gp: [N,k,chi] = [5239,2,Mod(1,5239)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5239.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5239, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [36,2,-5,28,5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(13\)
\( +1 \)
\(31\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5239))\):
\( T_{2}^{36} - 2 T_{2}^{35} - 48 T_{2}^{34} + 95 T_{2}^{33} + 1043 T_{2}^{32} - 2041 T_{2}^{31} + \cdots + 169 \)
T2^36 - 2*T2^35 - 48*T2^34 + 95*T2^33 + 1043*T2^32 - 2041*T2^31 - 13593*T2^30 + 26258*T2^29 + 118703*T2^28 - 225775*T2^27 - 735245*T2^26 + 1371465*T2^25 + 3336769*T2^24 - 6067485*T2^23 - 11309365*T2^22 + 19868138*T2^21 + 28938661*T2^20 - 48467757*T2^19 - 56198886*T2^18 + 87986565*T2^17 + 82911035*T2^16 - 117893811*T2^15 - 92634005*T2^14 + 114733065*T2^13 + 77699341*T2^12 - 78959293*T2^11 - 48040947*T2^10 + 36770749*T2^9 + 21129697*T2^8 - 10709121*T2^7 - 6183584*T2^6 + 1642211*T2^5 + 1057758*T2^4 - 66216*T2^3 - 77704*T2^2 - 6853*T2 + 169
\( T_{5}^{36} - 5 T_{5}^{35} - 80 T_{5}^{34} + 415 T_{5}^{33} + 2829 T_{5}^{32} - 15272 T_{5}^{31} + \cdots + 79939 \)
T5^36 - 5*T5^35 - 80*T5^34 + 415*T5^33 + 2829*T5^32 - 15272*T5^31 - 58787*T5^30 + 330198*T5^29 + 806991*T5^28 - 4686676*T5^27 - 7820201*T5^26 + 46203402*T5^25 + 55919963*T5^24 - 326202950*T5^23 - 304064708*T5^22 + 1674009195*T5^21 + 1276214298*T5^20 - 6264752278*T5^19 - 4118282699*T5^18 + 16987397126*T5^17 + 9967110724*T5^16 - 32875606241*T5^15 - 17317000937*T5^14 + 44393867634*T5^13 + 20341343909*T5^12 - 40627801664*T5^11 - 14969644841*T5^10 + 24233809909*T5^9 + 6244648033*T5^8 - 8791455130*T5^7 - 1240263395*T5^6 + 1694736596*T5^5 + 76101257*T5^4 - 134323671*T5^3 + 1966449*T5^2 + 2024870*T5 + 79939