L(s) = 1 | + (0.623 + 0.781i)2-s + (−0.222 + 0.974i)4-s + (−0.969 − 1.21i)5-s + (−0.777 − 3.40i)7-s + (−0.900 + 0.433i)8-s + (0.346 − 1.51i)10-s + (3.37 + 1.62i)11-s + (3.46 + 1.67i)13-s + (2.17 − 2.73i)14-s + (−0.900 − 0.433i)16-s + 4.93·17-s + (1.37 − 6.00i)19-s + (1.40 − 0.674i)20-s + (0.832 + 3.64i)22-s + (3.59 − 4.50i)23-s + ⋯ |
L(s) = 1 | + (0.440 + 0.552i)2-s + (−0.111 + 0.487i)4-s + (−0.433 − 0.543i)5-s + (−0.293 − 1.28i)7-s + (−0.318 + 0.153i)8-s + (0.109 − 0.479i)10-s + (1.01 + 0.489i)11-s + (0.962 + 0.463i)13-s + (0.582 − 0.730i)14-s + (−0.225 − 0.108i)16-s + 1.19·17-s + (0.314 − 1.37i)19-s + (0.313 − 0.150i)20-s + (0.177 + 0.777i)22-s + (0.749 − 0.939i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72668 - 0.0859099i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72668 - 0.0859099i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.623 - 0.781i)T \) |
| 3 | \( 1 \) |
| 29 | \( 1 + (5.38 - 0.202i)T \) |
good | 5 | \( 1 + (0.969 + 1.21i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (0.777 + 3.40i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-3.37 - 1.62i)T + (6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (-3.46 - 1.67i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 4.93T + 17T^{2} \) |
| 19 | \( 1 + (-1.37 + 6.00i)T + (-17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (-3.59 + 4.50i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (-1.56 - 1.96i)T + (-6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (6.11 - 2.94i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 + 0.0271T + 41T^{2} \) |
| 43 | \( 1 + (7.32 - 9.17i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.240i)T + (29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (2.03 + 2.54i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 3.06T + 59T^{2} \) |
| 61 | \( 1 + (0.0293 + 0.128i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (-9.91 + 4.77i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (3.26 + 1.57i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (4.13 - 5.18i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (1.35 - 0.653i)T + (49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (2.21 - 9.71i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-3.36 - 4.21i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (0.960 - 4.20i)T + (-87.3 - 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99448201011719271342037866030, −9.869969753243760218474357430956, −8.946988412837015823541562028665, −8.067533351907846016877606291743, −6.98387913247274887258517369460, −6.55154736015908672410767778820, −5.02778699158858421594893339110, −4.20750436449655041698427013196, −3.36949649506379339597176538873, −1.05964273498067671744030937348,
1.57598416938191607379301000214, 3.30879586800955837209155838166, 3.60320425775720816576666937535, 5.52309200411390711298099106990, 5.88598629847022824625512500690, 7.17673594871081563917949800254, 8.376553138955197058036296293873, 9.195353403941229451318696205708, 10.09068824963200107096828046727, 11.13120431795038760073768352090