Properties

Label 522.2.k.c
Level $522$
Weight $2$
Character orbit 522.k
Analytic conductor $4.168$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [522,2,Mod(181,522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(522, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("522.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 522.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1,0,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16819098551\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{14}^{4} q^{2} - \zeta_{14} q^{4} + (\zeta_{14}^{5} + \cdots + \zeta_{14}^{3}) q^{5} + (\zeta_{14}^{5} - \zeta_{14}^{4} + \cdots - 1) q^{7} - \zeta_{14}^{5} q^{8} + ( - \zeta_{14}^{2} + 2 \zeta_{14} - 1) q^{10} + \cdots + ( - 4 \zeta_{14}^{4} - 2 \zeta_{14}^{2} - 4) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - q^{4} + 4 q^{5} - 5 q^{7} - q^{8} - 3 q^{10} + 6 q^{11} + 11 q^{13} + 9 q^{14} - q^{16} + 10 q^{17} - 6 q^{19} + 4 q^{20} + 6 q^{22} + 7 q^{23} + 17 q^{25} - 3 q^{26} + 2 q^{28} - 15 q^{29}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/522\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
0.900969 0.433884i
0.900969 + 0.433884i
0.222521 0.974928i
−0.623490 + 0.781831i
−0.623490 0.781831i
0.222521 + 0.974928i
−0.222521 0.974928i 0 −0.900969 + 0.433884i 0.0440730 + 0.193096i 0 −0.0990311 0.0476909i 0.623490 + 0.781831i 0 0.178448 0.0859360i
199.1 −0.222521 + 0.974928i 0 −0.900969 0.433884i 0.0440730 0.193096i 0 −0.0990311 + 0.0476909i 0.623490 0.781831i 0 0.178448 + 0.0859360i
343.1 0.623490 + 0.781831i 0 −0.222521 + 0.974928i −0.969501 1.21572i 0 −0.777479 3.40636i −0.900969 + 0.433884i 0 0.346011 1.51597i
397.1 −0.900969 + 0.433884i 0 0.623490 0.781831i 2.92543 1.40881i 0 −1.62349 2.03579i −0.222521 + 0.974928i 0 −2.02446 + 2.53859i
451.1 −0.900969 0.433884i 0 0.623490 + 0.781831i 2.92543 + 1.40881i 0 −1.62349 + 2.03579i −0.222521 0.974928i 0 −2.02446 2.53859i
487.1 0.623490 0.781831i 0 −0.222521 0.974928i −0.969501 + 1.21572i 0 −0.777479 + 3.40636i −0.900969 0.433884i 0 0.346011 + 1.51597i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 181.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 522.2.k.c 6
3.b odd 2 1 58.2.d.a 6
12.b even 2 1 464.2.u.b 6
29.d even 7 1 inner 522.2.k.c 6
87.h odd 14 1 1682.2.a.n 3
87.j odd 14 1 58.2.d.a 6
87.j odd 14 1 1682.2.a.m 3
87.k even 28 2 1682.2.b.g 6
348.s even 14 1 464.2.u.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.d.a 6 3.b odd 2 1
58.2.d.a 6 87.j odd 14 1
464.2.u.b 6 12.b even 2 1
464.2.u.b 6 348.s even 14 1
522.2.k.c 6 1.a even 1 1 trivial
522.2.k.c 6 29.d even 7 1 inner
1682.2.a.m 3 87.j odd 14 1
1682.2.a.n 3 87.h odd 14 1
1682.2.b.g 6 87.k even 28 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 4T_{5}^{5} + 2T_{5}^{4} + 6T_{5}^{3} + 25T_{5}^{2} - 2T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(522, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 4 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} - 6 T^{5} + \cdots + 729 \) Copy content Toggle raw display
$13$ \( T^{6} - 11 T^{5} + \cdots + 841 \) Copy content Toggle raw display
$17$ \( (T^{3} - 5 T^{2} - 8 T + 41)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 6 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$23$ \( T^{6} - 7 T^{5} + \cdots + 8281 \) Copy content Toggle raw display
$29$ \( T^{6} + 15 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} - 4 T^{5} + \cdots + 1849 \) Copy content Toggle raw display
$37$ \( T^{6} + 13 T^{5} + \cdots + 19321 \) Copy content Toggle raw display
$41$ \( (T^{3} - 6 T^{2} - 37 T - 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 41209 \) Copy content Toggle raw display
$47$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} - 22 T^{5} + \cdots + 113569 \) Copy content Toggle raw display
$59$ \( (T^{3} - 19 T^{2} + \cdots - 169)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} - 31 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$67$ \( T^{6} - 11 T^{5} + \cdots + 1771561 \) Copy content Toggle raw display
$71$ \( T^{6} + 23 T^{5} + \cdots + 63001 \) Copy content Toggle raw display
$73$ \( T^{6} - 5 T^{5} + \cdots + 241081 \) Copy content Toggle raw display
$79$ \( T^{6} + 56 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$83$ \( T^{6} + 35 T^{5} + \cdots + 790321 \) Copy content Toggle raw display
$89$ \( T^{6} + 13 T^{5} + \cdots + 253009 \) Copy content Toggle raw display
$97$ \( T^{6} - 20 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
show more
show less