Properties

Label 2-5200-1.1-c1-0-74
Degree $2$
Conductor $5200$
Sign $1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s + 5.20·7-s + 3.56·9-s + 0.899·11-s − 13-s + 5.66·17-s − 4.30·19-s + 13.3·21-s − 1.54·23-s + 1.43·27-s + 3.81·29-s − 6.12·31-s + 2.30·33-s + 3.12·37-s − 2.56·39-s − 11.0·41-s + 11.7·43-s + 9.00·47-s + 20.0·49-s + 14.5·51-s + 8.22·53-s − 11.0·57-s − 1.71·59-s − 10.2·61-s + 18.5·63-s − 6.43·67-s − 3.95·69-s + ⋯
L(s)  = 1  + 1.47·3-s + 1.96·7-s + 1.18·9-s + 0.271·11-s − 0.277·13-s + 1.37·17-s − 0.987·19-s + 2.90·21-s − 0.321·23-s + 0.276·27-s + 0.708·29-s − 1.10·31-s + 0.401·33-s + 0.513·37-s − 0.410·39-s − 1.72·41-s + 1.79·43-s + 1.31·47-s + 2.87·49-s + 2.03·51-s + 1.13·53-s − 1.46·57-s − 0.223·59-s − 1.30·61-s + 2.33·63-s − 0.786·67-s − 0.476·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.618611305\)
\(L(\frac12)\) \(\approx\) \(4.618611305\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2.56T + 3T^{2} \)
7 \( 1 - 5.20T + 7T^{2} \)
11 \( 1 - 0.899T + 11T^{2} \)
17 \( 1 - 5.66T + 17T^{2} \)
19 \( 1 + 4.30T + 19T^{2} \)
23 \( 1 + 1.54T + 23T^{2} \)
29 \( 1 - 3.81T + 29T^{2} \)
31 \( 1 + 6.12T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 9.00T + 47T^{2} \)
53 \( 1 - 8.22T + 53T^{2} \)
59 \( 1 + 1.71T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 + 6.43T + 67T^{2} \)
71 \( 1 - 4.87T + 71T^{2} \)
73 \( 1 + 3.18T + 73T^{2} \)
79 \( 1 + 1.54T + 79T^{2} \)
83 \( 1 + 0.699T + 83T^{2} \)
89 \( 1 - 2.09T + 89T^{2} \)
97 \( 1 - 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.205075123610206993719439099240, −7.65994901771970624486313635949, −7.24657398580826595022790261567, −5.95150237818430410083056088193, −5.16841847027995920886199868222, −4.33174287118019407827792322878, −3.76933911319648399676630973704, −2.68948303874937942654962541324, −1.98889392972376236486549416518, −1.22240233496642961919264160443, 1.22240233496642961919264160443, 1.98889392972376236486549416518, 2.68948303874937942654962541324, 3.76933911319648399676630973704, 4.33174287118019407827792322878, 5.16841847027995920886199868222, 5.95150237818430410083056088193, 7.24657398580826595022790261567, 7.65994901771970624486313635949, 8.205075123610206993719439099240

Graph of the $Z$-function along the critical line