Properties

Label 5239.2.a.s.1.20
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,-2,-5,28,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 5239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.314789 q^{2} +1.77594 q^{3} -1.90091 q^{4} +0.987732 q^{5} +0.559047 q^{6} +0.624388 q^{7} -1.22796 q^{8} +0.153977 q^{9} +0.310927 q^{10} -4.02120 q^{11} -3.37591 q^{12} +0.196550 q^{14} +1.75416 q^{15} +3.41527 q^{16} +0.890404 q^{17} +0.0484701 q^{18} +4.17693 q^{19} -1.87759 q^{20} +1.10888 q^{21} -1.26583 q^{22} -0.895890 q^{23} -2.18079 q^{24} -4.02439 q^{25} -5.05438 q^{27} -1.18690 q^{28} +2.09204 q^{29} +0.552188 q^{30} +1.00000 q^{31} +3.53101 q^{32} -7.14143 q^{33} +0.280289 q^{34} +0.616728 q^{35} -0.292695 q^{36} -0.475907 q^{37} +1.31485 q^{38} -1.21290 q^{40} -3.26616 q^{41} +0.349062 q^{42} +3.14589 q^{43} +7.64394 q^{44} +0.152088 q^{45} -0.282016 q^{46} -8.35590 q^{47} +6.06532 q^{48} -6.61014 q^{49} -1.26683 q^{50} +1.58131 q^{51} -5.54163 q^{53} -1.59106 q^{54} -3.97187 q^{55} -0.766725 q^{56} +7.41800 q^{57} +0.658549 q^{58} +3.65296 q^{59} -3.33449 q^{60} +0.913094 q^{61} +0.314789 q^{62} +0.0961412 q^{63} -5.71901 q^{64} -2.24804 q^{66} +0.824213 q^{67} -1.69258 q^{68} -1.59105 q^{69} +0.194139 q^{70} -0.376435 q^{71} -0.189077 q^{72} -0.989383 q^{73} -0.149810 q^{74} -7.14708 q^{75} -7.93996 q^{76} -2.51079 q^{77} -7.84939 q^{79} +3.37337 q^{80} -9.43822 q^{81} -1.02815 q^{82} -8.58347 q^{83} -2.10788 q^{84} +0.879481 q^{85} +0.990289 q^{86} +3.71534 q^{87} +4.93788 q^{88} -9.19298 q^{89} +0.0478754 q^{90} +1.70300 q^{92} +1.77594 q^{93} -2.63034 q^{94} +4.12569 q^{95} +6.27088 q^{96} +12.5661 q^{97} -2.08080 q^{98} -0.619171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} - 5 q^{3} + 28 q^{4} - 5 q^{5} + 3 q^{6} - 5 q^{7} - 3 q^{8} + 5 q^{9} - 15 q^{10} + q^{11} - 13 q^{12} - 19 q^{14} + 10 q^{15} + 4 q^{16} - 46 q^{17} + 9 q^{18} - 8 q^{19} + 5 q^{20} + 16 q^{21}+ \cdots + 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.314789 0.222589 0.111295 0.993787i \(-0.464500\pi\)
0.111295 + 0.993787i \(0.464500\pi\)
\(3\) 1.77594 1.02534 0.512671 0.858585i \(-0.328656\pi\)
0.512671 + 0.858585i \(0.328656\pi\)
\(4\) −1.90091 −0.950454
\(5\) 0.987732 0.441727 0.220864 0.975305i \(-0.429112\pi\)
0.220864 + 0.975305i \(0.429112\pi\)
\(6\) 0.559047 0.228230
\(7\) 0.624388 0.235997 0.117998 0.993014i \(-0.462352\pi\)
0.117998 + 0.993014i \(0.462352\pi\)
\(8\) −1.22796 −0.434150
\(9\) 0.153977 0.0513255
\(10\) 0.310927 0.0983236
\(11\) −4.02120 −1.21244 −0.606219 0.795298i \(-0.707315\pi\)
−0.606219 + 0.795298i \(0.707315\pi\)
\(12\) −3.37591 −0.974540
\(13\) 0 0
\(14\) 0.196550 0.0525303
\(15\) 1.75416 0.452921
\(16\) 3.41527 0.853817
\(17\) 0.890404 0.215955 0.107977 0.994153i \(-0.465563\pi\)
0.107977 + 0.994153i \(0.465563\pi\)
\(18\) 0.0484701 0.0114245
\(19\) 4.17693 0.958254 0.479127 0.877746i \(-0.340953\pi\)
0.479127 + 0.877746i \(0.340953\pi\)
\(20\) −1.87759 −0.419841
\(21\) 1.10888 0.241977
\(22\) −1.26583 −0.269876
\(23\) −0.895890 −0.186806 −0.0934030 0.995628i \(-0.529774\pi\)
−0.0934030 + 0.995628i \(0.529774\pi\)
\(24\) −2.18079 −0.445152
\(25\) −4.02439 −0.804877
\(26\) 0 0
\(27\) −5.05438 −0.972715
\(28\) −1.18690 −0.224304
\(29\) 2.09204 0.388481 0.194241 0.980954i \(-0.437776\pi\)
0.194241 + 0.980954i \(0.437776\pi\)
\(30\) 0.552188 0.100815
\(31\) 1.00000 0.179605
\(32\) 3.53101 0.624200
\(33\) −7.14143 −1.24316
\(34\) 0.280289 0.0480692
\(35\) 0.616728 0.104246
\(36\) −0.292695 −0.0487826
\(37\) −0.475907 −0.0782386 −0.0391193 0.999235i \(-0.512455\pi\)
−0.0391193 + 0.999235i \(0.512455\pi\)
\(38\) 1.31485 0.213297
\(39\) 0 0
\(40\) −1.21290 −0.191776
\(41\) −3.26616 −0.510088 −0.255044 0.966929i \(-0.582090\pi\)
−0.255044 + 0.966929i \(0.582090\pi\)
\(42\) 0.349062 0.0538615
\(43\) 3.14589 0.479743 0.239872 0.970805i \(-0.422895\pi\)
0.239872 + 0.970805i \(0.422895\pi\)
\(44\) 7.64394 1.15237
\(45\) 0.152088 0.0226719
\(46\) −0.282016 −0.0415810
\(47\) −8.35590 −1.21883 −0.609417 0.792850i \(-0.708596\pi\)
−0.609417 + 0.792850i \(0.708596\pi\)
\(48\) 6.06532 0.875454
\(49\) −6.61014 −0.944306
\(50\) −1.26683 −0.179157
\(51\) 1.58131 0.221427
\(52\) 0 0
\(53\) −5.54163 −0.761202 −0.380601 0.924739i \(-0.624283\pi\)
−0.380601 + 0.924739i \(0.624283\pi\)
\(54\) −1.59106 −0.216516
\(55\) −3.97187 −0.535567
\(56\) −0.766725 −0.102458
\(57\) 7.41800 0.982537
\(58\) 0.658549 0.0864718
\(59\) 3.65296 0.475575 0.237788 0.971317i \(-0.423578\pi\)
0.237788 + 0.971317i \(0.423578\pi\)
\(60\) −3.33449 −0.430481
\(61\) 0.913094 0.116910 0.0584549 0.998290i \(-0.481383\pi\)
0.0584549 + 0.998290i \(0.481383\pi\)
\(62\) 0.314789 0.0399782
\(63\) 0.0961412 0.0121127
\(64\) −5.71901 −0.714877
\(65\) 0 0
\(66\) −2.24804 −0.276715
\(67\) 0.824213 0.100694 0.0503468 0.998732i \(-0.483967\pi\)
0.0503468 + 0.998732i \(0.483967\pi\)
\(68\) −1.69258 −0.205255
\(69\) −1.59105 −0.191540
\(70\) 0.194139 0.0232040
\(71\) −0.376435 −0.0446746 −0.0223373 0.999750i \(-0.507111\pi\)
−0.0223373 + 0.999750i \(0.507111\pi\)
\(72\) −0.189077 −0.0222830
\(73\) −0.989383 −0.115799 −0.0578993 0.998322i \(-0.518440\pi\)
−0.0578993 + 0.998322i \(0.518440\pi\)
\(74\) −0.149810 −0.0174151
\(75\) −7.14708 −0.825274
\(76\) −7.93996 −0.910776
\(77\) −2.51079 −0.286131
\(78\) 0 0
\(79\) −7.84939 −0.883125 −0.441562 0.897231i \(-0.645576\pi\)
−0.441562 + 0.897231i \(0.645576\pi\)
\(80\) 3.37337 0.377154
\(81\) −9.43822 −1.04869
\(82\) −1.02815 −0.113540
\(83\) −8.58347 −0.942159 −0.471079 0.882091i \(-0.656135\pi\)
−0.471079 + 0.882091i \(0.656135\pi\)
\(84\) −2.10788 −0.229988
\(85\) 0.879481 0.0953931
\(86\) 0.990289 0.106786
\(87\) 3.71534 0.398326
\(88\) 4.93788 0.526380
\(89\) −9.19298 −0.974454 −0.487227 0.873275i \(-0.661991\pi\)
−0.487227 + 0.873275i \(0.661991\pi\)
\(90\) 0.0478754 0.00504651
\(91\) 0 0
\(92\) 1.70300 0.177550
\(93\) 1.77594 0.184157
\(94\) −2.63034 −0.271299
\(95\) 4.12569 0.423287
\(96\) 6.27088 0.640019
\(97\) 12.5661 1.27589 0.637946 0.770081i \(-0.279784\pi\)
0.637946 + 0.770081i \(0.279784\pi\)
\(98\) −2.08080 −0.210192
\(99\) −0.619171 −0.0622291
\(100\) 7.64999 0.764999
\(101\) 6.06860 0.603848 0.301924 0.953332i \(-0.402371\pi\)
0.301924 + 0.953332i \(0.402371\pi\)
\(102\) 0.497778 0.0492873
\(103\) −11.0910 −1.09283 −0.546416 0.837514i \(-0.684008\pi\)
−0.546416 + 0.837514i \(0.684008\pi\)
\(104\) 0 0
\(105\) 1.09527 0.106888
\(106\) −1.74444 −0.169435
\(107\) 0.451699 0.0436674 0.0218337 0.999762i \(-0.493050\pi\)
0.0218337 + 0.999762i \(0.493050\pi\)
\(108\) 9.60791 0.924521
\(109\) −4.13545 −0.396105 −0.198052 0.980191i \(-0.563462\pi\)
−0.198052 + 0.980191i \(0.563462\pi\)
\(110\) −1.25030 −0.119211
\(111\) −0.845184 −0.0802213
\(112\) 2.13245 0.201498
\(113\) −12.0896 −1.13729 −0.568647 0.822582i \(-0.692533\pi\)
−0.568647 + 0.822582i \(0.692533\pi\)
\(114\) 2.33510 0.218702
\(115\) −0.884899 −0.0825172
\(116\) −3.97677 −0.369234
\(117\) 0 0
\(118\) 1.14991 0.105858
\(119\) 0.555958 0.0509646
\(120\) −2.15404 −0.196636
\(121\) 5.17008 0.470007
\(122\) 0.287432 0.0260228
\(123\) −5.80051 −0.523014
\(124\) −1.90091 −0.170707
\(125\) −8.91367 −0.797263
\(126\) 0.0302642 0.00269615
\(127\) −19.1249 −1.69706 −0.848529 0.529148i \(-0.822511\pi\)
−0.848529 + 0.529148i \(0.822511\pi\)
\(128\) −8.86230 −0.783324
\(129\) 5.58692 0.491901
\(130\) 0 0
\(131\) −16.0240 −1.40002 −0.700011 0.714132i \(-0.746822\pi\)
−0.700011 + 0.714132i \(0.746822\pi\)
\(132\) 13.5752 1.18157
\(133\) 2.60803 0.226145
\(134\) 0.259453 0.0224133
\(135\) −4.99237 −0.429675
\(136\) −1.09338 −0.0937567
\(137\) −5.94011 −0.507498 −0.253749 0.967270i \(-0.581664\pi\)
−0.253749 + 0.967270i \(0.581664\pi\)
\(138\) −0.500844 −0.0426347
\(139\) 12.4010 1.05184 0.525918 0.850535i \(-0.323722\pi\)
0.525918 + 0.850535i \(0.323722\pi\)
\(140\) −1.17234 −0.0990811
\(141\) −14.8396 −1.24972
\(142\) −0.118497 −0.00994408
\(143\) 0 0
\(144\) 0.525871 0.0438226
\(145\) 2.06637 0.171603
\(146\) −0.311446 −0.0257755
\(147\) −11.7392 −0.968236
\(148\) 0.904655 0.0743622
\(149\) 6.77587 0.555101 0.277550 0.960711i \(-0.410477\pi\)
0.277550 + 0.960711i \(0.410477\pi\)
\(150\) −2.24982 −0.183697
\(151\) 2.70461 0.220098 0.110049 0.993926i \(-0.464899\pi\)
0.110049 + 0.993926i \(0.464899\pi\)
\(152\) −5.12911 −0.416026
\(153\) 0.137101 0.0110840
\(154\) −0.790369 −0.0636897
\(155\) 0.987732 0.0793365
\(156\) 0 0
\(157\) −12.4564 −0.994128 −0.497064 0.867714i \(-0.665589\pi\)
−0.497064 + 0.867714i \(0.665589\pi\)
\(158\) −2.47090 −0.196574
\(159\) −9.84163 −0.780492
\(160\) 3.48769 0.275726
\(161\) −0.559383 −0.0440856
\(162\) −2.97104 −0.233427
\(163\) −1.14360 −0.0895738 −0.0447869 0.998997i \(-0.514261\pi\)
−0.0447869 + 0.998997i \(0.514261\pi\)
\(164\) 6.20866 0.484815
\(165\) −7.05382 −0.549139
\(166\) −2.70198 −0.209714
\(167\) 0.837976 0.0648445 0.0324223 0.999474i \(-0.489678\pi\)
0.0324223 + 0.999474i \(0.489678\pi\)
\(168\) −1.36166 −0.105054
\(169\) 0 0
\(170\) 0.276850 0.0212335
\(171\) 0.643150 0.0491829
\(172\) −5.98004 −0.455974
\(173\) −6.80018 −0.517008 −0.258504 0.966010i \(-0.583230\pi\)
−0.258504 + 0.966010i \(0.583230\pi\)
\(174\) 1.16955 0.0886631
\(175\) −2.51278 −0.189948
\(176\) −13.7335 −1.03520
\(177\) 6.48746 0.487627
\(178\) −2.89384 −0.216903
\(179\) −23.8094 −1.77959 −0.889797 0.456356i \(-0.849154\pi\)
−0.889797 + 0.456356i \(0.849154\pi\)
\(180\) −0.289105 −0.0215486
\(181\) −14.5356 −1.08042 −0.540212 0.841529i \(-0.681656\pi\)
−0.540212 + 0.841529i \(0.681656\pi\)
\(182\) 0 0
\(183\) 1.62160 0.119872
\(184\) 1.10012 0.0811018
\(185\) −0.470068 −0.0345601
\(186\) 0.559047 0.0409913
\(187\) −3.58050 −0.261832
\(188\) 15.8838 1.15845
\(189\) −3.15589 −0.229558
\(190\) 1.29872 0.0942190
\(191\) 1.18604 0.0858191 0.0429095 0.999079i \(-0.486337\pi\)
0.0429095 + 0.999079i \(0.486337\pi\)
\(192\) −10.1566 −0.732993
\(193\) 4.70333 0.338553 0.169277 0.985569i \(-0.445857\pi\)
0.169277 + 0.985569i \(0.445857\pi\)
\(194\) 3.95566 0.284000
\(195\) 0 0
\(196\) 12.5653 0.897519
\(197\) 13.8258 0.985046 0.492523 0.870299i \(-0.336075\pi\)
0.492523 + 0.870299i \(0.336075\pi\)
\(198\) −0.194908 −0.0138515
\(199\) 3.81237 0.270252 0.135126 0.990828i \(-0.456856\pi\)
0.135126 + 0.990828i \(0.456856\pi\)
\(200\) 4.94179 0.349437
\(201\) 1.46376 0.103245
\(202\) 1.91032 0.134410
\(203\) 1.30624 0.0916803
\(204\) −3.00592 −0.210457
\(205\) −3.22609 −0.225320
\(206\) −3.49133 −0.243253
\(207\) −0.137946 −0.00958792
\(208\) 0 0
\(209\) −16.7963 −1.16182
\(210\) 0.344780 0.0237921
\(211\) 2.31820 0.159592 0.0797959 0.996811i \(-0.474573\pi\)
0.0797959 + 0.996811i \(0.474573\pi\)
\(212\) 10.5341 0.723487
\(213\) −0.668527 −0.0458067
\(214\) 0.142190 0.00971988
\(215\) 3.10729 0.211916
\(216\) 6.20658 0.422304
\(217\) 0.624388 0.0423862
\(218\) −1.30179 −0.0881686
\(219\) −1.75709 −0.118733
\(220\) 7.55016 0.509032
\(221\) 0 0
\(222\) −0.266054 −0.0178564
\(223\) 27.0832 1.81362 0.906812 0.421535i \(-0.138509\pi\)
0.906812 + 0.421535i \(0.138509\pi\)
\(224\) 2.20472 0.147309
\(225\) −0.619661 −0.0413108
\(226\) −3.80567 −0.253149
\(227\) 9.18731 0.609783 0.304892 0.952387i \(-0.401380\pi\)
0.304892 + 0.952387i \(0.401380\pi\)
\(228\) −14.1009 −0.933857
\(229\) 28.8260 1.90488 0.952438 0.304732i \(-0.0985670\pi\)
0.952438 + 0.304732i \(0.0985670\pi\)
\(230\) −0.278556 −0.0183674
\(231\) −4.45903 −0.293382
\(232\) −2.56894 −0.168659
\(233\) 14.9628 0.980244 0.490122 0.871654i \(-0.336952\pi\)
0.490122 + 0.871654i \(0.336952\pi\)
\(234\) 0 0
\(235\) −8.25339 −0.538392
\(236\) −6.94395 −0.452012
\(237\) −13.9401 −0.905505
\(238\) 0.175009 0.0113442
\(239\) −22.4151 −1.44991 −0.724956 0.688796i \(-0.758140\pi\)
−0.724956 + 0.688796i \(0.758140\pi\)
\(240\) 5.99091 0.386712
\(241\) 12.3994 0.798719 0.399359 0.916794i \(-0.369233\pi\)
0.399359 + 0.916794i \(0.369233\pi\)
\(242\) 1.62748 0.104618
\(243\) −1.59862 −0.102551
\(244\) −1.73571 −0.111117
\(245\) −6.52904 −0.417125
\(246\) −1.82593 −0.116417
\(247\) 0 0
\(248\) −1.22796 −0.0779756
\(249\) −15.2438 −0.966034
\(250\) −2.80592 −0.177462
\(251\) −25.5893 −1.61518 −0.807591 0.589743i \(-0.799229\pi\)
−0.807591 + 0.589743i \(0.799229\pi\)
\(252\) −0.182756 −0.0115125
\(253\) 3.60256 0.226491
\(254\) −6.02029 −0.377747
\(255\) 1.56191 0.0978105
\(256\) 8.64828 0.540517
\(257\) −0.978333 −0.0610267 −0.0305134 0.999534i \(-0.509714\pi\)
−0.0305134 + 0.999534i \(0.509714\pi\)
\(258\) 1.75870 0.109492
\(259\) −0.297151 −0.0184640
\(260\) 0 0
\(261\) 0.322125 0.0199390
\(262\) −5.04417 −0.311630
\(263\) 19.7634 1.21866 0.609332 0.792915i \(-0.291438\pi\)
0.609332 + 0.792915i \(0.291438\pi\)
\(264\) 8.76940 0.539719
\(265\) −5.47365 −0.336243
\(266\) 0.820977 0.0503373
\(267\) −16.3262 −0.999148
\(268\) −1.56675 −0.0957047
\(269\) −4.99551 −0.304582 −0.152291 0.988336i \(-0.548665\pi\)
−0.152291 + 0.988336i \(0.548665\pi\)
\(270\) −1.57154 −0.0956409
\(271\) 10.8601 0.659703 0.329852 0.944033i \(-0.393001\pi\)
0.329852 + 0.944033i \(0.393001\pi\)
\(272\) 3.04097 0.184386
\(273\) 0 0
\(274\) −1.86988 −0.112964
\(275\) 16.1829 0.975864
\(276\) 3.02444 0.182050
\(277\) −21.4190 −1.28694 −0.643470 0.765471i \(-0.722506\pi\)
−0.643470 + 0.765471i \(0.722506\pi\)
\(278\) 3.90368 0.234127
\(279\) 0.153977 0.00921834
\(280\) −0.757318 −0.0452584
\(281\) 15.2491 0.909687 0.454844 0.890571i \(-0.349695\pi\)
0.454844 + 0.890571i \(0.349695\pi\)
\(282\) −4.67134 −0.278174
\(283\) −4.65745 −0.276857 −0.138428 0.990372i \(-0.544205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(284\) 0.715568 0.0424611
\(285\) 7.32699 0.434013
\(286\) 0 0
\(287\) −2.03935 −0.120379
\(288\) 0.543693 0.0320374
\(289\) −16.2072 −0.953364
\(290\) 0.650470 0.0381969
\(291\) 22.3167 1.30823
\(292\) 1.88073 0.110061
\(293\) −11.9600 −0.698711 −0.349356 0.936990i \(-0.613600\pi\)
−0.349356 + 0.936990i \(0.613600\pi\)
\(294\) −3.69538 −0.215519
\(295\) 3.60815 0.210074
\(296\) 0.584395 0.0339673
\(297\) 20.3247 1.17936
\(298\) 2.13297 0.123559
\(299\) 0 0
\(300\) 13.5860 0.784385
\(301\) 1.96426 0.113218
\(302\) 0.851382 0.0489915
\(303\) 10.7775 0.619150
\(304\) 14.2653 0.818173
\(305\) 0.901892 0.0516422
\(306\) 0.0431580 0.00246718
\(307\) 34.6495 1.97755 0.988776 0.149403i \(-0.0477351\pi\)
0.988776 + 0.149403i \(0.0477351\pi\)
\(308\) 4.77279 0.271955
\(309\) −19.6971 −1.12053
\(310\) 0.310927 0.0176594
\(311\) 22.2979 1.26440 0.632200 0.774805i \(-0.282152\pi\)
0.632200 + 0.774805i \(0.282152\pi\)
\(312\) 0 0
\(313\) 21.7431 1.22899 0.614495 0.788921i \(-0.289360\pi\)
0.614495 + 0.788921i \(0.289360\pi\)
\(314\) −3.92113 −0.221282
\(315\) 0.0949617 0.00535049
\(316\) 14.9210 0.839370
\(317\) −19.5584 −1.09851 −0.549256 0.835654i \(-0.685089\pi\)
−0.549256 + 0.835654i \(0.685089\pi\)
\(318\) −3.09803 −0.173729
\(319\) −8.41251 −0.471010
\(320\) −5.64885 −0.315780
\(321\) 0.802192 0.0447740
\(322\) −0.176087 −0.00981297
\(323\) 3.71916 0.206939
\(324\) 17.9412 0.996733
\(325\) 0 0
\(326\) −0.359993 −0.0199382
\(327\) −7.34433 −0.406143
\(328\) 4.01071 0.221455
\(329\) −5.21733 −0.287641
\(330\) −2.22046 −0.122232
\(331\) −18.9346 −1.04074 −0.520371 0.853941i \(-0.674206\pi\)
−0.520371 + 0.853941i \(0.674206\pi\)
\(332\) 16.3164 0.895478
\(333\) −0.0732785 −0.00401564
\(334\) 0.263785 0.0144337
\(335\) 0.814101 0.0444791
\(336\) 3.78712 0.206604
\(337\) 3.29812 0.179660 0.0898301 0.995957i \(-0.471368\pi\)
0.0898301 + 0.995957i \(0.471368\pi\)
\(338\) 0 0
\(339\) −21.4705 −1.16612
\(340\) −1.67181 −0.0906667
\(341\) −4.02120 −0.217760
\(342\) 0.202456 0.0109476
\(343\) −8.49801 −0.458850
\(344\) −3.86303 −0.208281
\(345\) −1.57153 −0.0846084
\(346\) −2.14062 −0.115080
\(347\) 3.92888 0.210913 0.105457 0.994424i \(-0.466370\pi\)
0.105457 + 0.994424i \(0.466370\pi\)
\(348\) −7.06252 −0.378591
\(349\) 10.2127 0.546676 0.273338 0.961918i \(-0.411872\pi\)
0.273338 + 0.961918i \(0.411872\pi\)
\(350\) −0.790994 −0.0422804
\(351\) 0 0
\(352\) −14.1989 −0.756804
\(353\) 11.9626 0.636705 0.318352 0.947972i \(-0.396871\pi\)
0.318352 + 0.947972i \(0.396871\pi\)
\(354\) 2.04218 0.108540
\(355\) −0.371816 −0.0197340
\(356\) 17.4750 0.926173
\(357\) 0.987350 0.0522561
\(358\) −7.49491 −0.396118
\(359\) 34.6340 1.82791 0.913955 0.405815i \(-0.133012\pi\)
0.913955 + 0.405815i \(0.133012\pi\)
\(360\) −0.186758 −0.00984299
\(361\) −1.55325 −0.0817498
\(362\) −4.57565 −0.240491
\(363\) 9.18177 0.481918
\(364\) 0 0
\(365\) −0.977245 −0.0511513
\(366\) 0.510462 0.0266823
\(367\) −9.06182 −0.473023 −0.236512 0.971629i \(-0.576004\pi\)
−0.236512 + 0.971629i \(0.576004\pi\)
\(368\) −3.05970 −0.159498
\(369\) −0.502912 −0.0261805
\(370\) −0.147972 −0.00769270
\(371\) −3.46013 −0.179641
\(372\) −3.37591 −0.175033
\(373\) 15.2874 0.791554 0.395777 0.918347i \(-0.370475\pi\)
0.395777 + 0.918347i \(0.370475\pi\)
\(374\) −1.12710 −0.0582809
\(375\) −15.8302 −0.817467
\(376\) 10.2607 0.529156
\(377\) 0 0
\(378\) −0.993440 −0.0510970
\(379\) −11.4272 −0.586977 −0.293489 0.955963i \(-0.594816\pi\)
−0.293489 + 0.955963i \(0.594816\pi\)
\(380\) −7.84255 −0.402314
\(381\) −33.9647 −1.74006
\(382\) 0.373353 0.0191024
\(383\) −13.2369 −0.676372 −0.338186 0.941079i \(-0.609813\pi\)
−0.338186 + 0.941079i \(0.609813\pi\)
\(384\) −15.7389 −0.803175
\(385\) −2.47999 −0.126392
\(386\) 1.48056 0.0753583
\(387\) 0.484393 0.0246231
\(388\) −23.8870 −1.21268
\(389\) −15.6775 −0.794881 −0.397441 0.917628i \(-0.630102\pi\)
−0.397441 + 0.917628i \(0.630102\pi\)
\(390\) 0 0
\(391\) −0.797704 −0.0403416
\(392\) 8.11700 0.409970
\(393\) −28.4577 −1.43550
\(394\) 4.35220 0.219261
\(395\) −7.75309 −0.390100
\(396\) 1.17699 0.0591459
\(397\) −6.41466 −0.321943 −0.160971 0.986959i \(-0.551463\pi\)
−0.160971 + 0.986959i \(0.551463\pi\)
\(398\) 1.20009 0.0601551
\(399\) 4.63171 0.231876
\(400\) −13.7444 −0.687218
\(401\) 4.80528 0.239964 0.119982 0.992776i \(-0.461716\pi\)
0.119982 + 0.992776i \(0.461716\pi\)
\(402\) 0.460774 0.0229813
\(403\) 0 0
\(404\) −11.5358 −0.573930
\(405\) −9.32243 −0.463235
\(406\) 0.411191 0.0204070
\(407\) 1.91372 0.0948595
\(408\) −1.94179 −0.0961327
\(409\) −20.6886 −1.02299 −0.511493 0.859287i \(-0.670907\pi\)
−0.511493 + 0.859287i \(0.670907\pi\)
\(410\) −1.01553 −0.0501537
\(411\) −10.5493 −0.520359
\(412\) 21.0831 1.03869
\(413\) 2.28087 0.112234
\(414\) −0.0434239 −0.00213417
\(415\) −8.47817 −0.416177
\(416\) 0 0
\(417\) 22.0234 1.07849
\(418\) −5.28728 −0.258609
\(419\) −0.943094 −0.0460731 −0.0230366 0.999735i \(-0.507333\pi\)
−0.0230366 + 0.999735i \(0.507333\pi\)
\(420\) −2.08202 −0.101592
\(421\) −18.1427 −0.884223 −0.442112 0.896960i \(-0.645771\pi\)
−0.442112 + 0.896960i \(0.645771\pi\)
\(422\) 0.729744 0.0355234
\(423\) −1.28661 −0.0625573
\(424\) 6.80491 0.330476
\(425\) −3.58333 −0.173817
\(426\) −0.210445 −0.0101961
\(427\) 0.570125 0.0275903
\(428\) −0.858638 −0.0415038
\(429\) 0 0
\(430\) 0.978140 0.0471701
\(431\) 1.77685 0.0855878 0.0427939 0.999084i \(-0.486374\pi\)
0.0427939 + 0.999084i \(0.486374\pi\)
\(432\) −17.2621 −0.830521
\(433\) 7.96494 0.382771 0.191385 0.981515i \(-0.438702\pi\)
0.191385 + 0.981515i \(0.438702\pi\)
\(434\) 0.196550 0.00943472
\(435\) 3.66976 0.175951
\(436\) 7.86112 0.376479
\(437\) −3.74207 −0.179007
\(438\) −0.553111 −0.0264287
\(439\) −20.9693 −1.00081 −0.500406 0.865791i \(-0.666816\pi\)
−0.500406 + 0.865791i \(0.666816\pi\)
\(440\) 4.87730 0.232516
\(441\) −1.01781 −0.0484670
\(442\) 0 0
\(443\) −23.7103 −1.12651 −0.563255 0.826283i \(-0.690451\pi\)
−0.563255 + 0.826283i \(0.690451\pi\)
\(444\) 1.60662 0.0762467
\(445\) −9.08019 −0.430442
\(446\) 8.52548 0.403693
\(447\) 12.0336 0.569168
\(448\) −3.57089 −0.168709
\(449\) 18.2107 0.859418 0.429709 0.902967i \(-0.358616\pi\)
0.429709 + 0.902967i \(0.358616\pi\)
\(450\) −0.195062 −0.00919533
\(451\) 13.1339 0.618450
\(452\) 22.9812 1.08095
\(453\) 4.80324 0.225676
\(454\) 2.89206 0.135731
\(455\) 0 0
\(456\) −9.10901 −0.426569
\(457\) −19.7708 −0.924841 −0.462421 0.886661i \(-0.653019\pi\)
−0.462421 + 0.886661i \(0.653019\pi\)
\(458\) 9.07410 0.424005
\(459\) −4.50044 −0.210063
\(460\) 1.68211 0.0784288
\(461\) −26.5203 −1.23517 −0.617586 0.786503i \(-0.711889\pi\)
−0.617586 + 0.786503i \(0.711889\pi\)
\(462\) −1.40365 −0.0653037
\(463\) 12.6951 0.589989 0.294995 0.955499i \(-0.404682\pi\)
0.294995 + 0.955499i \(0.404682\pi\)
\(464\) 7.14487 0.331692
\(465\) 1.75416 0.0813470
\(466\) 4.71011 0.218192
\(467\) −9.42570 −0.436169 −0.218085 0.975930i \(-0.569981\pi\)
−0.218085 + 0.975930i \(0.569981\pi\)
\(468\) 0 0
\(469\) 0.514629 0.0237634
\(470\) −2.59807 −0.119840
\(471\) −22.1219 −1.01932
\(472\) −4.48570 −0.206471
\(473\) −12.6503 −0.581659
\(474\) −4.38817 −0.201556
\(475\) −16.8096 −0.771277
\(476\) −1.05683 −0.0484395
\(477\) −0.853282 −0.0390691
\(478\) −7.05601 −0.322734
\(479\) −33.0219 −1.50881 −0.754404 0.656410i \(-0.772074\pi\)
−0.754404 + 0.656410i \(0.772074\pi\)
\(480\) 6.19394 0.282714
\(481\) 0 0
\(482\) 3.90320 0.177786
\(483\) −0.993433 −0.0452028
\(484\) −9.82784 −0.446720
\(485\) 12.4119 0.563596
\(486\) −0.503227 −0.0228268
\(487\) 6.44478 0.292041 0.146021 0.989282i \(-0.453353\pi\)
0.146021 + 0.989282i \(0.453353\pi\)
\(488\) −1.12124 −0.0507563
\(489\) −2.03097 −0.0918438
\(490\) −2.05527 −0.0928476
\(491\) 7.13297 0.321907 0.160953 0.986962i \(-0.448543\pi\)
0.160953 + 0.986962i \(0.448543\pi\)
\(492\) 11.0262 0.497101
\(493\) 1.86276 0.0838944
\(494\) 0 0
\(495\) −0.611575 −0.0274883
\(496\) 3.41527 0.153350
\(497\) −0.235041 −0.0105431
\(498\) −4.79856 −0.215029
\(499\) −3.77451 −0.168970 −0.0844851 0.996425i \(-0.526925\pi\)
−0.0844851 + 0.996425i \(0.526925\pi\)
\(500\) 16.9441 0.757762
\(501\) 1.48820 0.0664878
\(502\) −8.05522 −0.359522
\(503\) 32.9944 1.47115 0.735573 0.677446i \(-0.236913\pi\)
0.735573 + 0.677446i \(0.236913\pi\)
\(504\) −0.118058 −0.00525871
\(505\) 5.99414 0.266736
\(506\) 1.13404 0.0504144
\(507\) 0 0
\(508\) 36.3546 1.61298
\(509\) 13.6247 0.603903 0.301951 0.953323i \(-0.402362\pi\)
0.301951 + 0.953323i \(0.402362\pi\)
\(510\) 0.491671 0.0217716
\(511\) −0.617759 −0.0273281
\(512\) 20.4470 0.903637
\(513\) −21.1118 −0.932108
\(514\) −0.307968 −0.0135839
\(515\) −10.9550 −0.482734
\(516\) −10.6202 −0.467529
\(517\) 33.6008 1.47776
\(518\) −0.0935397 −0.00410990
\(519\) −12.0767 −0.530110
\(520\) 0 0
\(521\) −12.6423 −0.553870 −0.276935 0.960889i \(-0.589319\pi\)
−0.276935 + 0.960889i \(0.589319\pi\)
\(522\) 0.101401 0.00443821
\(523\) 23.7677 1.03929 0.519644 0.854383i \(-0.326065\pi\)
0.519644 + 0.854383i \(0.326065\pi\)
\(524\) 30.4601 1.33066
\(525\) −4.46256 −0.194762
\(526\) 6.22130 0.271262
\(527\) 0.890404 0.0387866
\(528\) −24.3899 −1.06143
\(529\) −22.1974 −0.965104
\(530\) −1.72304 −0.0748441
\(531\) 0.562471 0.0244092
\(532\) −4.95762 −0.214940
\(533\) 0 0
\(534\) −5.13930 −0.222399
\(535\) 0.446157 0.0192891
\(536\) −1.01210 −0.0437161
\(537\) −42.2841 −1.82469
\(538\) −1.57253 −0.0677965
\(539\) 26.5807 1.14491
\(540\) 9.49003 0.408386
\(541\) −13.8734 −0.596462 −0.298231 0.954494i \(-0.596397\pi\)
−0.298231 + 0.954494i \(0.596397\pi\)
\(542\) 3.41863 0.146843
\(543\) −25.8144 −1.10780
\(544\) 3.14403 0.134799
\(545\) −4.08472 −0.174970
\(546\) 0 0
\(547\) 15.3339 0.655631 0.327815 0.944742i \(-0.393688\pi\)
0.327815 + 0.944742i \(0.393688\pi\)
\(548\) 11.2916 0.482354
\(549\) 0.140595 0.00600045
\(550\) 5.09418 0.217217
\(551\) 8.73829 0.372264
\(552\) 1.95375 0.0831570
\(553\) −4.90107 −0.208414
\(554\) −6.74244 −0.286459
\(555\) −0.834815 −0.0354359
\(556\) −23.5731 −0.999722
\(557\) −19.9009 −0.843228 −0.421614 0.906775i \(-0.638536\pi\)
−0.421614 + 0.906775i \(0.638536\pi\)
\(558\) 0.0484701 0.00205190
\(559\) 0 0
\(560\) 2.10629 0.0890071
\(561\) −6.35876 −0.268467
\(562\) 4.80025 0.202487
\(563\) −5.34683 −0.225342 −0.112671 0.993632i \(-0.535941\pi\)
−0.112671 + 0.993632i \(0.535941\pi\)
\(564\) 28.2087 1.18780
\(565\) −11.9413 −0.502374
\(566\) −1.46611 −0.0616253
\(567\) −5.89312 −0.247488
\(568\) 0.462247 0.0193955
\(569\) 34.7169 1.45541 0.727705 0.685890i \(-0.240587\pi\)
0.727705 + 0.685890i \(0.240587\pi\)
\(570\) 2.30645 0.0966067
\(571\) 42.2991 1.77016 0.885081 0.465436i \(-0.154102\pi\)
0.885081 + 0.465436i \(0.154102\pi\)
\(572\) 0 0
\(573\) 2.10635 0.0879939
\(574\) −0.641964 −0.0267951
\(575\) 3.60541 0.150356
\(576\) −0.880595 −0.0366914
\(577\) −11.8712 −0.494205 −0.247102 0.968989i \(-0.579478\pi\)
−0.247102 + 0.968989i \(0.579478\pi\)
\(578\) −5.10184 −0.212208
\(579\) 8.35286 0.347133
\(580\) −3.92798 −0.163101
\(581\) −5.35942 −0.222346
\(582\) 7.02503 0.291197
\(583\) 22.2840 0.922910
\(584\) 1.21492 0.0502739
\(585\) 0 0
\(586\) −3.76488 −0.155526
\(587\) −28.4973 −1.17621 −0.588106 0.808784i \(-0.700126\pi\)
−0.588106 + 0.808784i \(0.700126\pi\)
\(588\) 22.3152 0.920264
\(589\) 4.17693 0.172107
\(590\) 1.13580 0.0467603
\(591\) 24.5538 1.01001
\(592\) −1.62535 −0.0668015
\(593\) −12.4171 −0.509909 −0.254955 0.966953i \(-0.582061\pi\)
−0.254955 + 0.966953i \(0.582061\pi\)
\(594\) 6.39798 0.262512
\(595\) 0.549137 0.0225124
\(596\) −12.8803 −0.527598
\(597\) 6.77056 0.277100
\(598\) 0 0
\(599\) −32.9899 −1.34793 −0.673965 0.738763i \(-0.735410\pi\)
−0.673965 + 0.738763i \(0.735410\pi\)
\(600\) 8.77634 0.358293
\(601\) 32.0104 1.30573 0.652866 0.757474i \(-0.273567\pi\)
0.652866 + 0.757474i \(0.273567\pi\)
\(602\) 0.618325 0.0252011
\(603\) 0.126910 0.00516816
\(604\) −5.14122 −0.209193
\(605\) 5.10665 0.207615
\(606\) 3.39263 0.137816
\(607\) −0.967410 −0.0392660 −0.0196330 0.999807i \(-0.506250\pi\)
−0.0196330 + 0.999807i \(0.506250\pi\)
\(608\) 14.7488 0.598142
\(609\) 2.31982 0.0940037
\(610\) 0.283905 0.0114950
\(611\) 0 0
\(612\) −0.260617 −0.0105348
\(613\) −36.2294 −1.46329 −0.731646 0.681685i \(-0.761248\pi\)
−0.731646 + 0.681685i \(0.761248\pi\)
\(614\) 10.9073 0.440182
\(615\) −5.72935 −0.231030
\(616\) 3.08316 0.124224
\(617\) 29.1855 1.17496 0.587482 0.809237i \(-0.300119\pi\)
0.587482 + 0.809237i \(0.300119\pi\)
\(618\) −6.20041 −0.249417
\(619\) 18.0122 0.723970 0.361985 0.932184i \(-0.382099\pi\)
0.361985 + 0.932184i \(0.382099\pi\)
\(620\) −1.87759 −0.0754057
\(621\) 4.52817 0.181709
\(622\) 7.01914 0.281442
\(623\) −5.73999 −0.229968
\(624\) 0 0
\(625\) 11.3176 0.452705
\(626\) 6.84447 0.273560
\(627\) −29.8293 −1.19127
\(628\) 23.6785 0.944873
\(629\) −0.423750 −0.0168960
\(630\) 0.0298929 0.00119096
\(631\) −1.41290 −0.0562465 −0.0281232 0.999604i \(-0.508953\pi\)
−0.0281232 + 0.999604i \(0.508953\pi\)
\(632\) 9.63874 0.383409
\(633\) 4.11700 0.163636
\(634\) −6.15677 −0.244517
\(635\) −18.8902 −0.749637
\(636\) 18.7080 0.741822
\(637\) 0 0
\(638\) −2.64816 −0.104842
\(639\) −0.0579622 −0.00229295
\(640\) −8.75358 −0.346015
\(641\) 14.7425 0.582296 0.291148 0.956678i \(-0.405963\pi\)
0.291148 + 0.956678i \(0.405963\pi\)
\(642\) 0.252521 0.00996620
\(643\) 36.7900 1.45085 0.725427 0.688299i \(-0.241642\pi\)
0.725427 + 0.688299i \(0.241642\pi\)
\(644\) 1.06334 0.0419013
\(645\) 5.51838 0.217286
\(646\) 1.17075 0.0460625
\(647\) 15.7406 0.618827 0.309413 0.950928i \(-0.399867\pi\)
0.309413 + 0.950928i \(0.399867\pi\)
\(648\) 11.5898 0.455289
\(649\) −14.6893 −0.576606
\(650\) 0 0
\(651\) 1.10888 0.0434604
\(652\) 2.17388 0.0851358
\(653\) 37.4073 1.46386 0.731930 0.681380i \(-0.238620\pi\)
0.731930 + 0.681380i \(0.238620\pi\)
\(654\) −2.31191 −0.0904029
\(655\) −15.8274 −0.618428
\(656\) −11.1548 −0.435522
\(657\) −0.152342 −0.00594342
\(658\) −1.64236 −0.0640257
\(659\) −26.3690 −1.02719 −0.513595 0.858033i \(-0.671686\pi\)
−0.513595 + 0.858033i \(0.671686\pi\)
\(660\) 13.4087 0.521931
\(661\) −42.8478 −1.66659 −0.833294 0.552830i \(-0.813548\pi\)
−0.833294 + 0.552830i \(0.813548\pi\)
\(662\) −5.96040 −0.231658
\(663\) 0 0
\(664\) 10.5402 0.409038
\(665\) 2.57603 0.0998942
\(666\) −0.0230672 −0.000893838 0
\(667\) −1.87423 −0.0725707
\(668\) −1.59292 −0.0616317
\(669\) 48.0982 1.85958
\(670\) 0.256270 0.00990057
\(671\) −3.67174 −0.141746
\(672\) 3.91546 0.151042
\(673\) 18.0875 0.697223 0.348612 0.937267i \(-0.386653\pi\)
0.348612 + 0.937267i \(0.386653\pi\)
\(674\) 1.03821 0.0399904
\(675\) 20.3408 0.782917
\(676\) 0 0
\(677\) 10.1149 0.388747 0.194374 0.980928i \(-0.437733\pi\)
0.194374 + 0.980928i \(0.437733\pi\)
\(678\) −6.75865 −0.259565
\(679\) 7.84612 0.301106
\(680\) −1.07997 −0.0414149
\(681\) 16.3161 0.625236
\(682\) −1.26583 −0.0484711
\(683\) 33.8799 1.29638 0.648189 0.761480i \(-0.275527\pi\)
0.648189 + 0.761480i \(0.275527\pi\)
\(684\) −1.22257 −0.0467461
\(685\) −5.86724 −0.224176
\(686\) −2.67508 −0.102135
\(687\) 51.1934 1.95315
\(688\) 10.7440 0.409613
\(689\) 0 0
\(690\) −0.494700 −0.0188329
\(691\) −26.5682 −1.01070 −0.505351 0.862914i \(-0.668637\pi\)
−0.505351 + 0.862914i \(0.668637\pi\)
\(692\) 12.9265 0.491393
\(693\) −0.386603 −0.0146858
\(694\) 1.23677 0.0469470
\(695\) 12.2488 0.464625
\(696\) −4.56229 −0.172933
\(697\) −2.90820 −0.110156
\(698\) 3.21486 0.121684
\(699\) 26.5730 1.00508
\(700\) 4.77656 0.180537
\(701\) 7.55154 0.285218 0.142609 0.989779i \(-0.454451\pi\)
0.142609 + 0.989779i \(0.454451\pi\)
\(702\) 0 0
\(703\) −1.98783 −0.0749724
\(704\) 22.9973 0.866744
\(705\) −14.6576 −0.552035
\(706\) 3.76569 0.141724
\(707\) 3.78916 0.142506
\(708\) −12.3321 −0.463467
\(709\) −6.43577 −0.241700 −0.120850 0.992671i \(-0.538562\pi\)
−0.120850 + 0.992671i \(0.538562\pi\)
\(710\) −0.117044 −0.00439257
\(711\) −1.20862 −0.0453269
\(712\) 11.2886 0.423059
\(713\) −0.895890 −0.0335513
\(714\) 0.310807 0.0116316
\(715\) 0 0
\(716\) 45.2594 1.69142
\(717\) −39.8079 −1.48665
\(718\) 10.9024 0.406873
\(719\) 18.7209 0.698170 0.349085 0.937091i \(-0.386492\pi\)
0.349085 + 0.937091i \(0.386492\pi\)
\(720\) 0.519420 0.0193576
\(721\) −6.92512 −0.257905
\(722\) −0.488944 −0.0181966
\(723\) 22.0207 0.818960
\(724\) 27.6309 1.02689
\(725\) −8.41916 −0.312680
\(726\) 2.89031 0.107270
\(727\) −34.1439 −1.26633 −0.633163 0.774019i \(-0.718244\pi\)
−0.633163 + 0.774019i \(0.718244\pi\)
\(728\) 0 0
\(729\) 25.4756 0.943541
\(730\) −0.307626 −0.0113857
\(731\) 2.80111 0.103603
\(732\) −3.08252 −0.113933
\(733\) 24.3837 0.900634 0.450317 0.892869i \(-0.351311\pi\)
0.450317 + 0.892869i \(0.351311\pi\)
\(734\) −2.85256 −0.105290
\(735\) −11.5952 −0.427696
\(736\) −3.16340 −0.116604
\(737\) −3.31433 −0.122085
\(738\) −0.158311 −0.00582750
\(739\) −12.4385 −0.457558 −0.228779 0.973478i \(-0.573473\pi\)
−0.228779 + 0.973478i \(0.573473\pi\)
\(740\) 0.893557 0.0328478
\(741\) 0 0
\(742\) −1.08921 −0.0399862
\(743\) 30.9826 1.13664 0.568321 0.822807i \(-0.307593\pi\)
0.568321 + 0.822807i \(0.307593\pi\)
\(744\) −2.18079 −0.0799517
\(745\) 6.69274 0.245203
\(746\) 4.81231 0.176191
\(747\) −1.32165 −0.0483568
\(748\) 6.80620 0.248859
\(749\) 0.282035 0.0103054
\(750\) −4.98316 −0.181959
\(751\) 1.20834 0.0440930 0.0220465 0.999757i \(-0.492982\pi\)
0.0220465 + 0.999757i \(0.492982\pi\)
\(752\) −28.5376 −1.04066
\(753\) −45.4451 −1.65611
\(754\) 0 0
\(755\) 2.67143 0.0972234
\(756\) 5.99907 0.218184
\(757\) −21.9668 −0.798396 −0.399198 0.916865i \(-0.630711\pi\)
−0.399198 + 0.916865i \(0.630711\pi\)
\(758\) −3.59716 −0.130655
\(759\) 6.39794 0.232230
\(760\) −5.06618 −0.183770
\(761\) 40.7712 1.47795 0.738977 0.673731i \(-0.235309\pi\)
0.738977 + 0.673731i \(0.235309\pi\)
\(762\) −10.6917 −0.387320
\(763\) −2.58213 −0.0934793
\(764\) −2.25456 −0.0815671
\(765\) 0.135419 0.00489610
\(766\) −4.16681 −0.150553
\(767\) 0 0
\(768\) 15.3589 0.554215
\(769\) 18.6321 0.671892 0.335946 0.941881i \(-0.390944\pi\)
0.335946 + 0.941881i \(0.390944\pi\)
\(770\) −0.780672 −0.0281335
\(771\) −1.73746 −0.0625732
\(772\) −8.94061 −0.321779
\(773\) 15.2041 0.546852 0.273426 0.961893i \(-0.411843\pi\)
0.273426 + 0.961893i \(0.411843\pi\)
\(774\) 0.152481 0.00548083
\(775\) −4.02439 −0.144560
\(776\) −15.4307 −0.553929
\(777\) −0.527723 −0.0189320
\(778\) −4.93510 −0.176932
\(779\) −13.6425 −0.488794
\(780\) 0 0
\(781\) 1.51372 0.0541652
\(782\) −0.251108 −0.00897961
\(783\) −10.5739 −0.377882
\(784\) −22.5754 −0.806264
\(785\) −12.3036 −0.439133
\(786\) −8.95816 −0.319527
\(787\) −1.19009 −0.0424220 −0.0212110 0.999775i \(-0.506752\pi\)
−0.0212110 + 0.999775i \(0.506752\pi\)
\(788\) −26.2815 −0.936241
\(789\) 35.0987 1.24955
\(790\) −2.44058 −0.0868321
\(791\) −7.54861 −0.268398
\(792\) 0.760318 0.0270167
\(793\) 0 0
\(794\) −2.01926 −0.0716609
\(795\) −9.72089 −0.344764
\(796\) −7.24697 −0.256862
\(797\) −8.46050 −0.299686 −0.149843 0.988710i \(-0.547877\pi\)
−0.149843 + 0.988710i \(0.547877\pi\)
\(798\) 1.45801 0.0516130
\(799\) −7.44013 −0.263213
\(800\) −14.2101 −0.502405
\(801\) −1.41550 −0.0500144
\(802\) 1.51265 0.0534135
\(803\) 3.97851 0.140399
\(804\) −2.78247 −0.0981300
\(805\) −0.552520 −0.0194738
\(806\) 0 0
\(807\) −8.87174 −0.312300
\(808\) −7.45200 −0.262161
\(809\) 46.9389 1.65029 0.825143 0.564924i \(-0.191095\pi\)
0.825143 + 0.564924i \(0.191095\pi\)
\(810\) −2.93459 −0.103111
\(811\) 52.1661 1.83180 0.915900 0.401406i \(-0.131478\pi\)
0.915900 + 0.401406i \(0.131478\pi\)
\(812\) −2.48305 −0.0871379
\(813\) 19.2869 0.676421
\(814\) 0.602417 0.0211147
\(815\) −1.12957 −0.0395672
\(816\) 5.40059 0.189059
\(817\) 13.1402 0.459716
\(818\) −6.51254 −0.227706
\(819\) 0 0
\(820\) 6.13249 0.214156
\(821\) 16.9288 0.590818 0.295409 0.955371i \(-0.404544\pi\)
0.295409 + 0.955371i \(0.404544\pi\)
\(822\) −3.32080 −0.115826
\(823\) −9.93810 −0.346420 −0.173210 0.984885i \(-0.555414\pi\)
−0.173210 + 0.984885i \(0.555414\pi\)
\(824\) 13.6194 0.474453
\(825\) 28.7399 1.00059
\(826\) 0.717991 0.0249821
\(827\) 17.9222 0.623215 0.311607 0.950211i \(-0.399133\pi\)
0.311607 + 0.950211i \(0.399133\pi\)
\(828\) 0.262223 0.00911287
\(829\) 40.1084 1.39302 0.696512 0.717545i \(-0.254734\pi\)
0.696512 + 0.717545i \(0.254734\pi\)
\(830\) −2.66883 −0.0926365
\(831\) −38.0389 −1.31955
\(832\) 0 0
\(833\) −5.88570 −0.203927
\(834\) 6.93272 0.240061
\(835\) 0.827695 0.0286436
\(836\) 31.9282 1.10426
\(837\) −5.05438 −0.174705
\(838\) −0.296875 −0.0102554
\(839\) 36.0689 1.24524 0.622619 0.782525i \(-0.286069\pi\)
0.622619 + 0.782525i \(0.286069\pi\)
\(840\) −1.34495 −0.0464054
\(841\) −24.6234 −0.849082
\(842\) −5.71113 −0.196819
\(843\) 27.0816 0.932740
\(844\) −4.40669 −0.151685
\(845\) 0 0
\(846\) −0.405011 −0.0139246
\(847\) 3.22814 0.110920
\(848\) −18.9262 −0.649927
\(849\) −8.27137 −0.283873
\(850\) −1.12799 −0.0386898
\(851\) 0.426360 0.0146154
\(852\) 1.27081 0.0435372
\(853\) −11.9012 −0.407490 −0.203745 0.979024i \(-0.565311\pi\)
−0.203745 + 0.979024i \(0.565311\pi\)
\(854\) 0.179469 0.00614130
\(855\) 0.635259 0.0217254
\(856\) −0.554669 −0.0189582
\(857\) −18.5578 −0.633921 −0.316960 0.948439i \(-0.602662\pi\)
−0.316960 + 0.948439i \(0.602662\pi\)
\(858\) 0 0
\(859\) −54.4878 −1.85910 −0.929550 0.368697i \(-0.879804\pi\)
−0.929550 + 0.368697i \(0.879804\pi\)
\(860\) −5.90668 −0.201416
\(861\) −3.62177 −0.123430
\(862\) 0.559332 0.0190509
\(863\) −39.5255 −1.34547 −0.672733 0.739886i \(-0.734880\pi\)
−0.672733 + 0.739886i \(0.734880\pi\)
\(864\) −17.8471 −0.607169
\(865\) −6.71676 −0.228377
\(866\) 2.50727 0.0852006
\(867\) −28.7830 −0.977523
\(868\) −1.18690 −0.0402862
\(869\) 31.5640 1.07073
\(870\) 1.15520 0.0391649
\(871\) 0 0
\(872\) 5.07818 0.171969
\(873\) 1.93488 0.0654859
\(874\) −1.17796 −0.0398451
\(875\) −5.56559 −0.188151
\(876\) 3.34006 0.112850
\(877\) −44.7739 −1.51191 −0.755953 0.654626i \(-0.772826\pi\)
−0.755953 + 0.654626i \(0.772826\pi\)
\(878\) −6.60091 −0.222770
\(879\) −21.2403 −0.716418
\(880\) −13.5650 −0.457276
\(881\) −13.6944 −0.461377 −0.230688 0.973028i \(-0.574098\pi\)
−0.230688 + 0.973028i \(0.574098\pi\)
\(882\) −0.320394 −0.0107882
\(883\) −14.4381 −0.485881 −0.242941 0.970041i \(-0.578112\pi\)
−0.242941 + 0.970041i \(0.578112\pi\)
\(884\) 0 0
\(885\) 6.40787 0.215398
\(886\) −7.46373 −0.250749
\(887\) 5.32747 0.178879 0.0894395 0.995992i \(-0.471492\pi\)
0.0894395 + 0.995992i \(0.471492\pi\)
\(888\) 1.03785 0.0348281
\(889\) −11.9414 −0.400500
\(890\) −2.85834 −0.0958118
\(891\) 37.9530 1.27147
\(892\) −51.4826 −1.72377
\(893\) −34.9020 −1.16795
\(894\) 3.78803 0.126691
\(895\) −23.5173 −0.786095
\(896\) −5.53352 −0.184862
\(897\) 0 0
\(898\) 5.73253 0.191297
\(899\) 2.09204 0.0697733
\(900\) 1.17792 0.0392640
\(901\) −4.93429 −0.164385
\(902\) 4.13439 0.137660
\(903\) 3.48841 0.116087
\(904\) 14.8456 0.493756
\(905\) −14.3573 −0.477252
\(906\) 1.51201 0.0502330
\(907\) 22.3881 0.743386 0.371693 0.928356i \(-0.378777\pi\)
0.371693 + 0.928356i \(0.378777\pi\)
\(908\) −17.4642 −0.579571
\(909\) 0.934422 0.0309928
\(910\) 0 0
\(911\) 27.4932 0.910890 0.455445 0.890264i \(-0.349480\pi\)
0.455445 + 0.890264i \(0.349480\pi\)
\(912\) 25.3344 0.838907
\(913\) 34.5159 1.14231
\(914\) −6.22364 −0.205860
\(915\) 1.60171 0.0529509
\(916\) −54.7956 −1.81050
\(917\) −10.0052 −0.330401
\(918\) −1.41669 −0.0467576
\(919\) 26.7417 0.882127 0.441064 0.897476i \(-0.354601\pi\)
0.441064 + 0.897476i \(0.354601\pi\)
\(920\) 1.08662 0.0358249
\(921\) 61.5356 2.02767
\(922\) −8.34828 −0.274936
\(923\) 0 0
\(924\) 8.47620 0.278847
\(925\) 1.91523 0.0629725
\(926\) 3.99626 0.131325
\(927\) −1.70776 −0.0560902
\(928\) 7.38700 0.242490
\(929\) −2.80505 −0.0920308 −0.0460154 0.998941i \(-0.514652\pi\)
−0.0460154 + 0.998941i \(0.514652\pi\)
\(930\) 0.552188 0.0181070
\(931\) −27.6101 −0.904884
\(932\) −28.4429 −0.931677
\(933\) 39.5999 1.29644
\(934\) −2.96710 −0.0970866
\(935\) −3.53657 −0.115658
\(936\) 0 0
\(937\) −51.2675 −1.67484 −0.837418 0.546562i \(-0.815936\pi\)
−0.837418 + 0.546562i \(0.815936\pi\)
\(938\) 0.161999 0.00528947
\(939\) 38.6144 1.26013
\(940\) 15.6889 0.511717
\(941\) 15.5783 0.507839 0.253920 0.967225i \(-0.418280\pi\)
0.253920 + 0.967225i \(0.418280\pi\)
\(942\) −6.96371 −0.226890
\(943\) 2.92612 0.0952874
\(944\) 12.4758 0.406054
\(945\) −3.11718 −0.101402
\(946\) −3.98215 −0.129471
\(947\) 2.99652 0.0973739 0.0486870 0.998814i \(-0.484496\pi\)
0.0486870 + 0.998814i \(0.484496\pi\)
\(948\) 26.4988 0.860641
\(949\) 0 0
\(950\) −5.29147 −0.171678
\(951\) −34.7347 −1.12635
\(952\) −0.682695 −0.0221263
\(953\) −25.6873 −0.832092 −0.416046 0.909344i \(-0.636584\pi\)
−0.416046 + 0.909344i \(0.636584\pi\)
\(954\) −0.268603 −0.00869636
\(955\) 1.17149 0.0379086
\(956\) 42.6090 1.37807
\(957\) −14.9401 −0.482946
\(958\) −10.3949 −0.335844
\(959\) −3.70894 −0.119768
\(960\) −10.0320 −0.323783
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0.0695511 0.00224125
\(964\) −23.5702 −0.759145
\(965\) 4.64563 0.149548
\(966\) −0.312721 −0.0100616
\(967\) 24.6067 0.791299 0.395649 0.918402i \(-0.370520\pi\)
0.395649 + 0.918402i \(0.370520\pi\)
\(968\) −6.34865 −0.204053
\(969\) 6.60502 0.212184
\(970\) 3.90713 0.125450
\(971\) −9.51683 −0.305410 −0.152705 0.988272i \(-0.548798\pi\)
−0.152705 + 0.988272i \(0.548798\pi\)
\(972\) 3.03883 0.0974704
\(973\) 7.74302 0.248230
\(974\) 2.02874 0.0650052
\(975\) 0 0
\(976\) 3.11846 0.0998195
\(977\) −0.830048 −0.0265556 −0.0132778 0.999912i \(-0.504227\pi\)
−0.0132778 + 0.999912i \(0.504227\pi\)
\(978\) −0.639327 −0.0204434
\(979\) 36.9668 1.18146
\(980\) 12.4111 0.396458
\(981\) −0.636763 −0.0203303
\(982\) 2.24538 0.0716529
\(983\) −60.7093 −1.93633 −0.968163 0.250322i \(-0.919463\pi\)
−0.968163 + 0.250322i \(0.919463\pi\)
\(984\) 7.12280 0.227067
\(985\) 13.6562 0.435122
\(986\) 0.586375 0.0186740
\(987\) −9.26568 −0.294930
\(988\) 0 0
\(989\) −2.81837 −0.0896189
\(990\) −0.192517 −0.00611859
\(991\) −36.9415 −1.17349 −0.586743 0.809773i \(-0.699590\pi\)
−0.586743 + 0.809773i \(0.699590\pi\)
\(992\) 3.53101 0.112110
\(993\) −33.6268 −1.06712
\(994\) −0.0739884 −0.00234677
\(995\) 3.76560 0.119378
\(996\) 28.9770 0.918171
\(997\) −57.2717 −1.81381 −0.906906 0.421332i \(-0.861563\pi\)
−0.906906 + 0.421332i \(0.861563\pi\)
\(998\) −1.18817 −0.0376109
\(999\) 2.40541 0.0761039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.s.1.20 36
13.12 even 2 5239.2.a.t.1.17 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5239.2.a.s.1.20 36 1.1 even 1 trivial
5239.2.a.t.1.17 yes 36 13.12 even 2