Defining parameters
Level: | \( N \) | \(=\) | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 525.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(525, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 172 | 72 | 100 |
Cusp forms | 148 | 72 | 76 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(525, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
525.3.f.a | $8$ | $14.305$ | 8.0.4337012736.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(-\beta _{2}+\beta _{3}+\beta _{4})q^{3}+(3+\cdots)q^{4}+\cdots\) |
525.3.f.b | $32$ | $14.305$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
525.3.f.c | $32$ | $14.305$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(525, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(525, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)