906
\(677\) −550.920 −0.813766 −0.406883 0.913480i \(-0.633384\pi\)
−0.406883 + 0.913480i \(0.633384\pi\)
\(678\) −79.7096 1352.71i −0.117566 1.99515i
\(679\) 78.6118 0.115776
\(680\) 0 0
\(681\) 21.8459 + 370.736i 0.0320791 + 0.544399i
\(682\) 212.993i 0.312307i
\(683\) 117.573 0.172142 0.0860712 0.996289i \(-0.472569\pi\)
0.0860712 + 0.996289i \(0.472569\pi\)
\(684\) −2266.19 + 268.004i −3.31314 + 0.391819i
\(685\) 0 0
\(686\) 66.1687i 0.0964559i
\(687\) −6.85611 116.352i −0.00997978 0.169362i
\(688\) 1487.71i 2.16237i
\(689\) 1159.92i 1.68348i
\(690\) 0 0
\(691\) 831.462 1.20327 0.601637 0.798770i \(-0.294515\pi\)
0.601637 + 0.798770i \(0.294515\pi\)
\(692\) 177.394 0.256350
\(693\) 285.383 33.7500i 0.411809 0.0487014i
\(694\) −464.278 −0.668989
\(695\) 0 0
\(696\) 581.813 34.2837i 0.835938 0.0492582i
\(697\) 1283.87i 1.84199i
\(698\) −53.9727 −0.0773248
\(699\) −34.2708 581.593i −0.0490283 0.832036i
\(700\) 0 0
\(701\) 1265.38i 1.80510i −0.430583 0.902551i \(-0.641692\pi\)
0.430583 0.902551i \(-0.358308\pi\)
\(702\) −1207.40 + 215.438i −1.71995 + 0.306892i
\(703\) 1061.82i 1.51041i
\(704\) 211.064i 0.299807i
\(705\) 0 0
\(706\) 2461.52 3.48657
\(707\) 89.3429 0.126369
\(708\) −900.594 + 53.0681i −1.27202 + 0.0749550i
\(709\) −404.244 −0.570161 −0.285080 0.958504i \(-0.592020\pi\)
−0.285080 + 0.958504i \(0.592020\pi\)
\(710\) 0 0
\(711\) −752.867 + 89.0356i −1.05888 + 0.125226i
\(712\) 28.1319i 0.0395110i
\(713\) −108.231 −0.151796
\(714\) 630.033 37.1252i 0.882399 0.0519960i
\(715\) 0 0
\(716\) 1008.98i 1.40920i
\(717\) 685.779 40.4100i 0.956456 0.0563598i
\(718\) 2132.25i 2.96971i
\(719\) 790.437i 1.09936i 0.835377 + 0.549678i \(0.185250\pi\)
−0.835377 + 0.549678i \(0.814750\pi\)
\(720\) 0 0
\(721\) 318.444 0.441670
\(722\) −1700.21 −2.35486
\(723\) −71.8454 1219.25i −0.0993713 1.68638i
\(724\) −307.913 −0.425294
\(725\) 0 0
\(726\) −15.5408 263.735i −0.0214060 0.363272i
\(727\) 951.432i 1.30871i −0.756188 0.654355i \(-0.772940\pi\)
0.756188 0.654355i \(-0.227060\pi\)
\(728\) −572.640 −0.786593
\(729\) −684.013 + 252.126i −0.938289 + 0.345851i
\(730\) 0 0
\(731\) 1285.25i 1.75820i
\(732\) −110.007 1866.87i −0.150282 2.55037i
\(733\) 920.746i 1.25613i 0.778159 + 0.628067i \(0.216154\pi\)
−0.778159 + 0.628067i \(0.783846\pi\)
\(734\) 2333.98i 3.17981i
\(735\) 0 0
\(736\) −524.682 −0.712883
\(737\) 243.441 0.330314
\(738\) −217.850 1842.10i −0.295190 2.49607i
\(739\) 312.768 0.423231 0.211615 0.977353i \(-0.432128\pi\)
0.211615 + 0.977353i \(0.432128\pi\)
\(740\) 0 0
\(741\) −1101.51 + 64.9073i −1.48652 + 0.0875941i
\(742\) 862.372i 1.16223i
\(743\) −1116.08 −1.50212 −0.751060 0.660234i \(-0.770457\pi\)
−0.751060 + 0.660234i \(0.770457\pi\)
\(744\) −14.8397 251.837i −0.0199458 0.338490i
\(745\) 0 0
\(746\) 381.710i 0.511676i
\(747\) −182.753 + 21.6128i −0.244649 + 0.0289328i
\(748\) 2354.14i 3.14724i
\(749\) 461.804i 0.616560i
\(750\) 0 0
\(751\) −1419.71 −1.89043 −0.945215 0.326448i \(-0.894148\pi\)
−0.945215 + 0.326448i \(0.894148\pi\)
\(752\) 403.873 0.537065
\(753\) 492.519 29.0221i 0.654076 0.0385419i
\(754\) 518.400 0.687533
\(755\) 0 0
\(756\) −616.376 + 109.981i −0.815312 + 0.145477i
\(757\) 822.074i 1.08596i −0.839745 0.542981i \(-0.817295\pi\)
0.839745 0.542981i \(-0.182705\pi\)
\(758\) −546.060 −0.720396
\(759\) 791.892 46.6628i 1.04334 0.0614793i
\(760\) 0 0
\(761\) 1366.47i 1.79562i 0.440380 + 0.897812i \(0.354844\pi\)
−0.440380 + 0.897812i \(0.645156\pi\)
\(762\) −78.4392 + 4.62209i −0.102939 + 0.00606573i
\(763\) 66.7559i 0.0874913i
\(764\) 1127.70i 1.47605i
\(765\) 0 0
\(766\) −721.201 −0.941516
\(767\) −436.225 −0.568742
\(768\) 87.4440 + 1483.97i 0.113859 + 1.93225i
\(769\) −117.440 −0.152718 −0.0763591 0.997080i \(-0.524330\pi\)
−0.0763591 + 0.997080i \(0.524330\pi\)
\(770\) 0 0
\(771\) −67.7929 1150.48i −0.0879285 1.49219i
\(772\) 1308.23i 1.69460i
\(773\) −306.116 −0.396011 −0.198005 0.980201i \(-0.563446\pi\)
−0.198005 + 0.980201i \(0.563446\pi\)
\(774\) 218.084 + 1844.08i 0.281763 + 2.38253i
\(775\) 0 0
\(776\) 505.804i 0.651810i
\(777\) 17.1373 + 290.828i 0.0220557 + 0.374297i
\(778\) 1482.62i 1.90568i
\(779\) 1668.83i 2.14227i
\(780\) 0 0
\(781\) 842.041 1.07816
\(782\) 1742.17 2.22783
\(783\) 303.339 54.1252i 0.387406 0.0691254i
\(784\) −180.331 −0.230014
\(785\) 0 0
\(786\) 1036.11 61.0534i 1.31820 0.0776761i
\(787\) 279.568i 0.355232i 0.984100 + 0.177616i \(0.0568386\pi\)
−0.984100 + 0.177616i \(0.943161\pi\)
\(788\) 2670.97 3.38955
\(789\) −34.9752 593.546i −0.0443285 0.752277i
\(790\) 0 0
\(791\) 334.488i 0.422867i
\(792\) 217.155 + 1836.22i 0.274185 + 2.31845i
\(793\) 904.264i 1.14031i
\(794\) 1464.89i 1.84495i
\(795\) 0 0
\(796\) 864.193 1.08567
\(797\) −327.577 −0.411013 −0.205507 0.978656i \(-0.565884\pi\)
−0.205507 + 0.978656i \(0.565884\pi\)
\(798\) −818.945 + 48.2569i −1.02625 + 0.0604723i
\(799\) −348.909 −0.436682
\(800\) 0 0
\(801\) −1.74673 14.7700i −0.00218069 0.0184395i
\(802\) 1240.42i 1.54666i
\(803\) 1169.07 1.45588
\(804\) −529.478 + 31.1999i −0.658555 + 0.0388058i
\(805\) 0 0
\(806\) 224.389i 0.278398i
\(807\) 42.9761 2.53240i 0.0532541 0.00313804i
\(808\) 574.851i 0.711449i
\(809\) 219.021i 0.270731i −0.990796 0.135365i \(-0.956779\pi\)
0.990796 0.135365i \(-0.0432208\pi\)
\(810\) 0 0
\(811\) 57.9161 0.0714132 0.0357066 0.999362i \(-0.488632\pi\)
0.0357066 + 0.999362i \(0.488632\pi\)
\(812\) 264.642 0.325913
\(813\) 4.63157 + 78.6001i 0.00569688 + 0.0966791i
\(814\) 1582.63 1.94426
\(815\) 0 0
\(816\) 101.178 + 1717.04i 0.123992 + 2.10422i
\(817\) 1670.62i 2.04482i
\(818\) −369.863 −0.452156
\(819\) −300.652 + 35.5557i −0.367096 + 0.0434136i
\(820\) 0 0
\(821\) 1385.60i 1.68770i −0.536577 0.843851i \(-0.680283\pi\)
0.536577 0.843851i \(-0.319717\pi\)
\(822\) −144.298 2448.81i −0.175545 2.97909i
\(823\) 1414.41i 1.71861i 0.511468 + 0.859303i \(0.329102\pi\)
−0.511468 + 0.859303i \(0.670898\pi\)
\(824\) 2048.93i 2.48657i
\(825\) 0 0
\(826\) −324.322 −0.392642
\(827\) −305.144 −0.368977 −0.184488 0.982835i \(-0.559063\pi\)
−0.184488 + 0.982835i \(0.559063\pi\)
\(828\) −1716.36 + 202.981i −2.07290 + 0.245146i
\(829\) −517.903 −0.624732 −0.312366 0.949962i \(-0.601122\pi\)
−0.312366 + 0.949962i \(0.601122\pi\)
\(830\) 0 0
\(831\) −63.7114 + 3.75424i −0.0766684 + 0.00451774i
\(832\) 222.356i 0.267255i
\(833\) 155.789 0.187022
\(834\) −102.643 1741.91i −0.123073 2.08862i
\(835\) 0 0
\(836\) 3060.01i 3.66030i
\(837\) −23.4280 131.300i −0.0279905 0.156870i
\(838\) 304.095i 0.362882i
\(839\) 3.40272i 0.00405569i 0.999998 + 0.00202784i \(0.000645483\pi\)
−0.999998 + 0.00202784i \(0.999355\pi\)
\(840\) 0 0
\(841\) 710.761 0.845138
\(842\) 1749.67 2.07800
\(843\) −964.517 + 56.8349i −1.14415 + 0.0674198i
\(844\) 2238.76 2.65256
\(845\) 0 0
\(846\) 500.616 59.2039i 0.591745 0.0699810i
\(847\) 65.2143i 0.0769944i
\(848\) 2350.24 2.77151
\(849\) −776.581 + 45.7606i −0.914701 + 0.0538994i
\(850\) 0 0
\(851\) 804.199i 0.945004i
\(852\) −1831.42 + 107.918i −2.14955 + 0.126664i
\(853\) 639.114i 0.749255i 0.927175 + 0.374627i \(0.122229\pi\)
−0.927175 + 0.374627i \(0.877771\pi\)
\(854\) 672.298i 0.787234i
\(855\) 0 0
\(856\) −2971.34 −3.47119
\(857\) 724.119 0.844946 0.422473 0.906375i \(-0.361162\pi\)
0.422473 + 0.906375i \(0.361162\pi\)
\(858\) 96.7433 + 1641.78i 0.112754 + 1.91350i
\(859\) 952.638 1.10901 0.554504 0.832181i \(-0.312908\pi\)
0.554504 + 0.832181i \(0.312908\pi\)
\(860\) 0 0
\(861\) −26.9341 457.086i −0.0312824 0.530878i
\(862\) 2062.17i 2.39231i
\(863\) 1609.84 1.86540 0.932698 0.360659i \(-0.117448\pi\)
0.932698 + 0.360659i \(0.117448\pi\)
\(864\) −113.574 636.517i −0.131452 0.736709i
\(865\) 0 0
\(866\) 337.753i 0.390015i
\(867\) −36.4083 617.868i −0.0419934 0.712650i
\(868\) 114.550i 0.131970i
\(869\) 1016.59i 1.16984i
\(870\) 0 0
\(871\) −256.466 −0.294450
\(872\) 429.521 0.492570
\(873\) 31.4059 + 265.562i 0.0359746 + 0.304194i
\(874\) −2264.55 −2.59101
\(875\) 0 0
\(876\) −2542.69 + 149.830i −2.90261 + 0.171039i
\(877\) 740.088i 0.843886i −0.906622 0.421943i \(-0.861348\pi\)
0.906622 0.421943i \(-0.138652\pi\)
\(878\) 569.664 0.648820
\(879\) −53.1524 902.023i −0.0604691 1.02619i
\(880\) 0 0
\(881\) 81.0232i 0.0919673i 0.998942 + 0.0459836i \(0.0146422\pi\)
−0.998942 + 0.0459836i \(0.985358\pi\)
\(882\) −223.527 + 26.4348i −0.253432 + 0.0299714i
\(883\) 783.824i 0.887682i 0.896105 + 0.443841i \(0.146385\pi\)
−0.896105 + 0.443841i \(0.853615\pi\)
\(884\) 2480.09i 2.80553i
\(885\) 0 0
\(886\) 462.676 0.522208
\(887\) −1320.12 −1.48830 −0.744150 0.668012i \(-0.767145\pi\)
−0.744150 + 0.668012i \(0.767145\pi\)
\(888\) −1871.25 + 110.265i −2.10726 + 0.124172i
\(889\) −19.3958 −0.0218176
\(890\) 0 0
\(891\) 228.025 + 950.582i 0.255920 + 1.06687i
\(892\) 270.203i 0.302918i
\(893\) 453.528 0.507870
\(894\) 20.5131 1.20875i 0.0229453 0.00135207i
\(895\) 0 0
\(896\) 418.748i 0.467352i
\(897\) −834.259 + 49.1593i −0.930055 + 0.0548042i
\(898\) 1094.00i 1.21826i
\(899\) 56.3738i 0.0627072i
\(900\) 0 0
\(901\) −2030.39 −2.25349
\(902\) −2487.37 −2.75761
\(903\) 26.9631 + 457.577i 0.0298594 + 0.506730i
\(904\) 2152.16 2.38071
\(905\) 0 0
\(906\) 2.11090 + 35.8231i 0.00232991 + 0.0395399i
\(907\) 1149.97i 1.26788i −0.773381 0.633942i \(-0.781436\pi\)
0.773381 0.633942i \(-0.218564\pi\)
\(908\) −1085.01 −1.19495
\(909\) 35.6930 + 301.813i 0.0392662 + 0.332027i
\(910\) 0 0
\(911\) 1275.15i 1.39972i 0.714280 + 0.699860i \(0.246754\pi\)
−0.714280 + 0.699860i \(0.753246\pi\)
\(912\) −131.515 2231.89i −0.144206 2.44724i
\(913\) 246.770i 0.270284i
\(914\) 511.584i 0.559720i
\(915\) 0 0
\(916\) 340.520 0.371747
\(917\) 256.200 0.279390
\(918\) 377.116 + 2113.51i 0.410801 + 2.30230i
\(919\) 228.393 0.248523 0.124262 0.992249i \(-0.460344\pi\)
0.124262 + 0.992249i \(0.460344\pi\)
\(920\) 0 0
\(921\) 786.726 46.3584i 0.854209 0.0503349i
\(922\) 2655.87i 2.88055i
\(923\) −887.092 −0.961096
\(924\) 49.3872 + 838.126i 0.0534493 + 0.907063i
\(925\) 0 0
\(926\) 2062.37i 2.22718i
\(927\) 127.220 + 1075.75i 0.137239 + 1.16046i
\(928\) 273.289i 0.294493i
\(929\) 71.5997i 0.0770718i 0.999257 + 0.0385359i \(0.0122694\pi\)
−0.999257 + 0.0385359i \(0.987731\pi\)
\(930\) 0 0
\(931\) −202.502 −0.217510
\(932\) 1702.12 1.82630
\(933\) −744.317 + 43.8594i −0.797767 + 0.0470090i
\(934\) −1209.01 −1.29445
\(935\) 0 0
\(936\) −228.773 1934.46i −0.244415 2.06673i
\(937\) 606.742i 0.647536i −0.946136 0.323768i \(-0.895050\pi\)
0.946136 0.323768i \(-0.104950\pi\)
\(938\) −190.676 −0.203279
\(939\) 1277.98 75.3060i 1.36100 0.0801981i
\(940\) 0 0
\(941\) 1043.93i 1.10938i −0.832056 0.554692i \(-0.812836\pi\)
0.832056 0.554692i \(-0.187164\pi\)
\(942\) 42.6159 2.51117i 0.0452398 0.00266579i
\(943\) 1263.93i 1.34033i
\(944\) 883.881i 0.936315i
\(945\) 0 0
\(946\) 2490.04 2.63217
\(947\) −1057.69 −1.11688 −0.558440 0.829545i \(-0.688600\pi\)
−0.558440 + 0.829545i \(0.688600\pi\)
\(948\) −130.288 2211.05i −0.137434 2.33233i
\(949\) −1231.61 −1.29780
\(950\) 0 0
\(951\) −18.9493 321.579i −0.0199256 0.338148i
\(952\) 1002.38i 1.05292i
\(953\) 278.572 0.292311 0.146155 0.989262i \(-0.453310\pi\)
0.146155 + 0.989262i \(0.453310\pi\)
\(954\) 2913.21 344.523i 3.05368 0.361135i
\(955\) 0 0
\(956\) 2007.03i 2.09940i
\(957\) −24.3051 412.470i −0.0253972 0.431003i
\(958\) 856.070i 0.893601i
\(959\) 605.522i 0.631410i
\(960\) 0 0
\(961\) −936.599 −0.974608
\(962\) −1667.30 −1.73316
\(963\) −1560.04 + 184.493i −1.61998 + 0.191582i
\(964\) 3568.32 3.70158
\(965\) 0 0
\(966\) −620.251 + 36.5487i −0.642082 + 0.0378351i
\(967\) 717.616i 0.742105i −0.928612 0.371053i \(-0.878997\pi\)
0.928612 0.371053i \(-0.121003\pi\)
\(968\) 419.602 0.433473
\(969\) 113.617 + 1928.15i 0.117252 + 1.98983i
\(970\) 0 0
\(971\) 1566.83i 1.61363i 0.590806 + 0.806814i \(0.298810\pi\)
−0.590806 + 0.806814i \(0.701190\pi\)
\(972\) −617.776 2038.27i −0.635572 2.09698i
\(973\) 430.725i 0.442677i
\(974\) 341.792i 0.350916i
\(975\) 0 0
\(976\) 1832.23 1.87728
\(977\) −727.568 −0.744696 −0.372348 0.928093i \(-0.621447\pi\)
−0.372348 + 0.928093i \(0.621447\pi\)
\(978\) 2547.41 150.108i 2.60472 0.153485i
\(979\) −19.9438 −0.0203716
\(980\) 0 0
\(981\) 225.511 26.6694i 0.229878 0.0271859i
\(982\) 1259.30i 1.28238i
\(983\) −686.673 −0.698549 −0.349274 0.937021i \(-0.613572\pi\)
−0.349274 + 0.937021i \(0.613572\pi\)
\(984\) 2940.99 173.300i 2.98881 0.176118i
\(985\) 0 0
\(986\) 907.436i 0.920321i
\(987\) 124.220 7.31973i 0.125856 0.00741614i
\(988\) 3223.73i 3.26288i
\(989\) 1265.29i 1.27936i
\(990\) 0 0
\(991\) 468.764 0.473022 0.236511 0.971629i \(-0.423996\pi\)
0.236511 + 0.971629i \(0.423996\pi\)
\(992\) 118.293 0.119247
\(993\) 79.7541 + 1353.47i 0.0803163 + 1.36301i
\(994\) −659.531 −0.663512
\(995\) 0 0
\(996\) −31.6264 536.717i −0.0317535 0.538873i
\(997\) 1860.83i 1.86643i 0.359323 + 0.933213i \(0.383008\pi\)
−0.359323 + 0.933213i \(0.616992\pi\)
\(998\) −1134.14 −1.13641
\(999\) −975.613 + 174.080i −0.976589 + 0.174254i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.3.f.b.449.4 32
3.2 odd 2 inner 525.3.f.b.449.29 32
5.2 odd 4 105.3.c.a.71.2 16
5.3 odd 4 525.3.c.b.176.15 16
5.4 even 2 inner 525.3.f.b.449.30 32
15.2 even 4 105.3.c.a.71.15 yes 16
15.8 even 4 525.3.c.b.176.2 16
15.14 odd 2 inner 525.3.f.b.449.3 32
20.7 even 4 1680.3.l.a.1121.15 16
60.47 odd 4 1680.3.l.a.1121.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.3.c.a.71.2 16 5.2 odd 4
105.3.c.a.71.15 yes 16 15.2 even 4
525.3.c.b.176.2 16 15.8 even 4
525.3.c.b.176.15 16 5.3 odd 4
525.3.f.b.449.3 32 15.14 odd 2 inner
525.3.f.b.449.4 32 1.1 even 1 trivial
525.3.f.b.449.29 32 3.2 odd 2 inner
525.3.f.b.449.30 32 5.4 even 2 inner
1680.3.l.a.1121.15 16 20.7 even 4
1680.3.l.a.1121.16 16 60.47 odd 4