Properties

Label 5200.2.a.cl
Level $5200$
Weight $2$
Character orbit 5200.a
Self dual yes
Analytic conductor $41.522$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5200,2,Mod(1,5200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,4,0,6,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.108664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 20x^{2} + 42x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2600)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + ( - \beta_{3} + 1) q^{7} + ( - \beta_{2} + 1) q^{9} + ( - \beta_1 + 1) q^{11} - q^{13} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{17} + (\beta_{3} - \beta_1) q^{19} + ( - 2 \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{21}+ \cdots + ( - \beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{7} + 6 q^{9} + 3 q^{11} - 4 q^{13} - 3 q^{17} - q^{19} + 2 q^{21} + 3 q^{23} + 14 q^{27} + 15 q^{29} + 10 q^{31} - 7 q^{33} - 4 q^{37} - 2 q^{39} - 9 q^{41} + 5 q^{43} + 18 q^{47}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 20x^{2} + 42x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu^{2} - 14\nu - 14 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} - \nu^{2} + 16\nu - 10 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} - \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{3} - 3\beta_{2} + 17\beta _1 - 22 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.88636
3.32481
2.46153
0.100024
0 −1.56155 0 0 0 −1.30550 0 −0.561553 0
1.2 0 −1.56155 0 0 0 3.30550 0 −0.561553 0
1.3 0 2.56155 0 0 0 −3.20531 0 3.56155 0
1.4 0 2.56155 0 0 0 5.20531 0 3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5200.2.a.cl 4
4.b odd 2 1 2600.2.a.z 4
5.b even 2 1 5200.2.a.ck 4
20.d odd 2 1 2600.2.a.ba yes 4
20.e even 4 2 2600.2.d.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2600.2.a.z 4 4.b odd 2 1
2600.2.a.ba yes 4 20.d odd 2 1
2600.2.d.p 8 20.e even 4 2
5200.2.a.ck 4 5.b even 2 1
5200.2.a.cl 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5200))\):

\( T_{3}^{2} - T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 4T_{7}^{3} - 17T_{7}^{2} + 42T_{7} + 72 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} - 17T_{11}^{2} - 3T_{11} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 72 \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 18 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + \cdots + 304 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{4} - 15 T^{3} + \cdots - 1532 \) Copy content Toggle raw display
$31$ \( T^{4} - 10 T^{3} + \cdots + 604 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 9 T^{3} + \cdots + 4864 \) Copy content Toggle raw display
$43$ \( T^{4} - 5 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$47$ \( T^{4} - 18 T^{3} + \cdots - 304 \) Copy content Toggle raw display
$53$ \( T^{4} + T^{3} + \cdots - 166 \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} + \cdots - 1024 \) Copy content Toggle raw display
$61$ \( T^{4} + 7 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$67$ \( T^{4} - 25 T^{3} + \cdots - 7138 \) Copy content Toggle raw display
$71$ \( (T^{2} - 18 T + 64)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 13 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$79$ \( T^{4} - 3 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$83$ \( T^{4} + T^{3} + \cdots + 628 \) Copy content Toggle raw display
$89$ \( T^{4} - 27 T^{3} + \cdots - 3200 \) Copy content Toggle raw display
$97$ \( T^{4} - 10 T^{3} + \cdots + 1216 \) Copy content Toggle raw display
show more
show less