Properties

Label 5239.2.a.t.1.17
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,2,-5,28,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 5239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.314789 q^{2} +1.77594 q^{3} -1.90091 q^{4} -0.987732 q^{5} -0.559047 q^{6} -0.624388 q^{7} +1.22796 q^{8} +0.153977 q^{9} +0.310927 q^{10} +4.02120 q^{11} -3.37591 q^{12} +0.196550 q^{14} -1.75416 q^{15} +3.41527 q^{16} +0.890404 q^{17} -0.0484701 q^{18} -4.17693 q^{19} +1.87759 q^{20} -1.10888 q^{21} -1.26583 q^{22} -0.895890 q^{23} +2.18079 q^{24} -4.02439 q^{25} -5.05438 q^{27} +1.18690 q^{28} +2.09204 q^{29} +0.552188 q^{30} -1.00000 q^{31} -3.53101 q^{32} +7.14143 q^{33} -0.280289 q^{34} +0.616728 q^{35} -0.292695 q^{36} +0.475907 q^{37} +1.31485 q^{38} -1.21290 q^{40} +3.26616 q^{41} +0.349062 q^{42} +3.14589 q^{43} -7.64394 q^{44} -0.152088 q^{45} +0.282016 q^{46} +8.35590 q^{47} +6.06532 q^{48} -6.61014 q^{49} +1.26683 q^{50} +1.58131 q^{51} -5.54163 q^{53} +1.59106 q^{54} -3.97187 q^{55} -0.766725 q^{56} -7.41800 q^{57} -0.658549 q^{58} -3.65296 q^{59} +3.33449 q^{60} +0.913094 q^{61} +0.314789 q^{62} -0.0961412 q^{63} -5.71901 q^{64} -2.24804 q^{66} -0.824213 q^{67} -1.69258 q^{68} -1.59105 q^{69} -0.194139 q^{70} +0.376435 q^{71} +0.189077 q^{72} +0.989383 q^{73} -0.149810 q^{74} -7.14708 q^{75} +7.93996 q^{76} -2.51079 q^{77} -7.84939 q^{79} -3.37337 q^{80} -9.43822 q^{81} -1.02815 q^{82} +8.58347 q^{83} +2.10788 q^{84} -0.879481 q^{85} -0.990289 q^{86} +3.71534 q^{87} +4.93788 q^{88} +9.19298 q^{89} +0.0478754 q^{90} +1.70300 q^{92} -1.77594 q^{93} -2.63034 q^{94} +4.12569 q^{95} -6.27088 q^{96} -12.5661 q^{97} +2.08080 q^{98} +0.619171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} - 5 q^{3} + 28 q^{4} + 5 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 15 q^{10} - q^{11} - 13 q^{12} - 19 q^{14} - 10 q^{15} + 4 q^{16} - 46 q^{17} - 9 q^{18} + 8 q^{19} - 5 q^{20} - 16 q^{21}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.314789 −0.222589 −0.111295 0.993787i \(-0.535500\pi\)
−0.111295 + 0.993787i \(0.535500\pi\)
\(3\) 1.77594 1.02534 0.512671 0.858585i \(-0.328656\pi\)
0.512671 + 0.858585i \(0.328656\pi\)
\(4\) −1.90091 −0.950454
\(5\) −0.987732 −0.441727 −0.220864 0.975305i \(-0.570888\pi\)
−0.220864 + 0.975305i \(0.570888\pi\)
\(6\) −0.559047 −0.228230
\(7\) −0.624388 −0.235997 −0.117998 0.993014i \(-0.537648\pi\)
−0.117998 + 0.993014i \(0.537648\pi\)
\(8\) 1.22796 0.434150
\(9\) 0.153977 0.0513255
\(10\) 0.310927 0.0983236
\(11\) 4.02120 1.21244 0.606219 0.795298i \(-0.292685\pi\)
0.606219 + 0.795298i \(0.292685\pi\)
\(12\) −3.37591 −0.974540
\(13\) 0 0
\(14\) 0.196550 0.0525303
\(15\) −1.75416 −0.452921
\(16\) 3.41527 0.853817
\(17\) 0.890404 0.215955 0.107977 0.994153i \(-0.465563\pi\)
0.107977 + 0.994153i \(0.465563\pi\)
\(18\) −0.0484701 −0.0114245
\(19\) −4.17693 −0.958254 −0.479127 0.877746i \(-0.659047\pi\)
−0.479127 + 0.877746i \(0.659047\pi\)
\(20\) 1.87759 0.419841
\(21\) −1.10888 −0.241977
\(22\) −1.26583 −0.269876
\(23\) −0.895890 −0.186806 −0.0934030 0.995628i \(-0.529774\pi\)
−0.0934030 + 0.995628i \(0.529774\pi\)
\(24\) 2.18079 0.445152
\(25\) −4.02439 −0.804877
\(26\) 0 0
\(27\) −5.05438 −0.972715
\(28\) 1.18690 0.224304
\(29\) 2.09204 0.388481 0.194241 0.980954i \(-0.437776\pi\)
0.194241 + 0.980954i \(0.437776\pi\)
\(30\) 0.552188 0.100815
\(31\) −1.00000 −0.179605
\(32\) −3.53101 −0.624200
\(33\) 7.14143 1.24316
\(34\) −0.280289 −0.0480692
\(35\) 0.616728 0.104246
\(36\) −0.292695 −0.0487826
\(37\) 0.475907 0.0782386 0.0391193 0.999235i \(-0.487545\pi\)
0.0391193 + 0.999235i \(0.487545\pi\)
\(38\) 1.31485 0.213297
\(39\) 0 0
\(40\) −1.21290 −0.191776
\(41\) 3.26616 0.510088 0.255044 0.966929i \(-0.417910\pi\)
0.255044 + 0.966929i \(0.417910\pi\)
\(42\) 0.349062 0.0538615
\(43\) 3.14589 0.479743 0.239872 0.970805i \(-0.422895\pi\)
0.239872 + 0.970805i \(0.422895\pi\)
\(44\) −7.64394 −1.15237
\(45\) −0.152088 −0.0226719
\(46\) 0.282016 0.0415810
\(47\) 8.35590 1.21883 0.609417 0.792850i \(-0.291404\pi\)
0.609417 + 0.792850i \(0.291404\pi\)
\(48\) 6.06532 0.875454
\(49\) −6.61014 −0.944306
\(50\) 1.26683 0.179157
\(51\) 1.58131 0.221427
\(52\) 0 0
\(53\) −5.54163 −0.761202 −0.380601 0.924739i \(-0.624283\pi\)
−0.380601 + 0.924739i \(0.624283\pi\)
\(54\) 1.59106 0.216516
\(55\) −3.97187 −0.535567
\(56\) −0.766725 −0.102458
\(57\) −7.41800 −0.982537
\(58\) −0.658549 −0.0864718
\(59\) −3.65296 −0.475575 −0.237788 0.971317i \(-0.576422\pi\)
−0.237788 + 0.971317i \(0.576422\pi\)
\(60\) 3.33449 0.430481
\(61\) 0.913094 0.116910 0.0584549 0.998290i \(-0.481383\pi\)
0.0584549 + 0.998290i \(0.481383\pi\)
\(62\) 0.314789 0.0399782
\(63\) −0.0961412 −0.0121127
\(64\) −5.71901 −0.714877
\(65\) 0 0
\(66\) −2.24804 −0.276715
\(67\) −0.824213 −0.100694 −0.0503468 0.998732i \(-0.516033\pi\)
−0.0503468 + 0.998732i \(0.516033\pi\)
\(68\) −1.69258 −0.205255
\(69\) −1.59105 −0.191540
\(70\) −0.194139 −0.0232040
\(71\) 0.376435 0.0446746 0.0223373 0.999750i \(-0.492889\pi\)
0.0223373 + 0.999750i \(0.492889\pi\)
\(72\) 0.189077 0.0222830
\(73\) 0.989383 0.115799 0.0578993 0.998322i \(-0.481560\pi\)
0.0578993 + 0.998322i \(0.481560\pi\)
\(74\) −0.149810 −0.0174151
\(75\) −7.14708 −0.825274
\(76\) 7.93996 0.910776
\(77\) −2.51079 −0.286131
\(78\) 0 0
\(79\) −7.84939 −0.883125 −0.441562 0.897231i \(-0.645576\pi\)
−0.441562 + 0.897231i \(0.645576\pi\)
\(80\) −3.37337 −0.377154
\(81\) −9.43822 −1.04869
\(82\) −1.02815 −0.113540
\(83\) 8.58347 0.942159 0.471079 0.882091i \(-0.343865\pi\)
0.471079 + 0.882091i \(0.343865\pi\)
\(84\) 2.10788 0.229988
\(85\) −0.879481 −0.0953931
\(86\) −0.990289 −0.106786
\(87\) 3.71534 0.398326
\(88\) 4.93788 0.526380
\(89\) 9.19298 0.974454 0.487227 0.873275i \(-0.338009\pi\)
0.487227 + 0.873275i \(0.338009\pi\)
\(90\) 0.0478754 0.00504651
\(91\) 0 0
\(92\) 1.70300 0.177550
\(93\) −1.77594 −0.184157
\(94\) −2.63034 −0.271299
\(95\) 4.12569 0.423287
\(96\) −6.27088 −0.640019
\(97\) −12.5661 −1.27589 −0.637946 0.770081i \(-0.720216\pi\)
−0.637946 + 0.770081i \(0.720216\pi\)
\(98\) 2.08080 0.210192
\(99\) 0.619171 0.0622291
\(100\) 7.64999 0.764999
\(101\) 6.06860 0.603848 0.301924 0.953332i \(-0.402371\pi\)
0.301924 + 0.953332i \(0.402371\pi\)
\(102\) −0.497778 −0.0492873
\(103\) −11.0910 −1.09283 −0.546416 0.837514i \(-0.684008\pi\)
−0.546416 + 0.837514i \(0.684008\pi\)
\(104\) 0 0
\(105\) 1.09527 0.106888
\(106\) 1.74444 0.169435
\(107\) 0.451699 0.0436674 0.0218337 0.999762i \(-0.493050\pi\)
0.0218337 + 0.999762i \(0.493050\pi\)
\(108\) 9.60791 0.924521
\(109\) 4.13545 0.396105 0.198052 0.980191i \(-0.436538\pi\)
0.198052 + 0.980191i \(0.436538\pi\)
\(110\) 1.25030 0.119211
\(111\) 0.845184 0.0802213
\(112\) −2.13245 −0.201498
\(113\) −12.0896 −1.13729 −0.568647 0.822582i \(-0.692533\pi\)
−0.568647 + 0.822582i \(0.692533\pi\)
\(114\) 2.33510 0.218702
\(115\) 0.884899 0.0825172
\(116\) −3.97677 −0.369234
\(117\) 0 0
\(118\) 1.14991 0.105858
\(119\) −0.555958 −0.0509646
\(120\) −2.15404 −0.196636
\(121\) 5.17008 0.470007
\(122\) −0.287432 −0.0260228
\(123\) 5.80051 0.523014
\(124\) 1.90091 0.170707
\(125\) 8.91367 0.797263
\(126\) 0.0302642 0.00269615
\(127\) −19.1249 −1.69706 −0.848529 0.529148i \(-0.822511\pi\)
−0.848529 + 0.529148i \(0.822511\pi\)
\(128\) 8.86230 0.783324
\(129\) 5.58692 0.491901
\(130\) 0 0
\(131\) −16.0240 −1.40002 −0.700011 0.714132i \(-0.746822\pi\)
−0.700011 + 0.714132i \(0.746822\pi\)
\(132\) −13.5752 −1.18157
\(133\) 2.60803 0.226145
\(134\) 0.259453 0.0224133
\(135\) 4.99237 0.429675
\(136\) 1.09338 0.0937567
\(137\) 5.94011 0.507498 0.253749 0.967270i \(-0.418336\pi\)
0.253749 + 0.967270i \(0.418336\pi\)
\(138\) 0.500844 0.0426347
\(139\) 12.4010 1.05184 0.525918 0.850535i \(-0.323722\pi\)
0.525918 + 0.850535i \(0.323722\pi\)
\(140\) −1.17234 −0.0990811
\(141\) 14.8396 1.24972
\(142\) −0.118497 −0.00994408
\(143\) 0 0
\(144\) 0.525871 0.0438226
\(145\) −2.06637 −0.171603
\(146\) −0.311446 −0.0257755
\(147\) −11.7392 −0.968236
\(148\) −0.904655 −0.0743622
\(149\) −6.77587 −0.555101 −0.277550 0.960711i \(-0.589523\pi\)
−0.277550 + 0.960711i \(0.589523\pi\)
\(150\) 2.24982 0.183697
\(151\) −2.70461 −0.220098 −0.110049 0.993926i \(-0.535101\pi\)
−0.110049 + 0.993926i \(0.535101\pi\)
\(152\) −5.12911 −0.416026
\(153\) 0.137101 0.0110840
\(154\) 0.790369 0.0636897
\(155\) 0.987732 0.0793365
\(156\) 0 0
\(157\) −12.4564 −0.994128 −0.497064 0.867714i \(-0.665589\pi\)
−0.497064 + 0.867714i \(0.665589\pi\)
\(158\) 2.47090 0.196574
\(159\) −9.84163 −0.780492
\(160\) 3.48769 0.275726
\(161\) 0.559383 0.0440856
\(162\) 2.97104 0.233427
\(163\) 1.14360 0.0895738 0.0447869 0.998997i \(-0.485739\pi\)
0.0447869 + 0.998997i \(0.485739\pi\)
\(164\) −6.20866 −0.484815
\(165\) −7.05382 −0.549139
\(166\) −2.70198 −0.209714
\(167\) −0.837976 −0.0648445 −0.0324223 0.999474i \(-0.510322\pi\)
−0.0324223 + 0.999474i \(0.510322\pi\)
\(168\) −1.36166 −0.105054
\(169\) 0 0
\(170\) 0.276850 0.0212335
\(171\) −0.643150 −0.0491829
\(172\) −5.98004 −0.455974
\(173\) −6.80018 −0.517008 −0.258504 0.966010i \(-0.583230\pi\)
−0.258504 + 0.966010i \(0.583230\pi\)
\(174\) −1.16955 −0.0886631
\(175\) 2.51278 0.189948
\(176\) 13.7335 1.03520
\(177\) −6.48746 −0.487627
\(178\) −2.89384 −0.216903
\(179\) −23.8094 −1.77959 −0.889797 0.456356i \(-0.849154\pi\)
−0.889797 + 0.456356i \(0.849154\pi\)
\(180\) 0.289105 0.0215486
\(181\) −14.5356 −1.08042 −0.540212 0.841529i \(-0.681656\pi\)
−0.540212 + 0.841529i \(0.681656\pi\)
\(182\) 0 0
\(183\) 1.62160 0.119872
\(184\) −1.10012 −0.0811018
\(185\) −0.470068 −0.0345601
\(186\) 0.559047 0.0409913
\(187\) 3.58050 0.261832
\(188\) −15.8838 −1.15845
\(189\) 3.15589 0.229558
\(190\) −1.29872 −0.0942190
\(191\) 1.18604 0.0858191 0.0429095 0.999079i \(-0.486337\pi\)
0.0429095 + 0.999079i \(0.486337\pi\)
\(192\) −10.1566 −0.732993
\(193\) −4.70333 −0.338553 −0.169277 0.985569i \(-0.554143\pi\)
−0.169277 + 0.985569i \(0.554143\pi\)
\(194\) 3.95566 0.284000
\(195\) 0 0
\(196\) 12.5653 0.897519
\(197\) −13.8258 −0.985046 −0.492523 0.870299i \(-0.663925\pi\)
−0.492523 + 0.870299i \(0.663925\pi\)
\(198\) −0.194908 −0.0138515
\(199\) 3.81237 0.270252 0.135126 0.990828i \(-0.456856\pi\)
0.135126 + 0.990828i \(0.456856\pi\)
\(200\) −4.94179 −0.349437
\(201\) −1.46376 −0.103245
\(202\) −1.91032 −0.134410
\(203\) −1.30624 −0.0916803
\(204\) −3.00592 −0.210457
\(205\) −3.22609 −0.225320
\(206\) 3.49133 0.243253
\(207\) −0.137946 −0.00958792
\(208\) 0 0
\(209\) −16.7963 −1.16182
\(210\) −0.344780 −0.0237921
\(211\) 2.31820 0.159592 0.0797959 0.996811i \(-0.474573\pi\)
0.0797959 + 0.996811i \(0.474573\pi\)
\(212\) 10.5341 0.723487
\(213\) 0.668527 0.0458067
\(214\) −0.142190 −0.00971988
\(215\) −3.10729 −0.211916
\(216\) −6.20658 −0.422304
\(217\) 0.624388 0.0423862
\(218\) −1.30179 −0.0881686
\(219\) 1.75709 0.118733
\(220\) 7.55016 0.509032
\(221\) 0 0
\(222\) −0.266054 −0.0178564
\(223\) −27.0832 −1.81362 −0.906812 0.421535i \(-0.861491\pi\)
−0.906812 + 0.421535i \(0.861491\pi\)
\(224\) 2.20472 0.147309
\(225\) −0.619661 −0.0413108
\(226\) 3.80567 0.253149
\(227\) −9.18731 −0.609783 −0.304892 0.952387i \(-0.598620\pi\)
−0.304892 + 0.952387i \(0.598620\pi\)
\(228\) 14.1009 0.933857
\(229\) −28.8260 −1.90488 −0.952438 0.304732i \(-0.901433\pi\)
−0.952438 + 0.304732i \(0.901433\pi\)
\(230\) −0.278556 −0.0183674
\(231\) −4.45903 −0.293382
\(232\) 2.56894 0.168659
\(233\) 14.9628 0.980244 0.490122 0.871654i \(-0.336952\pi\)
0.490122 + 0.871654i \(0.336952\pi\)
\(234\) 0 0
\(235\) −8.25339 −0.538392
\(236\) 6.94395 0.452012
\(237\) −13.9401 −0.905505
\(238\) 0.175009 0.0113442
\(239\) 22.4151 1.44991 0.724956 0.688796i \(-0.241860\pi\)
0.724956 + 0.688796i \(0.241860\pi\)
\(240\) −5.99091 −0.386712
\(241\) −12.3994 −0.798719 −0.399359 0.916794i \(-0.630767\pi\)
−0.399359 + 0.916794i \(0.630767\pi\)
\(242\) −1.62748 −0.104618
\(243\) −1.59862 −0.102551
\(244\) −1.73571 −0.111117
\(245\) 6.52904 0.417125
\(246\) −1.82593 −0.116417
\(247\) 0 0
\(248\) −1.22796 −0.0779756
\(249\) 15.2438 0.966034
\(250\) −2.80592 −0.177462
\(251\) −25.5893 −1.61518 −0.807591 0.589743i \(-0.799229\pi\)
−0.807591 + 0.589743i \(0.799229\pi\)
\(252\) 0.182756 0.0115125
\(253\) −3.60256 −0.226491
\(254\) 6.02029 0.377747
\(255\) −1.56191 −0.0978105
\(256\) 8.64828 0.540517
\(257\) −0.978333 −0.0610267 −0.0305134 0.999534i \(-0.509714\pi\)
−0.0305134 + 0.999534i \(0.509714\pi\)
\(258\) −1.75870 −0.109492
\(259\) −0.297151 −0.0184640
\(260\) 0 0
\(261\) 0.322125 0.0199390
\(262\) 5.04417 0.311630
\(263\) 19.7634 1.21866 0.609332 0.792915i \(-0.291438\pi\)
0.609332 + 0.792915i \(0.291438\pi\)
\(264\) 8.76940 0.539719
\(265\) 5.47365 0.336243
\(266\) −0.820977 −0.0503373
\(267\) 16.3262 0.999148
\(268\) 1.56675 0.0957047
\(269\) −4.99551 −0.304582 −0.152291 0.988336i \(-0.548665\pi\)
−0.152291 + 0.988336i \(0.548665\pi\)
\(270\) −1.57154 −0.0956409
\(271\) −10.8601 −0.659703 −0.329852 0.944033i \(-0.606999\pi\)
−0.329852 + 0.944033i \(0.606999\pi\)
\(272\) 3.04097 0.184386
\(273\) 0 0
\(274\) −1.86988 −0.112964
\(275\) −16.1829 −0.975864
\(276\) 3.02444 0.182050
\(277\) −21.4190 −1.28694 −0.643470 0.765471i \(-0.722506\pi\)
−0.643470 + 0.765471i \(0.722506\pi\)
\(278\) −3.90368 −0.234127
\(279\) −0.153977 −0.00921834
\(280\) 0.757318 0.0452584
\(281\) −15.2491 −0.909687 −0.454844 0.890571i \(-0.650305\pi\)
−0.454844 + 0.890571i \(0.650305\pi\)
\(282\) −4.67134 −0.278174
\(283\) −4.65745 −0.276857 −0.138428 0.990372i \(-0.544205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(284\) −0.715568 −0.0424611
\(285\) 7.32699 0.434013
\(286\) 0 0
\(287\) −2.03935 −0.120379
\(288\) −0.543693 −0.0320374
\(289\) −16.2072 −0.953364
\(290\) 0.650470 0.0381969
\(291\) −22.3167 −1.30823
\(292\) −1.88073 −0.110061
\(293\) 11.9600 0.698711 0.349356 0.936990i \(-0.386400\pi\)
0.349356 + 0.936990i \(0.386400\pi\)
\(294\) 3.69538 0.215519
\(295\) 3.60815 0.210074
\(296\) 0.584395 0.0339673
\(297\) −20.3247 −1.17936
\(298\) 2.13297 0.123559
\(299\) 0 0
\(300\) 13.5860 0.784385
\(301\) −1.96426 −0.113218
\(302\) 0.851382 0.0489915
\(303\) 10.7775 0.619150
\(304\) −14.2653 −0.818173
\(305\) −0.901892 −0.0516422
\(306\) −0.0431580 −0.00246718
\(307\) −34.6495 −1.97755 −0.988776 0.149403i \(-0.952265\pi\)
−0.988776 + 0.149403i \(0.952265\pi\)
\(308\) 4.77279 0.271955
\(309\) −19.6971 −1.12053
\(310\) −0.310927 −0.0176594
\(311\) 22.2979 1.26440 0.632200 0.774805i \(-0.282152\pi\)
0.632200 + 0.774805i \(0.282152\pi\)
\(312\) 0 0
\(313\) 21.7431 1.22899 0.614495 0.788921i \(-0.289360\pi\)
0.614495 + 0.788921i \(0.289360\pi\)
\(314\) 3.92113 0.221282
\(315\) 0.0949617 0.00535049
\(316\) 14.9210 0.839370
\(317\) 19.5584 1.09851 0.549256 0.835654i \(-0.314911\pi\)
0.549256 + 0.835654i \(0.314911\pi\)
\(318\) 3.09803 0.173729
\(319\) 8.41251 0.471010
\(320\) 5.64885 0.315780
\(321\) 0.802192 0.0447740
\(322\) −0.176087 −0.00981297
\(323\) −3.71916 −0.206939
\(324\) 17.9412 0.996733
\(325\) 0 0
\(326\) −0.359993 −0.0199382
\(327\) 7.34433 0.406143
\(328\) 4.01071 0.221455
\(329\) −5.21733 −0.287641
\(330\) 2.22046 0.122232
\(331\) 18.9346 1.04074 0.520371 0.853941i \(-0.325794\pi\)
0.520371 + 0.853941i \(0.325794\pi\)
\(332\) −16.3164 −0.895478
\(333\) 0.0732785 0.00401564
\(334\) 0.263785 0.0144337
\(335\) 0.814101 0.0444791
\(336\) −3.78712 −0.206604
\(337\) 3.29812 0.179660 0.0898301 0.995957i \(-0.471368\pi\)
0.0898301 + 0.995957i \(0.471368\pi\)
\(338\) 0 0
\(339\) −21.4705 −1.16612
\(340\) 1.67181 0.0906667
\(341\) −4.02120 −0.217760
\(342\) 0.202456 0.0109476
\(343\) 8.49801 0.458850
\(344\) 3.86303 0.208281
\(345\) 1.57153 0.0846084
\(346\) 2.14062 0.115080
\(347\) 3.92888 0.210913 0.105457 0.994424i \(-0.466370\pi\)
0.105457 + 0.994424i \(0.466370\pi\)
\(348\) −7.06252 −0.378591
\(349\) −10.2127 −0.546676 −0.273338 0.961918i \(-0.588128\pi\)
−0.273338 + 0.961918i \(0.588128\pi\)
\(350\) −0.790994 −0.0422804
\(351\) 0 0
\(352\) −14.1989 −0.756804
\(353\) −11.9626 −0.636705 −0.318352 0.947972i \(-0.603129\pi\)
−0.318352 + 0.947972i \(0.603129\pi\)
\(354\) 2.04218 0.108540
\(355\) −0.371816 −0.0197340
\(356\) −17.4750 −0.926173
\(357\) −0.987350 −0.0522561
\(358\) 7.49491 0.396118
\(359\) −34.6340 −1.82791 −0.913955 0.405815i \(-0.866988\pi\)
−0.913955 + 0.405815i \(0.866988\pi\)
\(360\) −0.186758 −0.00984299
\(361\) −1.55325 −0.0817498
\(362\) 4.57565 0.240491
\(363\) 9.18177 0.481918
\(364\) 0 0
\(365\) −0.977245 −0.0511513
\(366\) −0.510462 −0.0266823
\(367\) −9.06182 −0.473023 −0.236512 0.971629i \(-0.576004\pi\)
−0.236512 + 0.971629i \(0.576004\pi\)
\(368\) −3.05970 −0.159498
\(369\) 0.502912 0.0261805
\(370\) 0.147972 0.00769270
\(371\) 3.46013 0.179641
\(372\) 3.37591 0.175033
\(373\) 15.2874 0.791554 0.395777 0.918347i \(-0.370475\pi\)
0.395777 + 0.918347i \(0.370475\pi\)
\(374\) −1.12710 −0.0582809
\(375\) 15.8302 0.817467
\(376\) 10.2607 0.529156
\(377\) 0 0
\(378\) −0.993440 −0.0510970
\(379\) 11.4272 0.586977 0.293489 0.955963i \(-0.405184\pi\)
0.293489 + 0.955963i \(0.405184\pi\)
\(380\) −7.84255 −0.402314
\(381\) −33.9647 −1.74006
\(382\) −0.373353 −0.0191024
\(383\) 13.2369 0.676372 0.338186 0.941079i \(-0.390187\pi\)
0.338186 + 0.941079i \(0.390187\pi\)
\(384\) 15.7389 0.803175
\(385\) 2.47999 0.126392
\(386\) 1.48056 0.0753583
\(387\) 0.484393 0.0246231
\(388\) 23.8870 1.21268
\(389\) −15.6775 −0.794881 −0.397441 0.917628i \(-0.630102\pi\)
−0.397441 + 0.917628i \(0.630102\pi\)
\(390\) 0 0
\(391\) −0.797704 −0.0403416
\(392\) −8.11700 −0.409970
\(393\) −28.4577 −1.43550
\(394\) 4.35220 0.219261
\(395\) 7.75309 0.390100
\(396\) −1.17699 −0.0591459
\(397\) 6.41466 0.321943 0.160971 0.986959i \(-0.448537\pi\)
0.160971 + 0.986959i \(0.448537\pi\)
\(398\) −1.20009 −0.0601551
\(399\) 4.63171 0.231876
\(400\) −13.7444 −0.687218
\(401\) −4.80528 −0.239964 −0.119982 0.992776i \(-0.538284\pi\)
−0.119982 + 0.992776i \(0.538284\pi\)
\(402\) 0.460774 0.0229813
\(403\) 0 0
\(404\) −11.5358 −0.573930
\(405\) 9.32243 0.463235
\(406\) 0.411191 0.0204070
\(407\) 1.91372 0.0948595
\(408\) 1.94179 0.0961327
\(409\) 20.6886 1.02299 0.511493 0.859287i \(-0.329093\pi\)
0.511493 + 0.859287i \(0.329093\pi\)
\(410\) 1.01553 0.0501537
\(411\) 10.5493 0.520359
\(412\) 21.0831 1.03869
\(413\) 2.28087 0.112234
\(414\) 0.0434239 0.00213417
\(415\) −8.47817 −0.416177
\(416\) 0 0
\(417\) 22.0234 1.07849
\(418\) 5.28728 0.258609
\(419\) −0.943094 −0.0460731 −0.0230366 0.999735i \(-0.507333\pi\)
−0.0230366 + 0.999735i \(0.507333\pi\)
\(420\) −2.08202 −0.101592
\(421\) 18.1427 0.884223 0.442112 0.896960i \(-0.354229\pi\)
0.442112 + 0.896960i \(0.354229\pi\)
\(422\) −0.729744 −0.0355234
\(423\) 1.28661 0.0625573
\(424\) −6.80491 −0.330476
\(425\) −3.58333 −0.173817
\(426\) −0.210445 −0.0101961
\(427\) −0.570125 −0.0275903
\(428\) −0.858638 −0.0415038
\(429\) 0 0
\(430\) 0.978140 0.0471701
\(431\) −1.77685 −0.0855878 −0.0427939 0.999084i \(-0.513626\pi\)
−0.0427939 + 0.999084i \(0.513626\pi\)
\(432\) −17.2621 −0.830521
\(433\) 7.96494 0.382771 0.191385 0.981515i \(-0.438702\pi\)
0.191385 + 0.981515i \(0.438702\pi\)
\(434\) −0.196550 −0.00943472
\(435\) −3.66976 −0.175951
\(436\) −7.86112 −0.376479
\(437\) 3.74207 0.179007
\(438\) −0.553111 −0.0264287
\(439\) −20.9693 −1.00081 −0.500406 0.865791i \(-0.666816\pi\)
−0.500406 + 0.865791i \(0.666816\pi\)
\(440\) −4.87730 −0.232516
\(441\) −1.01781 −0.0484670
\(442\) 0 0
\(443\) −23.7103 −1.12651 −0.563255 0.826283i \(-0.690451\pi\)
−0.563255 + 0.826283i \(0.690451\pi\)
\(444\) −1.60662 −0.0762467
\(445\) −9.08019 −0.430442
\(446\) 8.52548 0.403693
\(447\) −12.0336 −0.569168
\(448\) 3.57089 0.168709
\(449\) −18.2107 −0.859418 −0.429709 0.902967i \(-0.641384\pi\)
−0.429709 + 0.902967i \(0.641384\pi\)
\(450\) 0.195062 0.00919533
\(451\) 13.1339 0.618450
\(452\) 22.9812 1.08095
\(453\) −4.80324 −0.225676
\(454\) 2.89206 0.135731
\(455\) 0 0
\(456\) −9.10901 −0.426569
\(457\) 19.7708 0.924841 0.462421 0.886661i \(-0.346981\pi\)
0.462421 + 0.886661i \(0.346981\pi\)
\(458\) 9.07410 0.424005
\(459\) −4.50044 −0.210063
\(460\) −1.68211 −0.0784288
\(461\) 26.5203 1.23517 0.617586 0.786503i \(-0.288111\pi\)
0.617586 + 0.786503i \(0.288111\pi\)
\(462\) 1.40365 0.0653037
\(463\) −12.6951 −0.589989 −0.294995 0.955499i \(-0.595318\pi\)
−0.294995 + 0.955499i \(0.595318\pi\)
\(464\) 7.14487 0.331692
\(465\) 1.75416 0.0813470
\(466\) −4.71011 −0.218192
\(467\) −9.42570 −0.436169 −0.218085 0.975930i \(-0.569981\pi\)
−0.218085 + 0.975930i \(0.569981\pi\)
\(468\) 0 0
\(469\) 0.514629 0.0237634
\(470\) 2.59807 0.119840
\(471\) −22.1219 −1.01932
\(472\) −4.48570 −0.206471
\(473\) 12.6503 0.581659
\(474\) 4.38817 0.201556
\(475\) 16.8096 0.771277
\(476\) 1.05683 0.0484395
\(477\) −0.853282 −0.0390691
\(478\) −7.05601 −0.322734
\(479\) 33.0219 1.50881 0.754404 0.656410i \(-0.227926\pi\)
0.754404 + 0.656410i \(0.227926\pi\)
\(480\) 6.19394 0.282714
\(481\) 0 0
\(482\) 3.90320 0.177786
\(483\) 0.993433 0.0452028
\(484\) −9.82784 −0.446720
\(485\) 12.4119 0.563596
\(486\) 0.503227 0.0228268
\(487\) −6.44478 −0.292041 −0.146021 0.989282i \(-0.546647\pi\)
−0.146021 + 0.989282i \(0.546647\pi\)
\(488\) 1.12124 0.0507563
\(489\) 2.03097 0.0918438
\(490\) −2.05527 −0.0928476
\(491\) 7.13297 0.321907 0.160953 0.986962i \(-0.448543\pi\)
0.160953 + 0.986962i \(0.448543\pi\)
\(492\) −11.0262 −0.497101
\(493\) 1.86276 0.0838944
\(494\) 0 0
\(495\) −0.611575 −0.0274883
\(496\) −3.41527 −0.153350
\(497\) −0.235041 −0.0105431
\(498\) −4.79856 −0.215029
\(499\) 3.77451 0.168970 0.0844851 0.996425i \(-0.473075\pi\)
0.0844851 + 0.996425i \(0.473075\pi\)
\(500\) −16.9441 −0.757762
\(501\) −1.48820 −0.0664878
\(502\) 8.05522 0.359522
\(503\) 32.9944 1.47115 0.735573 0.677446i \(-0.236913\pi\)
0.735573 + 0.677446i \(0.236913\pi\)
\(504\) −0.118058 −0.00525871
\(505\) −5.99414 −0.266736
\(506\) 1.13404 0.0504144
\(507\) 0 0
\(508\) 36.3546 1.61298
\(509\) −13.6247 −0.603903 −0.301951 0.953323i \(-0.597638\pi\)
−0.301951 + 0.953323i \(0.597638\pi\)
\(510\) 0.491671 0.0217716
\(511\) −0.617759 −0.0273281
\(512\) −20.4470 −0.903637
\(513\) 21.1118 0.932108
\(514\) 0.307968 0.0135839
\(515\) 10.9550 0.482734
\(516\) −10.6202 −0.467529
\(517\) 33.6008 1.47776
\(518\) 0.0935397 0.00410990
\(519\) −12.0767 −0.530110
\(520\) 0 0
\(521\) −12.6423 −0.553870 −0.276935 0.960889i \(-0.589319\pi\)
−0.276935 + 0.960889i \(0.589319\pi\)
\(522\) −0.101401 −0.00443821
\(523\) 23.7677 1.03929 0.519644 0.854383i \(-0.326065\pi\)
0.519644 + 0.854383i \(0.326065\pi\)
\(524\) 30.4601 1.33066
\(525\) 4.46256 0.194762
\(526\) −6.22130 −0.271262
\(527\) −0.890404 −0.0387866
\(528\) 24.3899 1.06143
\(529\) −22.1974 −0.965104
\(530\) −1.72304 −0.0748441
\(531\) −0.562471 −0.0244092
\(532\) −4.95762 −0.214940
\(533\) 0 0
\(534\) −5.13930 −0.222399
\(535\) −0.446157 −0.0192891
\(536\) −1.01210 −0.0437161
\(537\) −42.2841 −1.82469
\(538\) 1.57253 0.0677965
\(539\) −26.5807 −1.14491
\(540\) −9.49003 −0.408386
\(541\) 13.8734 0.596462 0.298231 0.954494i \(-0.403603\pi\)
0.298231 + 0.954494i \(0.403603\pi\)
\(542\) 3.41863 0.146843
\(543\) −25.8144 −1.10780
\(544\) −3.14403 −0.134799
\(545\) −4.08472 −0.174970
\(546\) 0 0
\(547\) 15.3339 0.655631 0.327815 0.944742i \(-0.393688\pi\)
0.327815 + 0.944742i \(0.393688\pi\)
\(548\) −11.2916 −0.482354
\(549\) 0.140595 0.00600045
\(550\) 5.09418 0.217217
\(551\) −8.73829 −0.372264
\(552\) −1.95375 −0.0831570
\(553\) 4.90107 0.208414
\(554\) 6.74244 0.286459
\(555\) −0.834815 −0.0354359
\(556\) −23.5731 −0.999722
\(557\) 19.9009 0.843228 0.421614 0.906775i \(-0.361464\pi\)
0.421614 + 0.906775i \(0.361464\pi\)
\(558\) 0.0484701 0.00205190
\(559\) 0 0
\(560\) 2.10629 0.0890071
\(561\) 6.35876 0.268467
\(562\) 4.80025 0.202487
\(563\) −5.34683 −0.225342 −0.112671 0.993632i \(-0.535941\pi\)
−0.112671 + 0.993632i \(0.535941\pi\)
\(564\) −28.2087 −1.18780
\(565\) 11.9413 0.502374
\(566\) 1.46611 0.0616253
\(567\) 5.89312 0.247488
\(568\) 0.462247 0.0193955
\(569\) 34.7169 1.45541 0.727705 0.685890i \(-0.240587\pi\)
0.727705 + 0.685890i \(0.240587\pi\)
\(570\) −2.30645 −0.0966067
\(571\) 42.2991 1.77016 0.885081 0.465436i \(-0.154102\pi\)
0.885081 + 0.465436i \(0.154102\pi\)
\(572\) 0 0
\(573\) 2.10635 0.0879939
\(574\) 0.641964 0.0267951
\(575\) 3.60541 0.150356
\(576\) −0.880595 −0.0366914
\(577\) 11.8712 0.494205 0.247102 0.968989i \(-0.420522\pi\)
0.247102 + 0.968989i \(0.420522\pi\)
\(578\) 5.10184 0.212208
\(579\) −8.35286 −0.347133
\(580\) 3.92798 0.163101
\(581\) −5.35942 −0.222346
\(582\) 7.02503 0.291197
\(583\) −22.2840 −0.922910
\(584\) 1.21492 0.0502739
\(585\) 0 0
\(586\) −3.76488 −0.155526
\(587\) 28.4973 1.17621 0.588106 0.808784i \(-0.299874\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(588\) 22.3152 0.920264
\(589\) 4.17693 0.172107
\(590\) −1.13580 −0.0467603
\(591\) −24.5538 −1.01001
\(592\) 1.62535 0.0668015
\(593\) 12.4171 0.509909 0.254955 0.966953i \(-0.417939\pi\)
0.254955 + 0.966953i \(0.417939\pi\)
\(594\) 6.39798 0.262512
\(595\) 0.549137 0.0225124
\(596\) 12.8803 0.527598
\(597\) 6.77056 0.277100
\(598\) 0 0
\(599\) −32.9899 −1.34793 −0.673965 0.738763i \(-0.735410\pi\)
−0.673965 + 0.738763i \(0.735410\pi\)
\(600\) −8.77634 −0.358293
\(601\) 32.0104 1.30573 0.652866 0.757474i \(-0.273567\pi\)
0.652866 + 0.757474i \(0.273567\pi\)
\(602\) 0.618325 0.0252011
\(603\) −0.126910 −0.00516816
\(604\) 5.14122 0.209193
\(605\) −5.10665 −0.207615
\(606\) −3.39263 −0.137816
\(607\) −0.967410 −0.0392660 −0.0196330 0.999807i \(-0.506250\pi\)
−0.0196330 + 0.999807i \(0.506250\pi\)
\(608\) 14.7488 0.598142
\(609\) −2.31982 −0.0940037
\(610\) 0.283905 0.0114950
\(611\) 0 0
\(612\) −0.260617 −0.0105348
\(613\) 36.2294 1.46329 0.731646 0.681685i \(-0.238752\pi\)
0.731646 + 0.681685i \(0.238752\pi\)
\(614\) 10.9073 0.440182
\(615\) −5.72935 −0.231030
\(616\) −3.08316 −0.124224
\(617\) −29.1855 −1.17496 −0.587482 0.809237i \(-0.699881\pi\)
−0.587482 + 0.809237i \(0.699881\pi\)
\(618\) 6.20041 0.249417
\(619\) −18.0122 −0.723970 −0.361985 0.932184i \(-0.617901\pi\)
−0.361985 + 0.932184i \(0.617901\pi\)
\(620\) −1.87759 −0.0754057
\(621\) 4.52817 0.181709
\(622\) −7.01914 −0.281442
\(623\) −5.73999 −0.229968
\(624\) 0 0
\(625\) 11.3176 0.452705
\(626\) −6.84447 −0.273560
\(627\) −29.8293 −1.19127
\(628\) 23.6785 0.944873
\(629\) 0.423750 0.0168960
\(630\) −0.0298929 −0.00119096
\(631\) 1.41290 0.0562465 0.0281232 0.999604i \(-0.491047\pi\)
0.0281232 + 0.999604i \(0.491047\pi\)
\(632\) −9.63874 −0.383409
\(633\) 4.11700 0.163636
\(634\) −6.15677 −0.244517
\(635\) 18.8902 0.749637
\(636\) 18.7080 0.741822
\(637\) 0 0
\(638\) −2.64816 −0.104842
\(639\) 0.0579622 0.00229295
\(640\) −8.75358 −0.346015
\(641\) 14.7425 0.582296 0.291148 0.956678i \(-0.405963\pi\)
0.291148 + 0.956678i \(0.405963\pi\)
\(642\) −0.252521 −0.00996620
\(643\) −36.7900 −1.45085 −0.725427 0.688299i \(-0.758358\pi\)
−0.725427 + 0.688299i \(0.758358\pi\)
\(644\) −1.06334 −0.0419013
\(645\) −5.51838 −0.217286
\(646\) 1.17075 0.0460625
\(647\) 15.7406 0.618827 0.309413 0.950928i \(-0.399867\pi\)
0.309413 + 0.950928i \(0.399867\pi\)
\(648\) −11.5898 −0.455289
\(649\) −14.6893 −0.576606
\(650\) 0 0
\(651\) 1.10888 0.0434604
\(652\) −2.17388 −0.0851358
\(653\) 37.4073 1.46386 0.731930 0.681380i \(-0.238620\pi\)
0.731930 + 0.681380i \(0.238620\pi\)
\(654\) −2.31191 −0.0904029
\(655\) 15.8274 0.618428
\(656\) 11.1548 0.435522
\(657\) 0.152342 0.00594342
\(658\) 1.64236 0.0640257
\(659\) −26.3690 −1.02719 −0.513595 0.858033i \(-0.671686\pi\)
−0.513595 + 0.858033i \(0.671686\pi\)
\(660\) 13.4087 0.521931
\(661\) 42.8478 1.66659 0.833294 0.552830i \(-0.186452\pi\)
0.833294 + 0.552830i \(0.186452\pi\)
\(662\) −5.96040 −0.231658
\(663\) 0 0
\(664\) 10.5402 0.409038
\(665\) −2.57603 −0.0998942
\(666\) −0.0230672 −0.000893838 0
\(667\) −1.87423 −0.0725707
\(668\) 1.59292 0.0616317
\(669\) −48.0982 −1.85958
\(670\) −0.256270 −0.00990057
\(671\) 3.67174 0.141746
\(672\) 3.91546 0.151042
\(673\) 18.0875 0.697223 0.348612 0.937267i \(-0.386653\pi\)
0.348612 + 0.937267i \(0.386653\pi\)
\(674\) −1.03821 −0.0399904
\(675\) 20.3408 0.782917
\(676\) 0 0
\(677\) 10.1149 0.388747 0.194374 0.980928i \(-0.437733\pi\)
0.194374 + 0.980928i \(0.437733\pi\)
\(678\) 6.75865 0.259565
\(679\) 7.84612 0.301106
\(680\) −1.07997 −0.0414149
\(681\) −16.3161 −0.625236
\(682\) 1.26583 0.0484711
\(683\) −33.8799 −1.29638 −0.648189 0.761480i \(-0.724473\pi\)
−0.648189 + 0.761480i \(0.724473\pi\)
\(684\) 1.22257 0.0467461
\(685\) −5.86724 −0.224176
\(686\) −2.67508 −0.102135
\(687\) −51.1934 −1.95315
\(688\) 10.7440 0.409613
\(689\) 0 0
\(690\) −0.494700 −0.0188329
\(691\) 26.5682 1.01070 0.505351 0.862914i \(-0.331363\pi\)
0.505351 + 0.862914i \(0.331363\pi\)
\(692\) 12.9265 0.491393
\(693\) −0.386603 −0.0146858
\(694\) −1.23677 −0.0469470
\(695\) −12.2488 −0.464625
\(696\) 4.56229 0.172933
\(697\) 2.90820 0.110156
\(698\) 3.21486 0.121684
\(699\) 26.5730 1.00508
\(700\) −4.77656 −0.180537
\(701\) 7.55154 0.285218 0.142609 0.989779i \(-0.454451\pi\)
0.142609 + 0.989779i \(0.454451\pi\)
\(702\) 0 0
\(703\) −1.98783 −0.0749724
\(704\) −22.9973 −0.866744
\(705\) −14.6576 −0.552035
\(706\) 3.76569 0.141724
\(707\) −3.78916 −0.142506
\(708\) 12.3321 0.463467
\(709\) 6.43577 0.241700 0.120850 0.992671i \(-0.461438\pi\)
0.120850 + 0.992671i \(0.461438\pi\)
\(710\) 0.117044 0.00439257
\(711\) −1.20862 −0.0453269
\(712\) 11.2886 0.423059
\(713\) 0.895890 0.0335513
\(714\) 0.310807 0.0116316
\(715\) 0 0
\(716\) 45.2594 1.69142
\(717\) 39.8079 1.48665
\(718\) 10.9024 0.406873
\(719\) 18.7209 0.698170 0.349085 0.937091i \(-0.386492\pi\)
0.349085 + 0.937091i \(0.386492\pi\)
\(720\) −0.519420 −0.0193576
\(721\) 6.92512 0.257905
\(722\) 0.488944 0.0181966
\(723\) −22.0207 −0.818960
\(724\) 27.6309 1.02689
\(725\) −8.41916 −0.312680
\(726\) −2.89031 −0.107270
\(727\) −34.1439 −1.26633 −0.633163 0.774019i \(-0.718244\pi\)
−0.633163 + 0.774019i \(0.718244\pi\)
\(728\) 0 0
\(729\) 25.4756 0.943541
\(730\) 0.307626 0.0113857
\(731\) 2.80111 0.103603
\(732\) −3.08252 −0.113933
\(733\) −24.3837 −0.900634 −0.450317 0.892869i \(-0.648689\pi\)
−0.450317 + 0.892869i \(0.648689\pi\)
\(734\) 2.85256 0.105290
\(735\) 11.5952 0.427696
\(736\) 3.16340 0.116604
\(737\) −3.31433 −0.122085
\(738\) −0.158311 −0.00582750
\(739\) 12.4385 0.457558 0.228779 0.973478i \(-0.426527\pi\)
0.228779 + 0.973478i \(0.426527\pi\)
\(740\) 0.893557 0.0328478
\(741\) 0 0
\(742\) −1.08921 −0.0399862
\(743\) −30.9826 −1.13664 −0.568321 0.822807i \(-0.692407\pi\)
−0.568321 + 0.822807i \(0.692407\pi\)
\(744\) −2.18079 −0.0799517
\(745\) 6.69274 0.245203
\(746\) −4.81231 −0.176191
\(747\) 1.32165 0.0483568
\(748\) −6.80620 −0.248859
\(749\) −0.282035 −0.0103054
\(750\) −4.98316 −0.181959
\(751\) 1.20834 0.0440930 0.0220465 0.999757i \(-0.492982\pi\)
0.0220465 + 0.999757i \(0.492982\pi\)
\(752\) 28.5376 1.04066
\(753\) −45.4451 −1.65611
\(754\) 0 0
\(755\) 2.67143 0.0972234
\(756\) −5.99907 −0.218184
\(757\) −21.9668 −0.798396 −0.399198 0.916865i \(-0.630711\pi\)
−0.399198 + 0.916865i \(0.630711\pi\)
\(758\) −3.59716 −0.130655
\(759\) −6.39794 −0.232230
\(760\) 5.06618 0.183770
\(761\) −40.7712 −1.47795 −0.738977 0.673731i \(-0.764691\pi\)
−0.738977 + 0.673731i \(0.764691\pi\)
\(762\) 10.6917 0.387320
\(763\) −2.58213 −0.0934793
\(764\) −2.25456 −0.0815671
\(765\) −0.135419 −0.00489610
\(766\) −4.16681 −0.150553
\(767\) 0 0
\(768\) 15.3589 0.554215
\(769\) −18.6321 −0.671892 −0.335946 0.941881i \(-0.609056\pi\)
−0.335946 + 0.941881i \(0.609056\pi\)
\(770\) −0.780672 −0.0281335
\(771\) −1.73746 −0.0625732
\(772\) 8.94061 0.321779
\(773\) −15.2041 −0.546852 −0.273426 0.961893i \(-0.588157\pi\)
−0.273426 + 0.961893i \(0.588157\pi\)
\(774\) −0.152481 −0.00548083
\(775\) 4.02439 0.144560
\(776\) −15.4307 −0.553929
\(777\) −0.527723 −0.0189320
\(778\) 4.93510 0.176932
\(779\) −13.6425 −0.488794
\(780\) 0 0
\(781\) 1.51372 0.0541652
\(782\) 0.251108 0.00897961
\(783\) −10.5739 −0.377882
\(784\) −22.5754 −0.806264
\(785\) 12.3036 0.439133
\(786\) 8.95816 0.319527
\(787\) 1.19009 0.0424220 0.0212110 0.999775i \(-0.493248\pi\)
0.0212110 + 0.999775i \(0.493248\pi\)
\(788\) 26.2815 0.936241
\(789\) 35.0987 1.24955
\(790\) −2.44058 −0.0868321
\(791\) 7.54861 0.268398
\(792\) 0.760318 0.0270167
\(793\) 0 0
\(794\) −2.01926 −0.0716609
\(795\) 9.72089 0.344764
\(796\) −7.24697 −0.256862
\(797\) −8.46050 −0.299686 −0.149843 0.988710i \(-0.547877\pi\)
−0.149843 + 0.988710i \(0.547877\pi\)
\(798\) −1.45801 −0.0516130
\(799\) 7.44013 0.263213
\(800\) 14.2101 0.502405
\(801\) 1.41550 0.0500144
\(802\) 1.51265 0.0534135
\(803\) 3.97851 0.140399
\(804\) 2.78247 0.0981300
\(805\) −0.552520 −0.0194738
\(806\) 0 0
\(807\) −8.87174 −0.312300
\(808\) 7.45200 0.262161
\(809\) 46.9389 1.65029 0.825143 0.564924i \(-0.191095\pi\)
0.825143 + 0.564924i \(0.191095\pi\)
\(810\) −2.93459 −0.103111
\(811\) −52.1661 −1.83180 −0.915900 0.401406i \(-0.868522\pi\)
−0.915900 + 0.401406i \(0.868522\pi\)
\(812\) 2.48305 0.0871379
\(813\) −19.2869 −0.676421
\(814\) −0.602417 −0.0211147
\(815\) −1.12957 −0.0395672
\(816\) 5.40059 0.189059
\(817\) −13.1402 −0.459716
\(818\) −6.51254 −0.227706
\(819\) 0 0
\(820\) 6.13249 0.214156
\(821\) −16.9288 −0.590818 −0.295409 0.955371i \(-0.595456\pi\)
−0.295409 + 0.955371i \(0.595456\pi\)
\(822\) −3.32080 −0.115826
\(823\) −9.93810 −0.346420 −0.173210 0.984885i \(-0.555414\pi\)
−0.173210 + 0.984885i \(0.555414\pi\)
\(824\) −13.6194 −0.474453
\(825\) −28.7399 −1.00059
\(826\) −0.717991 −0.0249821
\(827\) −17.9222 −0.623215 −0.311607 0.950211i \(-0.600867\pi\)
−0.311607 + 0.950211i \(0.600867\pi\)
\(828\) 0.262223 0.00911287
\(829\) 40.1084 1.39302 0.696512 0.717545i \(-0.254734\pi\)
0.696512 + 0.717545i \(0.254734\pi\)
\(830\) 2.66883 0.0926365
\(831\) −38.0389 −1.31955
\(832\) 0 0
\(833\) −5.88570 −0.203927
\(834\) −6.93272 −0.240061
\(835\) 0.827695 0.0286436
\(836\) 31.9282 1.10426
\(837\) 5.05438 0.174705
\(838\) 0.296875 0.0102554
\(839\) −36.0689 −1.24524 −0.622619 0.782525i \(-0.713931\pi\)
−0.622619 + 0.782525i \(0.713931\pi\)
\(840\) 1.34495 0.0464054
\(841\) −24.6234 −0.849082
\(842\) −5.71113 −0.196819
\(843\) −27.0816 −0.932740
\(844\) −4.40669 −0.151685
\(845\) 0 0
\(846\) −0.405011 −0.0139246
\(847\) −3.22814 −0.110920
\(848\) −18.9262 −0.649927
\(849\) −8.27137 −0.283873
\(850\) 1.12799 0.0386898
\(851\) −0.426360 −0.0146154
\(852\) −1.27081 −0.0435372
\(853\) 11.9012 0.407490 0.203745 0.979024i \(-0.434689\pi\)
0.203745 + 0.979024i \(0.434689\pi\)
\(854\) 0.179469 0.00614130
\(855\) 0.635259 0.0217254
\(856\) 0.554669 0.0189582
\(857\) −18.5578 −0.633921 −0.316960 0.948439i \(-0.602662\pi\)
−0.316960 + 0.948439i \(0.602662\pi\)
\(858\) 0 0
\(859\) −54.4878 −1.85910 −0.929550 0.368697i \(-0.879804\pi\)
−0.929550 + 0.368697i \(0.879804\pi\)
\(860\) 5.90668 0.201416
\(861\) −3.62177 −0.123430
\(862\) 0.559332 0.0190509
\(863\) 39.5255 1.34547 0.672733 0.739886i \(-0.265120\pi\)
0.672733 + 0.739886i \(0.265120\pi\)
\(864\) 17.8471 0.607169
\(865\) 6.71676 0.228377
\(866\) −2.50727 −0.0852006
\(867\) −28.7830 −0.977523
\(868\) −1.18690 −0.0402862
\(869\) −31.5640 −1.07073
\(870\) 1.15520 0.0391649
\(871\) 0 0
\(872\) 5.07818 0.171969
\(873\) −1.93488 −0.0654859
\(874\) −1.17796 −0.0398451
\(875\) −5.56559 −0.188151
\(876\) −3.34006 −0.112850
\(877\) 44.7739 1.51191 0.755953 0.654626i \(-0.227174\pi\)
0.755953 + 0.654626i \(0.227174\pi\)
\(878\) 6.60091 0.222770
\(879\) 21.2403 0.716418
\(880\) −13.5650 −0.457276
\(881\) −13.6944 −0.461377 −0.230688 0.973028i \(-0.574098\pi\)
−0.230688 + 0.973028i \(0.574098\pi\)
\(882\) 0.320394 0.0107882
\(883\) −14.4381 −0.485881 −0.242941 0.970041i \(-0.578112\pi\)
−0.242941 + 0.970041i \(0.578112\pi\)
\(884\) 0 0
\(885\) 6.40787 0.215398
\(886\) 7.46373 0.250749
\(887\) 5.32747 0.178879 0.0894395 0.995992i \(-0.471492\pi\)
0.0894395 + 0.995992i \(0.471492\pi\)
\(888\) 1.03785 0.0348281
\(889\) 11.9414 0.400500
\(890\) 2.85834 0.0958118
\(891\) −37.9530 −1.27147
\(892\) 51.4826 1.72377
\(893\) −34.9020 −1.16795
\(894\) 3.78803 0.126691
\(895\) 23.5173 0.786095
\(896\) −5.53352 −0.184862
\(897\) 0 0
\(898\) 5.73253 0.191297
\(899\) −2.09204 −0.0697733
\(900\) 1.17792 0.0392640
\(901\) −4.93429 −0.164385
\(902\) −4.13439 −0.137660
\(903\) −3.48841 −0.116087
\(904\) −14.8456 −0.493756
\(905\) 14.3573 0.477252
\(906\) 1.51201 0.0502330
\(907\) 22.3881 0.743386 0.371693 0.928356i \(-0.378777\pi\)
0.371693 + 0.928356i \(0.378777\pi\)
\(908\) 17.4642 0.579571
\(909\) 0.934422 0.0309928
\(910\) 0 0
\(911\) 27.4932 0.910890 0.455445 0.890264i \(-0.349480\pi\)
0.455445 + 0.890264i \(0.349480\pi\)
\(912\) −25.3344 −0.838907
\(913\) 34.5159 1.14231
\(914\) −6.22364 −0.205860
\(915\) −1.60171 −0.0529509
\(916\) 54.7956 1.81050
\(917\) 10.0052 0.330401
\(918\) 1.41669 0.0467576
\(919\) 26.7417 0.882127 0.441064 0.897476i \(-0.354601\pi\)
0.441064 + 0.897476i \(0.354601\pi\)
\(920\) 1.08662 0.0358249
\(921\) −61.5356 −2.02767
\(922\) −8.34828 −0.274936
\(923\) 0 0
\(924\) 8.47620 0.278847
\(925\) −1.91523 −0.0629725
\(926\) 3.99626 0.131325
\(927\) −1.70776 −0.0560902
\(928\) −7.38700 −0.242490
\(929\) 2.80505 0.0920308 0.0460154 0.998941i \(-0.485348\pi\)
0.0460154 + 0.998941i \(0.485348\pi\)
\(930\) −0.552188 −0.0181070
\(931\) 27.6101 0.904884
\(932\) −28.4429 −0.931677
\(933\) 39.5999 1.29644
\(934\) 2.96710 0.0970866
\(935\) −3.53657 −0.115658
\(936\) 0 0
\(937\) −51.2675 −1.67484 −0.837418 0.546562i \(-0.815936\pi\)
−0.837418 + 0.546562i \(0.815936\pi\)
\(938\) −0.161999 −0.00528947
\(939\) 38.6144 1.26013
\(940\) 15.6889 0.511717
\(941\) −15.5783 −0.507839 −0.253920 0.967225i \(-0.581720\pi\)
−0.253920 + 0.967225i \(0.581720\pi\)
\(942\) 6.96371 0.226890
\(943\) −2.92612 −0.0952874
\(944\) −12.4758 −0.406054
\(945\) −3.11718 −0.101402
\(946\) −3.98215 −0.129471
\(947\) −2.99652 −0.0973739 −0.0486870 0.998814i \(-0.515504\pi\)
−0.0486870 + 0.998814i \(0.515504\pi\)
\(948\) 26.4988 0.860641
\(949\) 0 0
\(950\) −5.29147 −0.171678
\(951\) 34.7347 1.12635
\(952\) −0.682695 −0.0221263
\(953\) −25.6873 −0.832092 −0.416046 0.909344i \(-0.636584\pi\)
−0.416046 + 0.909344i \(0.636584\pi\)
\(954\) 0.268603 0.00869636
\(955\) −1.17149 −0.0379086
\(956\) −42.6090 −1.37807
\(957\) 14.9401 0.482946
\(958\) −10.3949 −0.335844
\(959\) −3.70894 −0.119768
\(960\) 10.0320 0.323783
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0.0695511 0.00224125
\(964\) 23.5702 0.759145
\(965\) 4.64563 0.149548
\(966\) −0.312721 −0.0100616
\(967\) −24.6067 −0.791299 −0.395649 0.918402i \(-0.629480\pi\)
−0.395649 + 0.918402i \(0.629480\pi\)
\(968\) 6.34865 0.204053
\(969\) −6.60502 −0.212184
\(970\) −3.90713 −0.125450
\(971\) −9.51683 −0.305410 −0.152705 0.988272i \(-0.548798\pi\)
−0.152705 + 0.988272i \(0.548798\pi\)
\(972\) 3.03883 0.0974704
\(973\) −7.74302 −0.248230
\(974\) 2.02874 0.0650052
\(975\) 0 0
\(976\) 3.11846 0.0998195
\(977\) 0.830048 0.0265556 0.0132778 0.999912i \(-0.495773\pi\)
0.0132778 + 0.999912i \(0.495773\pi\)
\(978\) −0.639327 −0.0204434
\(979\) 36.9668 1.18146
\(980\) −12.4111 −0.396458
\(981\) 0.636763 0.0203303
\(982\) −2.24538 −0.0716529
\(983\) 60.7093 1.93633 0.968163 0.250322i \(-0.0805366\pi\)
0.968163 + 0.250322i \(0.0805366\pi\)
\(984\) 7.12280 0.227067
\(985\) 13.6562 0.435122
\(986\) −0.586375 −0.0186740
\(987\) −9.26568 −0.294930
\(988\) 0 0
\(989\) −2.81837 −0.0896189
\(990\) 0.192517 0.00611859
\(991\) −36.9415 −1.17349 −0.586743 0.809773i \(-0.699590\pi\)
−0.586743 + 0.809773i \(0.699590\pi\)
\(992\) 3.53101 0.112110
\(993\) 33.6268 1.06712
\(994\) 0.0739884 0.00234677
\(995\) −3.76560 −0.119378
\(996\) −28.9770 −0.918171
\(997\) −57.2717 −1.81381 −0.906906 0.421332i \(-0.861563\pi\)
−0.906906 + 0.421332i \(0.861563\pi\)
\(998\) −1.18817 −0.0376109
\(999\) −2.40541 −0.0761039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.t.1.17 yes 36
13.12 even 2 5239.2.a.s.1.20 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5239.2.a.s.1.20 36 13.12 even 2
5239.2.a.t.1.17 yes 36 1.1 even 1 trivial