Properties

Label 1680.3.l.a.1121.15
Level $1680$
Weight $3$
Character 1680.1121
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1121,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1121"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-8,0,0,0,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 46x^{14} + 823x^{12} + 7252x^{10} + 32831x^{8} + 71486x^{6} + 60809x^{4} + 15680x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.15
Root \(3.57278i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1121
Dual form 1680.3.l.a.1121.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.99481 - 0.176471i) q^{3} -2.23607i q^{5} +2.64575 q^{7} +(8.93772 - 1.05699i) q^{9} -12.0685i q^{11} -12.7142 q^{13} +(-0.394601 - 6.69659i) q^{15} -22.2556i q^{17} +28.9289 q^{19} +(7.92351 - 0.466899i) q^{21} +21.9101i q^{23} -5.00000 q^{25} +(26.5802 - 4.74274i) q^{27} +11.4122i q^{29} +4.93977 q^{31} +(-2.12974 - 36.1428i) q^{33} -5.91608i q^{35} -36.7045 q^{37} +(-38.0765 + 2.24369i) q^{39} -57.6874i q^{41} -57.7493 q^{43} +(-2.36351 - 19.9853i) q^{45} -15.6773i q^{47} +7.00000 q^{49} +(-3.92747 - 66.6513i) q^{51} -91.2304i q^{53} -26.9860 q^{55} +(86.6363 - 5.10511i) q^{57} -34.3101i q^{59} +71.1225 q^{61} +(23.6470 - 2.79654i) q^{63} +28.4298i q^{65} -20.1716 q^{67} +(3.86649 + 65.6164i) q^{69} +69.7718i q^{71} -96.8693 q^{73} +(-14.9740 + 0.882355i) q^{75} -31.9302i q^{77} +84.2348 q^{79} +(78.7655 - 18.8942i) q^{81} +20.4474i q^{83} -49.7651 q^{85} +(2.01393 + 34.1774i) q^{87} -1.65255i q^{89} -33.6386 q^{91} +(14.7936 - 0.871726i) q^{93} -64.6869i q^{95} +29.7125 q^{97} +(-12.7563 - 107.865i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{3} + 22 q^{9} - 10 q^{15} + 16 q^{19} - 14 q^{21} - 80 q^{25} + 148 q^{27} + 72 q^{31} - 4 q^{33} - 40 q^{37} - 90 q^{39} - 280 q^{43} + 40 q^{45} + 112 q^{49} - 38 q^{51} - 80 q^{55} - 36 q^{57}+ \cdots + 166 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.99481 0.176471i 0.998268 0.0588237i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) 8.93772 1.05699i 0.993080 0.117444i
\(10\) 0 0
\(11\) 12.0685i 1.09714i −0.836106 0.548568i \(-0.815173\pi\)
0.836106 0.548568i \(-0.184827\pi\)
\(12\) 0 0
\(13\) −12.7142 −0.978014 −0.489007 0.872280i \(-0.662641\pi\)
−0.489007 + 0.872280i \(0.662641\pi\)
\(14\) 0 0
\(15\) −0.394601 6.69659i −0.0263068 0.446439i
\(16\) 0 0
\(17\) 22.2556i 1.30915i −0.755995 0.654577i \(-0.772847\pi\)
0.755995 0.654577i \(-0.227153\pi\)
\(18\) 0 0
\(19\) 28.9289 1.52257 0.761286 0.648417i \(-0.224568\pi\)
0.761286 + 0.648417i \(0.224568\pi\)
\(20\) 0 0
\(21\) 7.92351 0.466899i 0.377310 0.0222333i
\(22\) 0 0
\(23\) 21.9101i 0.952612i 0.879280 + 0.476306i \(0.158025\pi\)
−0.879280 + 0.476306i \(0.841975\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 26.5802 4.74274i 0.984451 0.175657i
\(28\) 0 0
\(29\) 11.4122i 0.393525i 0.980451 + 0.196763i \(0.0630428\pi\)
−0.980451 + 0.196763i \(0.936957\pi\)
\(30\) 0 0
\(31\) 4.93977 0.159347 0.0796737 0.996821i \(-0.474612\pi\)
0.0796737 + 0.996821i \(0.474612\pi\)
\(32\) 0 0
\(33\) −2.12974 36.1428i −0.0645376 1.09524i
\(34\) 0 0
\(35\) 5.91608i 0.169031i
\(36\) 0 0
\(37\) −36.7045 −0.992014 −0.496007 0.868319i \(-0.665201\pi\)
−0.496007 + 0.868319i \(0.665201\pi\)
\(38\) 0 0
\(39\) −38.0765 + 2.24369i −0.976321 + 0.0575304i
\(40\) 0 0
\(41\) 57.6874i 1.40701i −0.710691 0.703504i \(-0.751618\pi\)
0.710691 0.703504i \(-0.248382\pi\)
\(42\) 0 0
\(43\) −57.7493 −1.34301 −0.671503 0.741002i \(-0.734351\pi\)
−0.671503 + 0.741002i \(0.734351\pi\)
\(44\) 0 0
\(45\) −2.36351 19.9853i −0.0525224 0.444119i
\(46\) 0 0
\(47\) 15.6773i 0.333561i −0.985994 0.166780i \(-0.946663\pi\)
0.985994 0.166780i \(-0.0533370\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) −3.92747 66.6513i −0.0770093 1.30689i
\(52\) 0 0
\(53\) 91.2304i 1.72133i −0.509173 0.860664i \(-0.670049\pi\)
0.509173 0.860664i \(-0.329951\pi\)
\(54\) 0 0
\(55\) −26.9860 −0.490654
\(56\) 0 0
\(57\) 86.6363 5.10511i 1.51993 0.0895633i
\(58\) 0 0
\(59\) 34.3101i 0.581527i −0.956795 0.290763i \(-0.906091\pi\)
0.956795 0.290763i \(-0.0939093\pi\)
\(60\) 0 0
\(61\) 71.1225 1.16594 0.582971 0.812493i \(-0.301890\pi\)
0.582971 + 0.812493i \(0.301890\pi\)
\(62\) 0 0
\(63\) 23.6470 2.79654i 0.375349 0.0443895i
\(64\) 0 0
\(65\) 28.4298i 0.437381i
\(66\) 0 0
\(67\) −20.1716 −0.301069 −0.150534 0.988605i \(-0.548099\pi\)
−0.150534 + 0.988605i \(0.548099\pi\)
\(68\) 0 0
\(69\) 3.86649 + 65.6164i 0.0560362 + 0.950963i
\(70\) 0 0
\(71\) 69.7718i 0.982702i 0.870962 + 0.491351i \(0.163497\pi\)
−0.870962 + 0.491351i \(0.836503\pi\)
\(72\) 0 0
\(73\) −96.8693 −1.32698 −0.663489 0.748186i \(-0.730925\pi\)
−0.663489 + 0.748186i \(0.730925\pi\)
\(74\) 0 0
\(75\) −14.9740 + 0.882355i −0.199654 + 0.0117647i
\(76\) 0 0
\(77\) 31.9302i 0.414679i
\(78\) 0 0
\(79\) 84.2348 1.06626 0.533132 0.846032i \(-0.321015\pi\)
0.533132 + 0.846032i \(0.321015\pi\)
\(80\) 0 0
\(81\) 78.7655 18.8942i 0.972414 0.233262i
\(82\) 0 0
\(83\) 20.4474i 0.246354i 0.992385 + 0.123177i \(0.0393083\pi\)
−0.992385 + 0.123177i \(0.960692\pi\)
\(84\) 0 0
\(85\) −49.7651 −0.585472
\(86\) 0 0
\(87\) 2.01393 + 34.1774i 0.0231486 + 0.392844i
\(88\) 0 0
\(89\) 1.65255i 0.0185680i −0.999957 0.00928398i \(-0.997045\pi\)
0.999957 0.00928398i \(-0.00295523\pi\)
\(90\) 0 0
\(91\) −33.6386 −0.369655
\(92\) 0 0
\(93\) 14.7936 0.871726i 0.159071 0.00937340i
\(94\) 0 0
\(95\) 64.6869i 0.680915i
\(96\) 0 0
\(97\) 29.7125 0.306314 0.153157 0.988202i \(-0.451056\pi\)
0.153157 + 0.988202i \(0.451056\pi\)
\(98\) 0 0
\(99\) −12.7563 107.865i −0.128852 1.08954i
\(100\) 0 0
\(101\) 33.7684i 0.334341i −0.985928 0.167170i \(-0.946537\pi\)
0.985928 0.167170i \(-0.0534630\pi\)
\(102\) 0 0
\(103\) 120.360 1.16855 0.584274 0.811557i \(-0.301379\pi\)
0.584274 + 0.811557i \(0.301379\pi\)
\(104\) 0 0
\(105\) −1.04402 17.7175i −0.00994302 0.168738i
\(106\) 0 0
\(107\) 174.545i 1.63126i −0.578570 0.815632i \(-0.696389\pi\)
0.578570 0.815632i \(-0.303611\pi\)
\(108\) 0 0
\(109\) 25.2313 0.231480 0.115740 0.993280i \(-0.463076\pi\)
0.115740 + 0.993280i \(0.463076\pi\)
\(110\) 0 0
\(111\) −109.923 + 6.47728i −0.990296 + 0.0583539i
\(112\) 0 0
\(113\) 126.424i 1.11880i 0.828898 + 0.559400i \(0.188969\pi\)
−0.828898 + 0.559400i \(0.811031\pi\)
\(114\) 0 0
\(115\) 48.9924 0.426021
\(116\) 0 0
\(117\) −113.636 + 13.4388i −0.971246 + 0.114862i
\(118\) 0 0
\(119\) 58.8829i 0.494814i
\(120\) 0 0
\(121\) −24.6487 −0.203708
\(122\) 0 0
\(123\) −10.1801 172.762i −0.0827654 1.40457i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 7.33093 0.0577238 0.0288619 0.999583i \(-0.490812\pi\)
0.0288619 + 0.999583i \(0.490812\pi\)
\(128\) 0 0
\(129\) −172.948 + 10.1911i −1.34068 + 0.0790006i
\(130\) 0 0
\(131\) 96.8346i 0.739195i 0.929192 + 0.369598i \(0.120505\pi\)
−0.929192 + 0.369598i \(0.879495\pi\)
\(132\) 0 0
\(133\) 76.5386 0.575478
\(134\) 0 0
\(135\) −10.6051 59.4351i −0.0785561 0.440260i
\(136\) 0 0
\(137\) 228.866i 1.67055i −0.549830 0.835277i \(-0.685307\pi\)
0.549830 0.835277i \(-0.314693\pi\)
\(138\) 0 0
\(139\) −162.799 −1.17121 −0.585606 0.810596i \(-0.699144\pi\)
−0.585606 + 0.810596i \(0.699144\pi\)
\(140\) 0 0
\(141\) −2.76660 46.9506i −0.0196213 0.332983i
\(142\) 0 0
\(143\) 153.441i 1.07301i
\(144\) 0 0
\(145\) 25.5185 0.175990
\(146\) 0 0
\(147\) 20.9636 1.23530i 0.142610 0.00840338i
\(148\) 0 0
\(149\) 1.91716i 0.0128668i 0.999979 + 0.00643341i \(0.00204783\pi\)
−0.999979 + 0.00643341i \(0.997952\pi\)
\(150\) 0 0
\(151\) −3.34803 −0.0221724 −0.0110862 0.999939i \(-0.503529\pi\)
−0.0110862 + 0.999939i \(0.503529\pi\)
\(152\) 0 0
\(153\) −23.5240 198.915i −0.153752 1.30009i
\(154\) 0 0
\(155\) 11.0457i 0.0712623i
\(156\) 0 0
\(157\) 3.98288 0.0253687 0.0126843 0.999920i \(-0.495962\pi\)
0.0126843 + 0.999920i \(0.495962\pi\)
\(158\) 0 0
\(159\) −16.0995 273.217i −0.101255 1.71835i
\(160\) 0 0
\(161\) 57.9686i 0.360054i
\(162\) 0 0
\(163\) 238.081 1.46062 0.730310 0.683116i \(-0.239376\pi\)
0.730310 + 0.683116i \(0.239376\pi\)
\(164\) 0 0
\(165\) −80.8178 + 4.76225i −0.489805 + 0.0288621i
\(166\) 0 0
\(167\) 93.0174i 0.556990i −0.960438 0.278495i \(-0.910164\pi\)
0.960438 0.278495i \(-0.0898356\pi\)
\(168\) 0 0
\(169\) −7.34951 −0.0434882
\(170\) 0 0
\(171\) 258.558 30.5776i 1.51203 0.178816i
\(172\) 0 0
\(173\) 20.2396i 0.116992i −0.998288 0.0584959i \(-0.981370\pi\)
0.998288 0.0584959i \(-0.0186305\pi\)
\(174\) 0 0
\(175\) −13.2288 −0.0755929
\(176\) 0 0
\(177\) −6.05474 102.752i −0.0342076 0.580520i
\(178\) 0 0
\(179\) 115.119i 0.643122i 0.946889 + 0.321561i \(0.104207\pi\)
−0.946889 + 0.321561i \(0.895793\pi\)
\(180\) 0 0
\(181\) −35.1309 −0.194093 −0.0970467 0.995280i \(-0.530940\pi\)
−0.0970467 + 0.995280i \(0.530940\pi\)
\(182\) 0 0
\(183\) 212.998 12.5511i 1.16392 0.0685850i
\(184\) 0 0
\(185\) 82.0738i 0.443642i
\(186\) 0 0
\(187\) −268.592 −1.43632
\(188\) 0 0
\(189\) 70.3246 12.5481i 0.372088 0.0663921i
\(190\) 0 0
\(191\) 128.664i 0.673631i −0.941571 0.336816i \(-0.890650\pi\)
0.941571 0.336816i \(-0.109350\pi\)
\(192\) 0 0
\(193\) 149.261 0.773373 0.386686 0.922211i \(-0.373620\pi\)
0.386686 + 0.922211i \(0.373620\pi\)
\(194\) 0 0
\(195\) 5.01703 + 85.1417i 0.0257284 + 0.436624i
\(196\) 0 0
\(197\) 304.740i 1.54691i 0.633854 + 0.773453i \(0.281472\pi\)
−0.633854 + 0.773453i \(0.718528\pi\)
\(198\) 0 0
\(199\) 98.5989 0.495472 0.247736 0.968828i \(-0.420313\pi\)
0.247736 + 0.968828i \(0.420313\pi\)
\(200\) 0 0
\(201\) −60.4101 + 3.55971i −0.300548 + 0.0177100i
\(202\) 0 0
\(203\) 30.1939i 0.148739i
\(204\) 0 0
\(205\) −128.993 −0.629233
\(206\) 0 0
\(207\) 23.1588 + 195.826i 0.111878 + 0.946020i
\(208\) 0 0
\(209\) 349.128i 1.67047i
\(210\) 0 0
\(211\) −255.428 −1.21056 −0.605280 0.796013i \(-0.706939\pi\)
−0.605280 + 0.796013i \(0.706939\pi\)
\(212\) 0 0
\(213\) 12.3127 + 208.953i 0.0578061 + 0.981000i
\(214\) 0 0
\(215\) 129.131i 0.600611i
\(216\) 0 0
\(217\) 13.0694 0.0602276
\(218\) 0 0
\(219\) −290.105 + 17.0946i −1.32468 + 0.0780577i
\(220\) 0 0
\(221\) 282.962i 1.28037i
\(222\) 0 0
\(223\) 30.8285 0.138244 0.0691222 0.997608i \(-0.477980\pi\)
0.0691222 + 0.997608i \(0.477980\pi\)
\(224\) 0 0
\(225\) −44.6886 + 5.28496i −0.198616 + 0.0234887i
\(226\) 0 0
\(227\) 123.793i 0.545343i 0.962107 + 0.272672i \(0.0879072\pi\)
−0.962107 + 0.272672i \(0.912093\pi\)
\(228\) 0 0
\(229\) −38.8512 −0.169656 −0.0848279 0.996396i \(-0.527034\pi\)
−0.0848279 + 0.996396i \(0.527034\pi\)
\(230\) 0 0
\(231\) −5.63476 95.6249i −0.0243929 0.413960i
\(232\) 0 0
\(233\) 194.201i 0.833479i −0.909026 0.416740i \(-0.863173\pi\)
0.909026 0.416740i \(-0.136827\pi\)
\(234\) 0 0
\(235\) −35.0556 −0.149173
\(236\) 0 0
\(237\) 252.267 14.8650i 1.06442 0.0627215i
\(238\) 0 0
\(239\) 228.989i 0.958115i 0.877784 + 0.479057i \(0.159021\pi\)
−0.877784 + 0.479057i \(0.840979\pi\)
\(240\) 0 0
\(241\) 407.123 1.68931 0.844654 0.535313i \(-0.179806\pi\)
0.844654 + 0.535313i \(0.179806\pi\)
\(242\) 0 0
\(243\) 232.553 70.4843i 0.957009 0.290059i
\(244\) 0 0
\(245\) 15.6525i 0.0638877i
\(246\) 0 0
\(247\) −367.807 −1.48910
\(248\) 0 0
\(249\) 3.60838 + 61.2360i 0.0144915 + 0.245928i
\(250\) 0 0
\(251\) 164.458i 0.655211i −0.944815 0.327605i \(-0.893758\pi\)
0.944815 0.327605i \(-0.106242\pi\)
\(252\) 0 0
\(253\) 264.422 1.04515
\(254\) 0 0
\(255\) −149.037 + 8.78210i −0.584458 + 0.0344396i
\(256\) 0 0
\(257\) 384.159i 1.49478i 0.664385 + 0.747390i \(0.268693\pi\)
−0.664385 + 0.747390i \(0.731307\pi\)
\(258\) 0 0
\(259\) −97.1110 −0.374946
\(260\) 0 0
\(261\) 12.0626 + 101.999i 0.0462170 + 0.390802i
\(262\) 0 0
\(263\) 198.192i 0.753582i 0.926298 + 0.376791i \(0.122972\pi\)
−0.926298 + 0.376791i \(0.877028\pi\)
\(264\) 0 0
\(265\) −203.997 −0.769802
\(266\) 0 0
\(267\) −0.291627 4.94906i −0.00109224 0.0185358i
\(268\) 0 0
\(269\) 14.3502i 0.0533465i −0.999644 0.0266732i \(-0.991509\pi\)
0.999644 0.0266732i \(-0.00849136\pi\)
\(270\) 0 0
\(271\) 26.2455 0.0968468 0.0484234 0.998827i \(-0.484580\pi\)
0.0484234 + 0.998827i \(0.484580\pi\)
\(272\) 0 0
\(273\) −100.741 + 5.93623i −0.369015 + 0.0217444i
\(274\) 0 0
\(275\) 60.3425i 0.219427i
\(276\) 0 0
\(277\) 21.2740 0.0768014 0.0384007 0.999262i \(-0.487774\pi\)
0.0384007 + 0.999262i \(0.487774\pi\)
\(278\) 0 0
\(279\) 44.1503 5.22130i 0.158245 0.0187143i
\(280\) 0 0
\(281\) 322.063i 1.14613i −0.819509 0.573066i \(-0.805754\pi\)
0.819509 0.573066i \(-0.194246\pi\)
\(282\) 0 0
\(283\) 259.309 0.916288 0.458144 0.888878i \(-0.348514\pi\)
0.458144 + 0.888878i \(0.348514\pi\)
\(284\) 0 0
\(285\) −11.4154 193.725i −0.0400539 0.679736i
\(286\) 0 0
\(287\) 152.626i 0.531799i
\(288\) 0 0
\(289\) −206.313 −0.713886
\(290\) 0 0
\(291\) 88.9830 5.24339i 0.305784 0.0180185i
\(292\) 0 0
\(293\) 301.196i 1.02797i −0.857798 0.513986i \(-0.828168\pi\)
0.857798 0.513986i \(-0.171832\pi\)
\(294\) 0 0
\(295\) −76.7197 −0.260067
\(296\) 0 0
\(297\) −57.2377 320.783i −0.192720 1.08008i
\(298\) 0 0
\(299\) 278.569i 0.931668i
\(300\) 0 0
\(301\) −152.790 −0.507609
\(302\) 0 0
\(303\) −5.95915 101.130i −0.0196672 0.333762i
\(304\) 0 0
\(305\) 159.035i 0.521425i
\(306\) 0 0
\(307\) 262.697 0.855690 0.427845 0.903852i \(-0.359273\pi\)
0.427845 + 0.903852i \(0.359273\pi\)
\(308\) 0 0
\(309\) 360.456 21.2401i 1.16652 0.0687383i
\(310\) 0 0
\(311\) 248.536i 0.799151i 0.916700 + 0.399575i \(0.130842\pi\)
−0.916700 + 0.399575i \(0.869158\pi\)
\(312\) 0 0
\(313\) 426.733 1.36336 0.681682 0.731648i \(-0.261249\pi\)
0.681682 + 0.731648i \(0.261249\pi\)
\(314\) 0 0
\(315\) −6.25325 52.8762i −0.0198516 0.167861i
\(316\) 0 0
\(317\) 107.379i 0.338735i 0.985553 + 0.169367i \(0.0541725\pi\)
−0.985553 + 0.169367i \(0.945828\pi\)
\(318\) 0 0
\(319\) 137.728 0.431751
\(320\) 0 0
\(321\) −30.8022 522.729i −0.0959570 1.62844i
\(322\) 0 0
\(323\) 643.830i 1.99328i
\(324\) 0 0
\(325\) 63.5709 0.195603
\(326\) 0 0
\(327\) 75.5630 4.45260i 0.231079 0.0136165i
\(328\) 0 0
\(329\) 41.4784i 0.126074i
\(330\) 0 0
\(331\) 451.938 1.36537 0.682687 0.730711i \(-0.260811\pi\)
0.682687 + 0.730711i \(0.260811\pi\)
\(332\) 0 0
\(333\) −328.054 + 38.7964i −0.985148 + 0.116506i
\(334\) 0 0
\(335\) 45.1051i 0.134642i
\(336\) 0 0
\(337\) −638.072 −1.89339 −0.946695 0.322133i \(-0.895600\pi\)
−0.946695 + 0.322133i \(0.895600\pi\)
\(338\) 0 0
\(339\) 22.3103 + 378.617i 0.0658120 + 1.11686i
\(340\) 0 0
\(341\) 59.6156i 0.174826i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 146.723 8.64575i 0.425283 0.0250601i
\(346\) 0 0
\(347\) 129.949i 0.374493i −0.982313 0.187246i \(-0.940044\pi\)
0.982313 0.187246i \(-0.0599563\pi\)
\(348\) 0 0
\(349\) −15.1067 −0.0432856 −0.0216428 0.999766i \(-0.506890\pi\)
−0.0216428 + 0.999766i \(0.506890\pi\)
\(350\) 0 0
\(351\) −337.945 + 60.3000i −0.962807 + 0.171795i
\(352\) 0 0
\(353\) 688.966i 1.95174i 0.218343 + 0.975872i \(0.429935\pi\)
−0.218343 + 0.975872i \(0.570065\pi\)
\(354\) 0 0
\(355\) 156.015 0.439478
\(356\) 0 0
\(357\) −10.3911 176.343i −0.0291068 0.493957i
\(358\) 0 0
\(359\) 596.806i 1.66241i 0.555965 + 0.831206i \(0.312349\pi\)
−0.555965 + 0.831206i \(0.687651\pi\)
\(360\) 0 0
\(361\) 475.879 1.31822
\(362\) 0 0
\(363\) −73.8180 + 4.34978i −0.203355 + 0.0119829i
\(364\) 0 0
\(365\) 216.606i 0.593442i
\(366\) 0 0
\(367\) −653.268 −1.78002 −0.890011 0.455939i \(-0.849304\pi\)
−0.890011 + 0.455939i \(0.849304\pi\)
\(368\) 0 0
\(369\) −60.9751 515.593i −0.165244 1.39727i
\(370\) 0 0
\(371\) 241.373i 0.650601i
\(372\) 0 0
\(373\) −106.838 −0.286430 −0.143215 0.989692i \(-0.545744\pi\)
−0.143215 + 0.989692i \(0.545744\pi\)
\(374\) 0 0
\(375\) 1.97301 + 33.4829i 0.00526135 + 0.0892878i
\(376\) 0 0
\(377\) 145.097i 0.384873i
\(378\) 0 0
\(379\) 152.839 0.403270 0.201635 0.979461i \(-0.435375\pi\)
0.201635 + 0.979461i \(0.435375\pi\)
\(380\) 0 0
\(381\) 21.9547 1.29370i 0.0576239 0.00339553i
\(382\) 0 0
\(383\) 201.860i 0.527050i 0.964653 + 0.263525i \(0.0848851\pi\)
−0.964653 + 0.263525i \(0.915115\pi\)
\(384\) 0 0
\(385\) −71.3982 −0.185450
\(386\) 0 0
\(387\) −516.147 + 61.0406i −1.33371 + 0.157728i
\(388\) 0 0
\(389\) 414.977i 1.06678i −0.845870 0.533389i \(-0.820918\pi\)
0.845870 0.533389i \(-0.179082\pi\)
\(390\) 0 0
\(391\) 487.623 1.24712
\(392\) 0 0
\(393\) 17.0885 + 290.001i 0.0434822 + 0.737915i
\(394\) 0 0
\(395\) 188.355i 0.476847i
\(396\) 0 0
\(397\) −410.015 −1.03278 −0.516391 0.856353i \(-0.672725\pi\)
−0.516391 + 0.856353i \(0.672725\pi\)
\(398\) 0 0
\(399\) 229.218 13.5068i 0.574481 0.0338517i
\(400\) 0 0
\(401\) 347.186i 0.865801i 0.901442 + 0.432901i \(0.142510\pi\)
−0.901442 + 0.432901i \(0.857490\pi\)
\(402\) 0 0
\(403\) −62.8051 −0.155844
\(404\) 0 0
\(405\) −42.2487 176.125i −0.104318 0.434877i
\(406\) 0 0
\(407\) 442.968i 1.08837i
\(408\) 0 0
\(409\) −103.523 −0.253112 −0.126556 0.991959i \(-0.540392\pi\)
−0.126556 + 0.991959i \(0.540392\pi\)
\(410\) 0 0
\(411\) −40.3882 685.409i −0.0982681 1.66766i
\(412\) 0 0
\(413\) 90.7760i 0.219797i
\(414\) 0 0
\(415\) 45.7218 0.110173
\(416\) 0 0
\(417\) −487.550 + 28.7292i −1.16918 + 0.0688951i
\(418\) 0 0
\(419\) 85.1144i 0.203137i 0.994829 + 0.101569i \(0.0323861\pi\)
−0.994829 + 0.101569i \(0.967614\pi\)
\(420\) 0 0
\(421\) −489.724 −1.16324 −0.581620 0.813461i \(-0.697581\pi\)
−0.581620 + 0.813461i \(0.697581\pi\)
\(422\) 0 0
\(423\) −16.5708 140.120i −0.0391746 0.331252i
\(424\) 0 0
\(425\) 111.278i 0.261831i
\(426\) 0 0
\(427\) 188.172 0.440685
\(428\) 0 0
\(429\) 27.0779 + 459.526i 0.0631187 + 1.07116i
\(430\) 0 0
\(431\) 577.191i 1.33919i 0.742727 + 0.669595i \(0.233532\pi\)
−0.742727 + 0.669595i \(0.766468\pi\)
\(432\) 0 0
\(433\) 94.5352 0.218326 0.109163 0.994024i \(-0.465183\pi\)
0.109163 + 0.994024i \(0.465183\pi\)
\(434\) 0 0
\(435\) 76.4230 4.50328i 0.175685 0.0103524i
\(436\) 0 0
\(437\) 633.834i 1.45042i
\(438\) 0 0
\(439\) −159.446 −0.363202 −0.181601 0.983372i \(-0.558128\pi\)
−0.181601 + 0.983372i \(0.558128\pi\)
\(440\) 0 0
\(441\) 62.5640 7.39895i 0.141869 0.0167777i
\(442\) 0 0
\(443\) 129.501i 0.292326i −0.989261 0.146163i \(-0.953308\pi\)
0.989261 0.146163i \(-0.0466924\pi\)
\(444\) 0 0
\(445\) −3.69521 −0.00830385
\(446\) 0 0
\(447\) 0.338323 + 5.74151i 0.000756874 + 0.0128445i
\(448\) 0 0
\(449\) 306.203i 0.681967i 0.940069 + 0.340984i \(0.110760\pi\)
−0.940069 + 0.340984i \(0.889240\pi\)
\(450\) 0 0
\(451\) −696.200 −1.54368
\(452\) 0 0
\(453\) −10.0267 + 0.590830i −0.0221340 + 0.00130426i
\(454\) 0 0
\(455\) 75.2181i 0.165315i
\(456\) 0 0
\(457\) −143.189 −0.313325 −0.156662 0.987652i \(-0.550073\pi\)
−0.156662 + 0.987652i \(0.550073\pi\)
\(458\) 0 0
\(459\) −105.553 591.559i −0.229962 1.28880i
\(460\) 0 0
\(461\) 743.362i 1.61250i 0.591575 + 0.806250i \(0.298506\pi\)
−0.591575 + 0.806250i \(0.701494\pi\)
\(462\) 0 0
\(463\) 577.246 1.24675 0.623375 0.781923i \(-0.285761\pi\)
0.623375 + 0.781923i \(0.285761\pi\)
\(464\) 0 0
\(465\) −1.94924 33.0796i −0.00419191 0.0711389i
\(466\) 0 0
\(467\) 338.396i 0.724617i −0.932058 0.362308i \(-0.881989\pi\)
0.932058 0.362308i \(-0.118011\pi\)
\(468\) 0 0
\(469\) −53.3691 −0.113793
\(470\) 0 0
\(471\) 11.9280 0.702863i 0.0253247 0.00149228i
\(472\) 0 0
\(473\) 696.947i 1.47346i
\(474\) 0 0
\(475\) −144.644 −0.304514
\(476\) 0 0
\(477\) −96.4299 815.392i −0.202159 1.70942i
\(478\) 0 0
\(479\) 239.609i 0.500228i 0.968216 + 0.250114i \(0.0804681\pi\)
−0.968216 + 0.250114i \(0.919532\pi\)
\(480\) 0 0
\(481\) 466.668 0.970203
\(482\) 0 0
\(483\) 10.2298 + 173.605i 0.0211797 + 0.359430i
\(484\) 0 0
\(485\) 66.4391i 0.136988i
\(486\) 0 0
\(487\) 95.6658 0.196439 0.0982195 0.995165i \(-0.468685\pi\)
0.0982195 + 0.995165i \(0.468685\pi\)
\(488\) 0 0
\(489\) 713.007 42.0144i 1.45809 0.0859191i
\(490\) 0 0
\(491\) 352.470i 0.717861i 0.933364 + 0.358930i \(0.116858\pi\)
−0.933364 + 0.358930i \(0.883142\pi\)
\(492\) 0 0
\(493\) 253.986 0.515185
\(494\) 0 0
\(495\) −241.193 + 28.5240i −0.487259 + 0.0576242i
\(496\) 0 0
\(497\) 184.599i 0.371426i
\(498\) 0 0
\(499\) 317.440 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(500\) 0 0
\(501\) −16.4149 278.569i −0.0327642 0.556026i
\(502\) 0 0
\(503\) 244.292i 0.485670i 0.970068 + 0.242835i \(0.0780773\pi\)
−0.970068 + 0.242835i \(0.921923\pi\)
\(504\) 0 0
\(505\) −75.5085 −0.149522
\(506\) 0 0
\(507\) −22.0104 + 1.29698i −0.0434129 + 0.00255814i
\(508\) 0 0
\(509\) 4.58079i 0.00899959i −0.999990 0.00449979i \(-0.998568\pi\)
0.999990 0.00449979i \(-0.00143233\pi\)
\(510\) 0 0
\(511\) −256.292 −0.501550
\(512\) 0 0
\(513\) 768.935 137.202i 1.49890 0.267450i
\(514\) 0 0
\(515\) 269.134i 0.522590i
\(516\) 0 0
\(517\) −189.202 −0.365961
\(518\) 0 0
\(519\) −3.57170 60.6136i −0.00688189 0.116789i
\(520\) 0 0
\(521\) 813.583i 1.56158i 0.624794 + 0.780789i \(0.285183\pi\)
−0.624794 + 0.780789i \(0.714817\pi\)
\(522\) 0 0
\(523\) 6.71882 0.0128467 0.00642335 0.999979i \(-0.497955\pi\)
0.00642335 + 0.999979i \(0.497955\pi\)
\(524\) 0 0
\(525\) −39.6175 + 2.33449i −0.0754620 + 0.00444665i
\(526\) 0 0
\(527\) 109.938i 0.208610i
\(528\) 0 0
\(529\) 48.9484 0.0925301
\(530\) 0 0
\(531\) −36.2655 306.654i −0.0682966 0.577502i
\(532\) 0 0
\(533\) 733.448i 1.37607i
\(534\) 0 0
\(535\) −390.295 −0.729524
\(536\) 0 0
\(537\) 20.3151 + 344.758i 0.0378308 + 0.642008i
\(538\) 0 0
\(539\) 84.4795i 0.156734i
\(540\) 0 0
\(541\) 18.1305 0.0335129 0.0167565 0.999860i \(-0.494666\pi\)
0.0167565 + 0.999860i \(0.494666\pi\)
\(542\) 0 0
\(543\) −105.210 + 6.19959i −0.193757 + 0.0114173i
\(544\) 0 0
\(545\) 56.4190i 0.103521i
\(546\) 0 0
\(547\) −111.345 −0.203556 −0.101778 0.994807i \(-0.532453\pi\)
−0.101778 + 0.994807i \(0.532453\pi\)
\(548\) 0 0
\(549\) 635.673 75.1760i 1.15787 0.136933i
\(550\) 0 0
\(551\) 330.143i 0.599170i
\(552\) 0 0
\(553\) 222.864 0.403010
\(554\) 0 0
\(555\) 14.4836 + 245.795i 0.0260967 + 0.442874i
\(556\) 0 0
\(557\) 100.916i 0.181177i −0.995888 0.0905885i \(-0.971125\pi\)
0.995888 0.0905885i \(-0.0288748\pi\)
\(558\) 0 0
\(559\) 734.235 1.31348
\(560\) 0 0
\(561\) −804.381 + 47.3987i −1.43383 + 0.0844897i
\(562\) 0 0
\(563\) 942.043i 1.67326i 0.547772 + 0.836628i \(0.315476\pi\)
−0.547772 + 0.836628i \(0.684524\pi\)
\(564\) 0 0
\(565\) 282.694 0.500343
\(566\) 0 0
\(567\) 208.394 49.9894i 0.367538 0.0881647i
\(568\) 0 0
\(569\) 1113.81i 1.95749i 0.205086 + 0.978744i \(0.434253\pi\)
−0.205086 + 0.978744i \(0.565747\pi\)
\(570\) 0 0
\(571\) 489.370 0.857041 0.428520 0.903532i \(-0.359035\pi\)
0.428520 + 0.903532i \(0.359035\pi\)
\(572\) 0 0
\(573\) −22.7054 385.322i −0.0396255 0.672465i
\(574\) 0 0
\(575\) 109.550i 0.190522i
\(576\) 0 0
\(577\) 176.145 0.305277 0.152638 0.988282i \(-0.451223\pi\)
0.152638 + 0.988282i \(0.451223\pi\)
\(578\) 0 0
\(579\) 447.008 26.3402i 0.772034 0.0454926i
\(580\) 0 0
\(581\) 54.0988i 0.0931132i
\(582\) 0 0
\(583\) −1101.01 −1.88853
\(584\) 0 0
\(585\) 30.0501 + 254.097i 0.0513677 + 0.434354i
\(586\) 0 0
\(587\) 120.248i 0.204852i 0.994741 + 0.102426i \(0.0326604\pi\)
−0.994741 + 0.102426i \(0.967340\pi\)
\(588\) 0 0
\(589\) 142.902 0.242618
\(590\) 0 0
\(591\) 53.7779 + 912.638i 0.0909947 + 1.54423i
\(592\) 0 0
\(593\) 808.407i 1.36325i −0.731702 0.681625i \(-0.761274\pi\)
0.731702 0.681625i \(-0.238726\pi\)
\(594\) 0 0
\(595\) −131.666 −0.221288
\(596\) 0 0
\(597\) 295.285 17.3999i 0.494614 0.0291455i
\(598\) 0 0
\(599\) 679.382i 1.13419i 0.823651 + 0.567097i \(0.191934\pi\)
−0.823651 + 0.567097i \(0.808066\pi\)
\(600\) 0 0
\(601\) 349.965 0.582305 0.291153 0.956677i \(-0.405961\pi\)
0.291153 + 0.956677i \(0.405961\pi\)
\(602\) 0 0
\(603\) −180.288 + 21.3213i −0.298985 + 0.0353586i
\(604\) 0 0
\(605\) 55.1161i 0.0911011i
\(606\) 0 0
\(607\) −463.847 −0.764163 −0.382082 0.924129i \(-0.624793\pi\)
−0.382082 + 0.924129i \(0.624793\pi\)
\(608\) 0 0
\(609\) 5.32835 + 90.4249i 0.00874935 + 0.148481i
\(610\) 0 0
\(611\) 199.325i 0.326227i
\(612\) 0 0
\(613\) −137.987 −0.225102 −0.112551 0.993646i \(-0.535902\pi\)
−0.112551 + 0.993646i \(0.535902\pi\)
\(614\) 0 0
\(615\) −386.308 + 22.7635i −0.628144 + 0.0370138i
\(616\) 0 0
\(617\) 90.3121i 0.146373i 0.997318 + 0.0731864i \(0.0233168\pi\)
−0.997318 + 0.0731864i \(0.976683\pi\)
\(618\) 0 0
\(619\) 558.874 0.902866 0.451433 0.892305i \(-0.350913\pi\)
0.451433 + 0.892305i \(0.350913\pi\)
\(620\) 0 0
\(621\) 103.914 + 582.374i 0.167333 + 0.937800i
\(622\) 0 0
\(623\) 4.37223i 0.00701803i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) −61.6110 1045.57i −0.0982631 1.66758i
\(628\) 0 0
\(629\) 816.882i 1.29870i
\(630\) 0 0
\(631\) 699.239 1.10814 0.554072 0.832469i \(-0.313073\pi\)
0.554072 + 0.832469i \(0.313073\pi\)
\(632\) 0 0
\(633\) −764.958 + 45.0757i −1.20846 + 0.0712096i
\(634\) 0 0
\(635\) 16.3925i 0.0258149i
\(636\) 0 0
\(637\) −88.9993 −0.139716
\(638\) 0 0
\(639\) 73.7483 + 623.601i 0.115412 + 0.975901i
\(640\) 0 0
\(641\) 773.823i 1.20721i −0.797283 0.603606i \(-0.793730\pi\)
0.797283 0.603606i \(-0.206270\pi\)
\(642\) 0 0
\(643\) −93.1342 −0.144843 −0.0724216 0.997374i \(-0.523073\pi\)
−0.0724216 + 0.997374i \(0.523073\pi\)
\(644\) 0 0
\(645\) 22.7879 + 386.723i 0.0353301 + 0.599571i
\(646\) 0 0
\(647\) 1130.06i 1.74662i 0.487164 + 0.873311i \(0.338031\pi\)
−0.487164 + 0.873311i \(0.661969\pi\)
\(648\) 0 0
\(649\) −414.071 −0.638014
\(650\) 0 0
\(651\) 39.1403 2.30637i 0.0601234 0.00354281i
\(652\) 0 0
\(653\) 482.760i 0.739296i −0.929172 0.369648i \(-0.879478\pi\)
0.929172 0.369648i \(-0.120522\pi\)
\(654\) 0 0
\(655\) 216.529 0.330578
\(656\) 0 0
\(657\) −865.791 + 102.390i −1.31779 + 0.155845i
\(658\) 0 0
\(659\) 39.2039i 0.0594901i −0.999558 0.0297450i \(-0.990530\pi\)
0.999558 0.0297450i \(-0.00946953\pi\)
\(660\) 0 0
\(661\) −638.260 −0.965598 −0.482799 0.875731i \(-0.660380\pi\)
−0.482799 + 0.875731i \(0.660380\pi\)
\(662\) 0 0
\(663\) 49.9346 + 847.417i 0.0753162 + 1.27815i
\(664\) 0 0
\(665\) 171.145i 0.257362i
\(666\) 0 0
\(667\) −250.043 −0.374877
\(668\) 0 0
\(669\) 92.3253 5.44033i 0.138005 0.00813204i
\(670\) 0 0
\(671\) 858.342i 1.27920i
\(672\) 0 0
\(673\) 233.289 0.346641 0.173320 0.984866i \(-0.444550\pi\)
0.173320 + 0.984866i \(0.444550\pi\)
\(674\) 0 0
\(675\) −132.901 + 23.7137i −0.196890 + 0.0351314i
\(676\) 0 0
\(677\) 550.920i 0.813766i −0.913480 0.406883i \(-0.866616\pi\)
0.913480 0.406883i \(-0.133384\pi\)
\(678\) 0 0
\(679\) 78.6118 0.115776
\(680\) 0 0
\(681\) 21.8459 + 370.736i 0.0320791 + 0.544399i
\(682\) 0 0
\(683\) 117.573i 0.172142i 0.996289 + 0.0860712i \(0.0274313\pi\)
−0.996289 + 0.0860712i \(0.972569\pi\)
\(684\) 0 0
\(685\) −511.760 −0.747094
\(686\) 0 0
\(687\) −116.352 + 6.85611i −0.169362 + 0.00997978i
\(688\) 0 0
\(689\) 1159.92i 1.68348i
\(690\) 0 0
\(691\) −831.462 −1.20327 −0.601637 0.798770i \(-0.705485\pi\)
−0.601637 + 0.798770i \(0.705485\pi\)
\(692\) 0 0
\(693\) −33.7500 285.383i −0.0487014 0.411809i
\(694\) 0 0
\(695\) 364.029i 0.523782i
\(696\) 0 0
\(697\) −1283.87 −1.84199
\(698\) 0 0
\(699\) −34.2708 581.593i −0.0490283 0.832036i
\(700\) 0 0
\(701\) 1265.38i 1.80510i −0.430583 0.902551i \(-0.641692\pi\)
0.430583 0.902551i \(-0.358308\pi\)
\(702\) 0 0
\(703\) −1061.82 −1.51041
\(704\) 0 0
\(705\) −104.985 + 6.18630i −0.148914 + 0.00877489i
\(706\) 0 0
\(707\) 89.3429i 0.126369i
\(708\) 0 0
\(709\) 404.244 0.570161 0.285080 0.958504i \(-0.407980\pi\)
0.285080 + 0.958504i \(0.407980\pi\)
\(710\) 0 0
\(711\) 752.867 89.0356i 1.05888 0.125226i
\(712\) 0 0
\(713\) 108.231i 0.151796i
\(714\) 0 0
\(715\) 343.105 0.479867
\(716\) 0 0
\(717\) 40.4100 + 685.779i 0.0563598 + 0.956456i
\(718\) 0 0
\(719\) 790.437i 1.09936i 0.835377 + 0.549678i \(0.185250\pi\)
−0.835377 + 0.549678i \(0.814750\pi\)
\(720\) 0 0
\(721\) 318.444 0.441670
\(722\) 0 0
\(723\) 1219.25 71.8454i 1.68638 0.0993713i
\(724\) 0 0
\(725\) 57.0611i 0.0787050i
\(726\) 0 0
\(727\) −951.432 −1.30871 −0.654355 0.756188i \(-0.727060\pi\)
−0.654355 + 0.756188i \(0.727060\pi\)
\(728\) 0 0
\(729\) 684.013 252.126i 0.938289 0.345851i
\(730\) 0 0
\(731\) 1285.25i 1.75820i
\(732\) 0 0
\(733\) 920.746 1.25613 0.628067 0.778159i \(-0.283846\pi\)
0.628067 + 0.778159i \(0.283846\pi\)
\(734\) 0 0
\(735\) −2.76221 46.8761i −0.00375811 0.0637770i
\(736\) 0 0
\(737\) 243.441i 0.330314i
\(738\) 0 0
\(739\) 312.768 0.423231 0.211615 0.977353i \(-0.432128\pi\)
0.211615 + 0.977353i \(0.432128\pi\)
\(740\) 0 0
\(741\) −1101.51 + 64.9073i −1.48652 + 0.0875941i
\(742\) 0 0
\(743\) 1116.08i 1.50212i −0.660234 0.751060i \(-0.729543\pi\)
0.660234 0.751060i \(-0.270457\pi\)
\(744\) 0 0
\(745\) 4.28689 0.00575422
\(746\) 0 0
\(747\) 21.6128 + 182.753i 0.0289328 + 0.244649i
\(748\) 0 0
\(749\) 461.804i 0.616560i
\(750\) 0 0
\(751\) 1419.71 1.89043 0.945215 0.326448i \(-0.105852\pi\)
0.945215 + 0.326448i \(0.105852\pi\)
\(752\) 0 0
\(753\) −29.0221 492.519i −0.0385419 0.654076i
\(754\) 0 0
\(755\) 7.48642i 0.00991578i
\(756\) 0 0
\(757\) 822.074 1.08596 0.542981 0.839745i \(-0.317295\pi\)
0.542981 + 0.839745i \(0.317295\pi\)
\(758\) 0 0
\(759\) 791.892 46.6628i 1.04334 0.0614793i
\(760\) 0 0
\(761\) 1366.47i 1.79562i 0.440380 + 0.897812i \(0.354844\pi\)
−0.440380 + 0.897812i \(0.645156\pi\)
\(762\) 0 0
\(763\) 66.7559 0.0874913
\(764\) 0 0
\(765\) −444.786 + 52.6014i −0.581420 + 0.0687600i
\(766\) 0 0
\(767\) 436.225i 0.568742i
\(768\) 0 0
\(769\) 117.440 0.152718 0.0763591 0.997080i \(-0.475670\pi\)
0.0763591 + 0.997080i \(0.475670\pi\)
\(770\) 0 0
\(771\) 67.7929 + 1150.48i 0.0879285 + 1.49219i
\(772\) 0 0
\(773\) 306.116i 0.396011i 0.980201 + 0.198005i \(0.0634464\pi\)
−0.980201 + 0.198005i \(0.936554\pi\)
\(774\) 0 0
\(775\) −24.6988 −0.0318695
\(776\) 0 0
\(777\) −290.828 + 17.1373i −0.374297 + 0.0220557i
\(778\) 0 0
\(779\) 1668.83i 2.14227i
\(780\) 0 0
\(781\) 842.041 1.07816
\(782\) 0 0
\(783\) 54.1252 + 303.339i 0.0691254 + 0.387406i
\(784\) 0 0
\(785\) 8.90599i 0.0113452i
\(786\) 0 0
\(787\) 279.568 0.355232 0.177616 0.984100i \(-0.443161\pi\)
0.177616 + 0.984100i \(0.443161\pi\)
\(788\) 0 0
\(789\) 34.9752 + 593.546i 0.0443285 + 0.752277i
\(790\) 0 0
\(791\) 334.488i 0.422867i
\(792\) 0 0
\(793\) −904.264 −1.14031
\(794\) 0 0
\(795\) −610.933 + 35.9996i −0.768469 + 0.0452826i
\(796\) 0 0
\(797\) 327.577i 0.411013i −0.978656 0.205507i \(-0.934116\pi\)
0.978656 0.205507i \(-0.0658842\pi\)
\(798\) 0 0
\(799\) −348.909 −0.436682
\(800\) 0 0
\(801\) −1.74673 14.7700i −0.00218069 0.0184395i
\(802\) 0 0
\(803\) 1169.07i 1.45588i
\(804\) 0 0
\(805\) 129.622 0.161021
\(806\) 0 0
\(807\) −2.53240 42.9761i −0.00313804 0.0532541i
\(808\) 0 0
\(809\) 219.021i 0.270731i 0.990796 + 0.135365i \(0.0432208\pi\)
−0.990796 + 0.135365i \(0.956779\pi\)
\(810\) 0 0
\(811\) −57.9161 −0.0714132 −0.0357066 0.999362i \(-0.511368\pi\)
−0.0357066 + 0.999362i \(0.511368\pi\)
\(812\) 0 0
\(813\) 78.6001 4.63157i 0.0966791 0.00569688i
\(814\) 0 0
\(815\) 532.366i 0.653209i
\(816\) 0 0
\(817\) −1670.62 −2.04482
\(818\) 0 0
\(819\) −300.652 + 35.5557i −0.367096 + 0.0434136i
\(820\) 0 0
\(821\) 1385.60i 1.68770i −0.536577 0.843851i \(-0.680283\pi\)
0.536577 0.843851i \(-0.319717\pi\)
\(822\) 0 0
\(823\) −1414.41 −1.71861 −0.859303 0.511468i \(-0.829102\pi\)
−0.859303 + 0.511468i \(0.829102\pi\)
\(824\) 0 0
\(825\) 10.6487 + 180.714i 0.0129075 + 0.219047i
\(826\) 0 0
\(827\) 305.144i 0.368977i 0.982835 + 0.184488i \(0.0590628\pi\)
−0.982835 + 0.184488i \(0.940937\pi\)
\(828\) 0 0
\(829\) 517.903 0.624732 0.312366 0.949962i \(-0.398878\pi\)
0.312366 + 0.949962i \(0.398878\pi\)
\(830\) 0 0
\(831\) 63.7114 3.75424i 0.0766684 0.00451774i
\(832\) 0 0
\(833\) 155.789i 0.187022i
\(834\) 0 0
\(835\) −207.993 −0.249094
\(836\) 0 0
\(837\) 131.300 23.4280i 0.156870 0.0279905i
\(838\) 0 0
\(839\) 3.40272i 0.00405569i 0.999998 + 0.00202784i \(0.000645483\pi\)
−0.999998 + 0.00202784i \(0.999355\pi\)
\(840\) 0 0
\(841\) 710.761 0.845138
\(842\) 0 0
\(843\) −56.8349 964.517i −0.0674198 1.14415i
\(844\) 0 0
\(845\) 16.4340i 0.0194485i
\(846\) 0 0
\(847\) −65.2143 −0.0769944
\(848\) 0 0
\(849\) 776.581 45.7606i 0.914701 0.0538994i
\(850\) 0 0
\(851\) 804.199i 0.945004i
\(852\) 0 0
\(853\) 639.114 0.749255 0.374627 0.927175i \(-0.377771\pi\)
0.374627 + 0.927175i \(0.377771\pi\)
\(854\) 0 0
\(855\) −68.3736 578.153i −0.0799691 0.676202i
\(856\) 0 0
\(857\) 724.119i 0.844946i 0.906375 + 0.422473i \(0.138838\pi\)
−0.906375 + 0.422473i \(0.861162\pi\)
\(858\) 0 0
\(859\) 952.638 1.10901 0.554504 0.832181i \(-0.312908\pi\)
0.554504 + 0.832181i \(0.312908\pi\)
\(860\) 0 0
\(861\) −26.9341 457.086i −0.0312824 0.530878i
\(862\) 0 0
\(863\) 1609.84i 1.86540i 0.360659 + 0.932698i \(0.382552\pi\)
−0.360659 + 0.932698i \(0.617448\pi\)
\(864\) 0 0
\(865\) −45.2571 −0.0523203
\(866\) 0 0
\(867\) −617.868 + 36.4083i −0.712650 + 0.0419934i
\(868\) 0 0
\(869\) 1016.59i 1.16984i
\(870\) 0 0
\(871\) 256.466 0.294450
\(872\) 0 0
\(873\) 265.562 31.4059i 0.304194 0.0359746i
\(874\) 0 0
\(875\) 29.5804i 0.0338062i
\(876\) 0 0
\(877\) 740.088 0.843886 0.421943 0.906622i \(-0.361348\pi\)
0.421943 + 0.906622i \(0.361348\pi\)
\(878\) 0 0
\(879\) −53.1524 902.023i −0.0604691 1.02619i
\(880\) 0 0
\(881\) 81.0232i 0.0919673i 0.998942 + 0.0459836i \(0.0146422\pi\)
−0.998942 + 0.0459836i \(0.985358\pi\)
\(882\) 0 0
\(883\) −783.824 −0.887682 −0.443841 0.896105i \(-0.646385\pi\)
−0.443841 + 0.896105i \(0.646385\pi\)
\(884\) 0 0
\(885\) −229.761 + 13.5388i −0.259616 + 0.0152981i
\(886\) 0 0
\(887\) 1320.12i 1.48830i 0.668012 + 0.744150i \(0.267145\pi\)
−0.668012 + 0.744150i \(0.732855\pi\)
\(888\) 0 0
\(889\) 19.3958 0.0218176
\(890\) 0 0
\(891\) −228.025 950.582i −0.255920 1.06687i
\(892\) 0 0
\(893\) 453.528i 0.507870i
\(894\) 0 0
\(895\) 257.413 0.287613
\(896\) 0 0
\(897\) −49.1593 834.259i −0.0548042 0.930055i
\(898\) 0 0
\(899\) 56.3738i 0.0627072i
\(900\) 0 0
\(901\) −2030.39 −2.25349
\(902\) 0 0
\(903\) −457.577 + 26.9631i −0.506730 + 0.0298594i
\(904\) 0 0
\(905\) 78.5551i 0.0868012i
\(906\) 0 0
\(907\) −1149.97 −1.26788 −0.633942 0.773381i \(-0.718564\pi\)
−0.633942 + 0.773381i \(0.718564\pi\)
\(908\) 0 0
\(909\) −35.6930 301.813i −0.0392662 0.332027i
\(910\) 0 0
\(911\) 1275.15i 1.39972i −0.714280 0.699860i \(-0.753246\pi\)
0.714280 0.699860i \(-0.246754\pi\)
\(912\) 0 0
\(913\) 246.770 0.270284
\(914\) 0 0
\(915\) −28.0650 476.278i −0.0306722 0.520522i
\(916\) 0 0
\(917\) 256.200i 0.279390i
\(918\) 0 0
\(919\) 228.393 0.248523 0.124262 0.992249i \(-0.460344\pi\)
0.124262 + 0.992249i \(0.460344\pi\)
\(920\) 0 0
\(921\) 786.726 46.3584i 0.854209 0.0503349i
\(922\) 0 0
\(923\) 887.092i 0.961096i
\(924\) 0 0
\(925\) 183.523 0.198403
\(926\) 0 0
\(927\) 1075.75 127.220i 1.16046 0.137239i
\(928\) 0 0
\(929\) 71.5997i 0.0770718i −0.999257 0.0385359i \(-0.987731\pi\)
0.999257 0.0385359i \(-0.0122694\pi\)
\(930\) 0 0
\(931\) 202.502 0.217510
\(932\) 0 0
\(933\) 43.8594 + 744.317i 0.0470090 + 0.797767i
\(934\) 0 0
\(935\) 600.590i 0.642342i
\(936\) 0 0
\(937\) 606.742 0.647536 0.323768 0.946136i \(-0.395050\pi\)
0.323768 + 0.946136i \(0.395050\pi\)
\(938\) 0 0
\(939\) 1277.98 75.3060i 1.36100 0.0801981i
\(940\) 0 0
\(941\) 1043.93i 1.10938i −0.832056 0.554692i \(-0.812836\pi\)
0.832056 0.554692i \(-0.187164\pi\)
\(942\) 0 0
\(943\) 1263.93 1.34033
\(944\) 0 0
\(945\) −28.0584 157.251i −0.0296914 0.166403i
\(946\) 0 0
\(947\) 1057.69i 1.11688i 0.829545 + 0.558440i \(0.188600\pi\)
−0.829545 + 0.558440i \(0.811400\pi\)
\(948\) 0 0
\(949\) 1231.61 1.29780
\(950\) 0 0
\(951\) 18.9493 + 321.579i 0.0199256 + 0.338148i
\(952\) 0 0
\(953\) 278.572i 0.292311i −0.989262 0.146155i \(-0.953310\pi\)
0.989262 0.146155i \(-0.0466900\pi\)
\(954\) 0 0
\(955\) −287.700 −0.301257
\(956\) 0 0
\(957\) 412.470 24.3051i 0.431003 0.0253972i
\(958\) 0 0
\(959\) 605.522i 0.631410i
\(960\) 0 0
\(961\) −936.599 −0.974608
\(962\) 0 0
\(963\) −184.493 1560.04i −0.191582 1.61998i
\(964\) 0 0
\(965\) 333.758i 0.345863i
\(966\) 0 0
\(967\) −717.616 −0.742105 −0.371053 0.928612i \(-0.621003\pi\)
−0.371053 + 0.928612i \(0.621003\pi\)
\(968\) 0 0
\(969\) −113.617 1928.15i −0.117252 1.98983i
\(970\) 0 0
\(971\) 1566.83i 1.61363i −0.590806 0.806814i \(-0.701190\pi\)
0.590806 0.806814i \(-0.298810\pi\)
\(972\) 0 0
\(973\) −430.725 −0.442677
\(974\) 0 0
\(975\) 190.383 11.2184i 0.195264 0.0115061i
\(976\) 0 0
\(977\) 727.568i 0.744696i −0.928093 0.372348i \(-0.878553\pi\)
0.928093 0.372348i \(-0.121447\pi\)
\(978\) 0 0
\(979\) −19.9438 −0.0203716
\(980\) 0 0
\(981\) 225.511 26.6694i 0.229878 0.0271859i
\(982\) 0 0
\(983\) 686.673i 0.698549i −0.937021 0.349274i \(-0.886428\pi\)
0.937021 0.349274i \(-0.113572\pi\)
\(984\) 0 0
\(985\) 681.420 0.691797
\(986\) 0 0
\(987\) −7.31973 124.220i −0.00741614 0.125856i
\(988\) 0 0
\(989\) 1265.29i 1.27936i
\(990\) 0 0
\(991\) −468.764 −0.473022 −0.236511 0.971629i \(-0.576004\pi\)
−0.236511 + 0.971629i \(0.576004\pi\)
\(992\) 0 0
\(993\) 1353.47 79.7541i 1.36301 0.0803163i
\(994\) 0 0
\(995\) 220.474i 0.221582i
\(996\) 0 0
\(997\) −1860.83 −1.86643 −0.933213 0.359323i \(-0.883008\pi\)
−0.933213 + 0.359323i \(0.883008\pi\)
\(998\) 0 0
\(999\) −975.613 + 174.080i −0.976589 + 0.174254i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.l.a.1121.15 16
3.2 odd 2 inner 1680.3.l.a.1121.16 16
4.3 odd 2 105.3.c.a.71.2 16
12.11 even 2 105.3.c.a.71.15 yes 16
20.3 even 4 525.3.f.b.449.4 32
20.7 even 4 525.3.f.b.449.30 32
20.19 odd 2 525.3.c.b.176.15 16
60.23 odd 4 525.3.f.b.449.29 32
60.47 odd 4 525.3.f.b.449.3 32
60.59 even 2 525.3.c.b.176.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.3.c.a.71.2 16 4.3 odd 2
105.3.c.a.71.15 yes 16 12.11 even 2
525.3.c.b.176.2 16 60.59 even 2
525.3.c.b.176.15 16 20.19 odd 2
525.3.f.b.449.3 32 60.47 odd 4
525.3.f.b.449.4 32 20.3 even 4
525.3.f.b.449.29 32 60.23 odd 4
525.3.f.b.449.30 32 20.7 even 4
1680.3.l.a.1121.15 16 1.1 even 1 trivial
1680.3.l.a.1121.16 16 3.2 odd 2 inner