Properties

Label 5200.2.a.cc.1.3
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5200,2,Mod(1,5200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-2,0,0,0,2,0,-1,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17009 q^{3} -0.630898 q^{7} -1.63090 q^{9} +0.539189 q^{11} -1.00000 q^{13} +3.07838 q^{17} -0.879362 q^{19} -0.738205 q^{21} -2.58864 q^{23} -5.41855 q^{27} -2.29072 q^{29} +7.95774 q^{31} +0.630898 q^{33} +4.78765 q^{37} -1.17009 q^{39} +3.41855 q^{41} +3.17009 q^{43} +8.94441 q^{47} -6.60197 q^{49} +3.60197 q^{51} -0.496928 q^{53} -1.02893 q^{57} +8.29791 q^{59} +4.04945 q^{61} +1.02893 q^{63} -3.36910 q^{67} -3.02893 q^{69} +9.06278 q^{71} +12.2062 q^{73} -0.340173 q^{77} +5.65983 q^{79} -1.44748 q^{81} +1.02893 q^{83} -2.68035 q^{87} -16.8371 q^{89} +0.630898 q^{91} +9.31124 q^{93} -5.23513 q^{97} -0.879362 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 2 q^{7} - q^{9} - 3 q^{13} + 6 q^{17} + 10 q^{19} - 10 q^{21} + 12 q^{23} - 2 q^{27} - 14 q^{29} + 8 q^{31} - 2 q^{33} + 4 q^{37} + 2 q^{39} - 4 q^{41} + 4 q^{43} + 10 q^{47} - q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17009 0.675550 0.337775 0.941227i \(-0.390326\pi\)
0.337775 + 0.941227i \(0.390326\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.630898 −0.238457 −0.119228 0.992867i \(-0.538042\pi\)
−0.119228 + 0.992867i \(0.538042\pi\)
\(8\) 0 0
\(9\) −1.63090 −0.543633
\(10\) 0 0
\(11\) 0.539189 0.162572 0.0812858 0.996691i \(-0.474097\pi\)
0.0812858 + 0.996691i \(0.474097\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.07838 0.746616 0.373308 0.927707i \(-0.378223\pi\)
0.373308 + 0.927707i \(0.378223\pi\)
\(18\) 0 0
\(19\) −0.879362 −0.201739 −0.100870 0.994900i \(-0.532163\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(20\) 0 0
\(21\) −0.738205 −0.161089
\(22\) 0 0
\(23\) −2.58864 −0.539768 −0.269884 0.962893i \(-0.586985\pi\)
−0.269884 + 0.962893i \(0.586985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.41855 −1.04280
\(28\) 0 0
\(29\) −2.29072 −0.425377 −0.212688 0.977120i \(-0.568222\pi\)
−0.212688 + 0.977120i \(0.568222\pi\)
\(30\) 0 0
\(31\) 7.95774 1.42925 0.714626 0.699507i \(-0.246597\pi\)
0.714626 + 0.699507i \(0.246597\pi\)
\(32\) 0 0
\(33\) 0.630898 0.109825
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.78765 0.787085 0.393543 0.919306i \(-0.371249\pi\)
0.393543 + 0.919306i \(0.371249\pi\)
\(38\) 0 0
\(39\) −1.17009 −0.187364
\(40\) 0 0
\(41\) 3.41855 0.533888 0.266944 0.963712i \(-0.413986\pi\)
0.266944 + 0.963712i \(0.413986\pi\)
\(42\) 0 0
\(43\) 3.17009 0.483434 0.241717 0.970347i \(-0.422289\pi\)
0.241717 + 0.970347i \(0.422289\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.94441 1.30468 0.652338 0.757928i \(-0.273788\pi\)
0.652338 + 0.757928i \(0.273788\pi\)
\(48\) 0 0
\(49\) −6.60197 −0.943138
\(50\) 0 0
\(51\) 3.60197 0.504376
\(52\) 0 0
\(53\) −0.496928 −0.0682584 −0.0341292 0.999417i \(-0.510866\pi\)
−0.0341292 + 0.999417i \(0.510866\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.02893 −0.136285
\(58\) 0 0
\(59\) 8.29791 1.08030 0.540148 0.841570i \(-0.318368\pi\)
0.540148 + 0.841570i \(0.318368\pi\)
\(60\) 0 0
\(61\) 4.04945 0.518479 0.259239 0.965813i \(-0.416528\pi\)
0.259239 + 0.965813i \(0.416528\pi\)
\(62\) 0 0
\(63\) 1.02893 0.129633
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.36910 −0.411601 −0.205801 0.978594i \(-0.565980\pi\)
−0.205801 + 0.978594i \(0.565980\pi\)
\(68\) 0 0
\(69\) −3.02893 −0.364640
\(70\) 0 0
\(71\) 9.06278 1.07555 0.537777 0.843087i \(-0.319264\pi\)
0.537777 + 0.843087i \(0.319264\pi\)
\(72\) 0 0
\(73\) 12.2062 1.42863 0.714314 0.699825i \(-0.246739\pi\)
0.714314 + 0.699825i \(0.246739\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.340173 −0.0387663
\(78\) 0 0
\(79\) 5.65983 0.636780 0.318390 0.947960i \(-0.396858\pi\)
0.318390 + 0.947960i \(0.396858\pi\)
\(80\) 0 0
\(81\) −1.44748 −0.160831
\(82\) 0 0
\(83\) 1.02893 0.112940 0.0564698 0.998404i \(-0.482016\pi\)
0.0564698 + 0.998404i \(0.482016\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.68035 −0.287363
\(88\) 0 0
\(89\) −16.8371 −1.78473 −0.892365 0.451315i \(-0.850955\pi\)
−0.892365 + 0.451315i \(0.850955\pi\)
\(90\) 0 0
\(91\) 0.630898 0.0661360
\(92\) 0 0
\(93\) 9.31124 0.965531
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.23513 −0.531547 −0.265774 0.964035i \(-0.585627\pi\)
−0.265774 + 0.964035i \(0.585627\pi\)
\(98\) 0 0
\(99\) −0.879362 −0.0883792
\(100\) 0 0
\(101\) 5.23513 0.520915 0.260458 0.965485i \(-0.416127\pi\)
0.260458 + 0.965485i \(0.416127\pi\)
\(102\) 0 0
\(103\) 3.69368 0.363949 0.181974 0.983303i \(-0.441751\pi\)
0.181974 + 0.983303i \(0.441751\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.8504 1.53232 0.766160 0.642650i \(-0.222165\pi\)
0.766160 + 0.642650i \(0.222165\pi\)
\(108\) 0 0
\(109\) −3.81658 −0.365562 −0.182781 0.983154i \(-0.558510\pi\)
−0.182781 + 0.983154i \(0.558510\pi\)
\(110\) 0 0
\(111\) 5.60197 0.531715
\(112\) 0 0
\(113\) 11.4452 1.07668 0.538338 0.842729i \(-0.319053\pi\)
0.538338 + 0.842729i \(0.319053\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.63090 0.150777
\(118\) 0 0
\(119\) −1.94214 −0.178036
\(120\) 0 0
\(121\) −10.7093 −0.973570
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.35350 0.475047 0.237523 0.971382i \(-0.423664\pi\)
0.237523 + 0.971382i \(0.423664\pi\)
\(128\) 0 0
\(129\) 3.70928 0.326583
\(130\) 0 0
\(131\) −18.9360 −1.65445 −0.827223 0.561874i \(-0.810081\pi\)
−0.827223 + 0.561874i \(0.810081\pi\)
\(132\) 0 0
\(133\) 0.554787 0.0481062
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.09890 −0.521064 −0.260532 0.965465i \(-0.583898\pi\)
−0.260532 + 0.965465i \(0.583898\pi\)
\(138\) 0 0
\(139\) 21.5441 1.82735 0.913674 0.406448i \(-0.133233\pi\)
0.913674 + 0.406448i \(0.133233\pi\)
\(140\) 0 0
\(141\) 10.4657 0.881374
\(142\) 0 0
\(143\) −0.539189 −0.0450892
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.72487 −0.637137
\(148\) 0 0
\(149\) 8.28231 0.678514 0.339257 0.940694i \(-0.389824\pi\)
0.339257 + 0.940694i \(0.389824\pi\)
\(150\) 0 0
\(151\) 7.61757 0.619909 0.309954 0.950751i \(-0.399686\pi\)
0.309954 + 0.950751i \(0.399686\pi\)
\(152\) 0 0
\(153\) −5.02052 −0.405885
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.47641 0.277448 0.138724 0.990331i \(-0.455700\pi\)
0.138724 + 0.990331i \(0.455700\pi\)
\(158\) 0 0
\(159\) −0.581449 −0.0461119
\(160\) 0 0
\(161\) 1.63317 0.128711
\(162\) 0 0
\(163\) 9.12783 0.714947 0.357473 0.933923i \(-0.383638\pi\)
0.357473 + 0.933923i \(0.383638\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.8143 0.991601 0.495801 0.868436i \(-0.334875\pi\)
0.495801 + 0.868436i \(0.334875\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.43415 0.109672
\(172\) 0 0
\(173\) 4.18342 0.318059 0.159030 0.987274i \(-0.449163\pi\)
0.159030 + 0.987274i \(0.449163\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.70928 0.729794
\(178\) 0 0
\(179\) 13.7587 1.02838 0.514188 0.857678i \(-0.328093\pi\)
0.514188 + 0.857678i \(0.328093\pi\)
\(180\) 0 0
\(181\) −21.8082 −1.62099 −0.810494 0.585746i \(-0.800801\pi\)
−0.810494 + 0.585746i \(0.800801\pi\)
\(182\) 0 0
\(183\) 4.73820 0.350258
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.65983 0.121379
\(188\) 0 0
\(189\) 3.41855 0.248663
\(190\) 0 0
\(191\) 2.83710 0.205285 0.102643 0.994718i \(-0.467270\pi\)
0.102643 + 0.994718i \(0.467270\pi\)
\(192\) 0 0
\(193\) −21.6163 −1.55598 −0.777989 0.628278i \(-0.783760\pi\)
−0.777989 + 0.628278i \(0.783760\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 14.4391 1.02356 0.511779 0.859117i \(-0.328987\pi\)
0.511779 + 0.859117i \(0.328987\pi\)
\(200\) 0 0
\(201\) −3.94214 −0.278057
\(202\) 0 0
\(203\) 1.44521 0.101434
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.22180 0.293436
\(208\) 0 0
\(209\) −0.474142 −0.0327971
\(210\) 0 0
\(211\) −4.28231 −0.294807 −0.147403 0.989076i \(-0.547092\pi\)
−0.147403 + 0.989076i \(0.547092\pi\)
\(212\) 0 0
\(213\) 10.6042 0.726590
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.02052 −0.340815
\(218\) 0 0
\(219\) 14.2823 0.965109
\(220\) 0 0
\(221\) −3.07838 −0.207074
\(222\) 0 0
\(223\) 22.8865 1.53260 0.766298 0.642485i \(-0.222096\pi\)
0.766298 + 0.642485i \(0.222096\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.89269 0.391112 0.195556 0.980693i \(-0.437349\pi\)
0.195556 + 0.980693i \(0.437349\pi\)
\(228\) 0 0
\(229\) 17.1194 1.13128 0.565641 0.824651i \(-0.308629\pi\)
0.565641 + 0.824651i \(0.308629\pi\)
\(230\) 0 0
\(231\) −0.398032 −0.0261886
\(232\) 0 0
\(233\) 13.8888 0.909887 0.454943 0.890520i \(-0.349660\pi\)
0.454943 + 0.890520i \(0.349660\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.62249 0.430177
\(238\) 0 0
\(239\) −20.9516 −1.35525 −0.677623 0.735409i \(-0.736990\pi\)
−0.677623 + 0.735409i \(0.736990\pi\)
\(240\) 0 0
\(241\) −8.68035 −0.559150 −0.279575 0.960124i \(-0.590194\pi\)
−0.279575 + 0.960124i \(0.590194\pi\)
\(242\) 0 0
\(243\) 14.5620 0.934151
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.879362 0.0559525
\(248\) 0 0
\(249\) 1.20394 0.0762964
\(250\) 0 0
\(251\) −8.58145 −0.541656 −0.270828 0.962628i \(-0.587298\pi\)
−0.270828 + 0.962628i \(0.587298\pi\)
\(252\) 0 0
\(253\) −1.39576 −0.0877510
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.2557 0.889243 0.444622 0.895719i \(-0.353338\pi\)
0.444622 + 0.895719i \(0.353338\pi\)
\(258\) 0 0
\(259\) −3.02052 −0.187686
\(260\) 0 0
\(261\) 3.73594 0.231249
\(262\) 0 0
\(263\) 10.8299 0.667801 0.333901 0.942608i \(-0.391635\pi\)
0.333901 + 0.942608i \(0.391635\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −19.7009 −1.20567
\(268\) 0 0
\(269\) −21.4329 −1.30679 −0.653394 0.757018i \(-0.726656\pi\)
−0.653394 + 0.757018i \(0.726656\pi\)
\(270\) 0 0
\(271\) −21.4752 −1.30452 −0.652262 0.757993i \(-0.726180\pi\)
−0.652262 + 0.757993i \(0.726180\pi\)
\(272\) 0 0
\(273\) 0.738205 0.0446782
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.28846 0.197584 0.0987921 0.995108i \(-0.468502\pi\)
0.0987921 + 0.995108i \(0.468502\pi\)
\(278\) 0 0
\(279\) −12.9783 −0.776988
\(280\) 0 0
\(281\) −28.1978 −1.68214 −0.841070 0.540927i \(-0.818074\pi\)
−0.841070 + 0.540927i \(0.818074\pi\)
\(282\) 0 0
\(283\) 12.1639 0.723071 0.361536 0.932358i \(-0.382253\pi\)
0.361536 + 0.932358i \(0.382253\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.15676 −0.127309
\(288\) 0 0
\(289\) −7.52359 −0.442564
\(290\) 0 0
\(291\) −6.12556 −0.359087
\(292\) 0 0
\(293\) 9.36910 0.547349 0.273674 0.961822i \(-0.411761\pi\)
0.273674 + 0.961822i \(0.411761\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.92162 −0.169530
\(298\) 0 0
\(299\) 2.58864 0.149705
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 0 0
\(303\) 6.12556 0.351904
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −31.0700 −1.77326 −0.886628 0.462483i \(-0.846959\pi\)
−0.886628 + 0.462483i \(0.846959\pi\)
\(308\) 0 0
\(309\) 4.32192 0.245866
\(310\) 0 0
\(311\) 3.68649 0.209042 0.104521 0.994523i \(-0.466669\pi\)
0.104521 + 0.994523i \(0.466669\pi\)
\(312\) 0 0
\(313\) −2.49693 −0.141135 −0.0705674 0.997507i \(-0.522481\pi\)
−0.0705674 + 0.997507i \(0.522481\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.5090 −1.54506 −0.772531 0.634977i \(-0.781009\pi\)
−0.772531 + 0.634977i \(0.781009\pi\)
\(318\) 0 0
\(319\) −1.23513 −0.0691542
\(320\) 0 0
\(321\) 18.5464 1.03516
\(322\) 0 0
\(323\) −2.70701 −0.150622
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.46573 −0.246956
\(328\) 0 0
\(329\) −5.64301 −0.311109
\(330\) 0 0
\(331\) 9.30406 0.511397 0.255699 0.966757i \(-0.417695\pi\)
0.255699 + 0.966757i \(0.417695\pi\)
\(332\) 0 0
\(333\) −7.80817 −0.427885
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.0205 1.14506 0.572530 0.819884i \(-0.305962\pi\)
0.572530 + 0.819884i \(0.305962\pi\)
\(338\) 0 0
\(339\) 13.3919 0.727348
\(340\) 0 0
\(341\) 4.29072 0.232356
\(342\) 0 0
\(343\) 8.58145 0.463355
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.9083 −0.639271 −0.319635 0.947541i \(-0.603560\pi\)
−0.319635 + 0.947541i \(0.603560\pi\)
\(348\) 0 0
\(349\) 4.07223 0.217982 0.108991 0.994043i \(-0.465238\pi\)
0.108991 + 0.994043i \(0.465238\pi\)
\(350\) 0 0
\(351\) 5.41855 0.289221
\(352\) 0 0
\(353\) 26.5152 1.41126 0.705630 0.708580i \(-0.250664\pi\)
0.705630 + 0.708580i \(0.250664\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.27247 −0.120272
\(358\) 0 0
\(359\) −28.4501 −1.50154 −0.750770 0.660563i \(-0.770317\pi\)
−0.750770 + 0.660563i \(0.770317\pi\)
\(360\) 0 0
\(361\) −18.2267 −0.959301
\(362\) 0 0
\(363\) −12.5308 −0.657695
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 36.3740 1.89871 0.949354 0.314208i \(-0.101739\pi\)
0.949354 + 0.314208i \(0.101739\pi\)
\(368\) 0 0
\(369\) −5.57531 −0.290239
\(370\) 0 0
\(371\) 0.313511 0.0162767
\(372\) 0 0
\(373\) 23.3607 1.20957 0.604785 0.796388i \(-0.293259\pi\)
0.604785 + 0.796388i \(0.293259\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.29072 0.117978
\(378\) 0 0
\(379\) −30.0300 −1.54254 −0.771268 0.636510i \(-0.780377\pi\)
−0.771268 + 0.636510i \(0.780377\pi\)
\(380\) 0 0
\(381\) 6.26406 0.320918
\(382\) 0 0
\(383\) −2.02279 −0.103360 −0.0516798 0.998664i \(-0.516458\pi\)
−0.0516798 + 0.998664i \(0.516458\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.17009 −0.262810
\(388\) 0 0
\(389\) 35.6742 1.80875 0.904377 0.426735i \(-0.140336\pi\)
0.904377 + 0.426735i \(0.140336\pi\)
\(390\) 0 0
\(391\) −7.96880 −0.403000
\(392\) 0 0
\(393\) −22.1568 −1.11766
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.05559 −0.454487 −0.227244 0.973838i \(-0.572971\pi\)
−0.227244 + 0.973838i \(0.572971\pi\)
\(398\) 0 0
\(399\) 0.649149 0.0324981
\(400\) 0 0
\(401\) 27.9421 1.39536 0.697682 0.716408i \(-0.254215\pi\)
0.697682 + 0.716408i \(0.254215\pi\)
\(402\) 0 0
\(403\) −7.95774 −0.396403
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.58145 0.127958
\(408\) 0 0
\(409\) 32.0989 1.58719 0.793594 0.608447i \(-0.208207\pi\)
0.793594 + 0.608447i \(0.208207\pi\)
\(410\) 0 0
\(411\) −7.13624 −0.352005
\(412\) 0 0
\(413\) −5.23513 −0.257604
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 25.2085 1.23446
\(418\) 0 0
\(419\) −18.3090 −0.894452 −0.447226 0.894421i \(-0.647588\pi\)
−0.447226 + 0.894421i \(0.647588\pi\)
\(420\) 0 0
\(421\) −27.0205 −1.31690 −0.658450 0.752625i \(-0.728787\pi\)
−0.658450 + 0.752625i \(0.728787\pi\)
\(422\) 0 0
\(423\) −14.5874 −0.709264
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.55479 −0.123635
\(428\) 0 0
\(429\) −0.630898 −0.0304600
\(430\) 0 0
\(431\) −14.7636 −0.711140 −0.355570 0.934650i \(-0.615713\pi\)
−0.355570 + 0.934650i \(0.615713\pi\)
\(432\) 0 0
\(433\) 26.7214 1.28415 0.642074 0.766643i \(-0.278074\pi\)
0.642074 + 0.766643i \(0.278074\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.27635 0.108893
\(438\) 0 0
\(439\) 23.6475 1.12864 0.564318 0.825558i \(-0.309139\pi\)
0.564318 + 0.825558i \(0.309139\pi\)
\(440\) 0 0
\(441\) 10.7671 0.512721
\(442\) 0 0
\(443\) −25.4524 −1.20928 −0.604640 0.796499i \(-0.706683\pi\)
−0.604640 + 0.796499i \(0.706683\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.69102 0.458370
\(448\) 0 0
\(449\) −28.2967 −1.33540 −0.667702 0.744429i \(-0.732722\pi\)
−0.667702 + 0.744429i \(0.732722\pi\)
\(450\) 0 0
\(451\) 1.84324 0.0867950
\(452\) 0 0
\(453\) 8.91321 0.418779
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.9155 −1.02516 −0.512581 0.858639i \(-0.671311\pi\)
−0.512581 + 0.858639i \(0.671311\pi\)
\(458\) 0 0
\(459\) −16.6803 −0.778572
\(460\) 0 0
\(461\) 20.3402 0.947336 0.473668 0.880703i \(-0.342930\pi\)
0.473668 + 0.880703i \(0.342930\pi\)
\(462\) 0 0
\(463\) −11.7503 −0.546083 −0.273042 0.962002i \(-0.588030\pi\)
−0.273042 + 0.962002i \(0.588030\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.1578 0.886517 0.443259 0.896394i \(-0.353822\pi\)
0.443259 + 0.896394i \(0.353822\pi\)
\(468\) 0 0
\(469\) 2.12556 0.0981492
\(470\) 0 0
\(471\) 4.06770 0.187430
\(472\) 0 0
\(473\) 1.70928 0.0785926
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.810439 0.0371075
\(478\) 0 0
\(479\) −1.72875 −0.0789886 −0.0394943 0.999220i \(-0.512575\pi\)
−0.0394943 + 0.999220i \(0.512575\pi\)
\(480\) 0 0
\(481\) −4.78765 −0.218298
\(482\) 0 0
\(483\) 1.91094 0.0869510
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 42.4885 1.92534 0.962669 0.270680i \(-0.0872487\pi\)
0.962669 + 0.270680i \(0.0872487\pi\)
\(488\) 0 0
\(489\) 10.6803 0.482982
\(490\) 0 0
\(491\) 0.398032 0.0179629 0.00898146 0.999960i \(-0.497141\pi\)
0.00898146 + 0.999960i \(0.497141\pi\)
\(492\) 0 0
\(493\) −7.05172 −0.317593
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.71769 −0.256473
\(498\) 0 0
\(499\) −8.56585 −0.383460 −0.191730 0.981448i \(-0.561410\pi\)
−0.191730 + 0.981448i \(0.561410\pi\)
\(500\) 0 0
\(501\) 14.9939 0.669876
\(502\) 0 0
\(503\) 35.7347 1.59333 0.796666 0.604420i \(-0.206595\pi\)
0.796666 + 0.604420i \(0.206595\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.17009 0.0519654
\(508\) 0 0
\(509\) −6.13009 −0.271712 −0.135856 0.990729i \(-0.543378\pi\)
−0.135856 + 0.990729i \(0.543378\pi\)
\(510\) 0 0
\(511\) −7.70086 −0.340666
\(512\) 0 0
\(513\) 4.76487 0.210374
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.82273 0.212103
\(518\) 0 0
\(519\) 4.89496 0.214865
\(520\) 0 0
\(521\) 24.7442 1.08406 0.542031 0.840359i \(-0.317656\pi\)
0.542031 + 0.840359i \(0.317656\pi\)
\(522\) 0 0
\(523\) −23.7081 −1.03668 −0.518340 0.855174i \(-0.673450\pi\)
−0.518340 + 0.855174i \(0.673450\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.4969 1.06710
\(528\) 0 0
\(529\) −16.2990 −0.708650
\(530\) 0 0
\(531\) −13.5330 −0.587284
\(532\) 0 0
\(533\) −3.41855 −0.148074
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.0989 0.694719
\(538\) 0 0
\(539\) −3.55971 −0.153327
\(540\) 0 0
\(541\) 17.6475 0.758727 0.379364 0.925248i \(-0.376143\pi\)
0.379364 + 0.925248i \(0.376143\pi\)
\(542\) 0 0
\(543\) −25.5174 −1.09506
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −24.8299 −1.06165 −0.530825 0.847481i \(-0.678118\pi\)
−0.530825 + 0.847481i \(0.678118\pi\)
\(548\) 0 0
\(549\) −6.60424 −0.281862
\(550\) 0 0
\(551\) 2.01438 0.0858153
\(552\) 0 0
\(553\) −3.57077 −0.151845
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0950 0.766711 0.383355 0.923601i \(-0.374768\pi\)
0.383355 + 0.923601i \(0.374768\pi\)
\(558\) 0 0
\(559\) −3.17009 −0.134080
\(560\) 0 0
\(561\) 1.94214 0.0819973
\(562\) 0 0
\(563\) −6.67316 −0.281240 −0.140620 0.990064i \(-0.544910\pi\)
−0.140620 + 0.990064i \(0.544910\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.913212 0.0383513
\(568\) 0 0
\(569\) 10.7877 0.452242 0.226121 0.974099i \(-0.427396\pi\)
0.226121 + 0.974099i \(0.427396\pi\)
\(570\) 0 0
\(571\) 22.2245 0.930065 0.465032 0.885294i \(-0.346043\pi\)
0.465032 + 0.885294i \(0.346043\pi\)
\(572\) 0 0
\(573\) 3.31965 0.138681
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.6309 −1.44170 −0.720852 0.693089i \(-0.756249\pi\)
−0.720852 + 0.693089i \(0.756249\pi\)
\(578\) 0 0
\(579\) −25.2930 −1.05114
\(580\) 0 0
\(581\) −0.649149 −0.0269312
\(582\) 0 0
\(583\) −0.267938 −0.0110969
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.8660 −0.985057 −0.492528 0.870296i \(-0.663927\pi\)
−0.492528 + 0.870296i \(0.663927\pi\)
\(588\) 0 0
\(589\) −6.99773 −0.288337
\(590\) 0 0
\(591\) 2.34017 0.0962619
\(592\) 0 0
\(593\) 2.39803 0.0984754 0.0492377 0.998787i \(-0.484321\pi\)
0.0492377 + 0.998787i \(0.484321\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.8950 0.691465
\(598\) 0 0
\(599\) −40.8248 −1.66806 −0.834028 0.551722i \(-0.813971\pi\)
−0.834028 + 0.551722i \(0.813971\pi\)
\(600\) 0 0
\(601\) −20.4703 −0.835000 −0.417500 0.908677i \(-0.637094\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(602\) 0 0
\(603\) 5.49466 0.223760
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −37.1578 −1.50819 −0.754094 0.656766i \(-0.771924\pi\)
−0.754094 + 0.656766i \(0.771924\pi\)
\(608\) 0 0
\(609\) 1.69102 0.0685237
\(610\) 0 0
\(611\) −8.94441 −0.361852
\(612\) 0 0
\(613\) 20.1711 0.814704 0.407352 0.913271i \(-0.366452\pi\)
0.407352 + 0.913271i \(0.366452\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.4657 −0.582368 −0.291184 0.956667i \(-0.594049\pi\)
−0.291184 + 0.956667i \(0.594049\pi\)
\(618\) 0 0
\(619\) −19.5330 −0.785099 −0.392550 0.919731i \(-0.628407\pi\)
−0.392550 + 0.919731i \(0.628407\pi\)
\(620\) 0 0
\(621\) 14.0267 0.562871
\(622\) 0 0
\(623\) 10.6225 0.425581
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.554787 −0.0221561
\(628\) 0 0
\(629\) 14.7382 0.587651
\(630\) 0 0
\(631\) 22.9783 0.914750 0.457375 0.889274i \(-0.348790\pi\)
0.457375 + 0.889274i \(0.348790\pi\)
\(632\) 0 0
\(633\) −5.01068 −0.199157
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.60197 0.261580
\(638\) 0 0
\(639\) −14.7805 −0.584706
\(640\) 0 0
\(641\) 5.00614 0.197731 0.0988654 0.995101i \(-0.468479\pi\)
0.0988654 + 0.995101i \(0.468479\pi\)
\(642\) 0 0
\(643\) 3.95055 0.155795 0.0778973 0.996961i \(-0.475179\pi\)
0.0778973 + 0.996961i \(0.475179\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.8710 1.29229 0.646145 0.763214i \(-0.276380\pi\)
0.646145 + 0.763214i \(0.276380\pi\)
\(648\) 0 0
\(649\) 4.47414 0.175625
\(650\) 0 0
\(651\) −5.87444 −0.230238
\(652\) 0 0
\(653\) −24.4703 −0.957596 −0.478798 0.877925i \(-0.658927\pi\)
−0.478798 + 0.877925i \(0.658927\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −19.9071 −0.776649
\(658\) 0 0
\(659\) −21.0928 −0.821657 −0.410829 0.911713i \(-0.634761\pi\)
−0.410829 + 0.911713i \(0.634761\pi\)
\(660\) 0 0
\(661\) −28.5958 −1.11225 −0.556124 0.831099i \(-0.687712\pi\)
−0.556124 + 0.831099i \(0.687712\pi\)
\(662\) 0 0
\(663\) −3.60197 −0.139889
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.92986 0.229605
\(668\) 0 0
\(669\) 26.7792 1.03535
\(670\) 0 0
\(671\) 2.18342 0.0842899
\(672\) 0 0
\(673\) 1.02052 0.0393381 0.0196691 0.999807i \(-0.493739\pi\)
0.0196691 + 0.999807i \(0.493739\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.3295 1.28096 0.640478 0.767976i \(-0.278736\pi\)
0.640478 + 0.767976i \(0.278736\pi\)
\(678\) 0 0
\(679\) 3.30283 0.126751
\(680\) 0 0
\(681\) 6.89496 0.264215
\(682\) 0 0
\(683\) −1.52586 −0.0583853 −0.0291927 0.999574i \(-0.509294\pi\)
−0.0291927 + 0.999574i \(0.509294\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 20.0312 0.764238
\(688\) 0 0
\(689\) 0.496928 0.0189315
\(690\) 0 0
\(691\) 21.2339 0.807776 0.403888 0.914808i \(-0.367659\pi\)
0.403888 + 0.914808i \(0.367659\pi\)
\(692\) 0 0
\(693\) 0.554787 0.0210746
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.5236 0.398609
\(698\) 0 0
\(699\) 16.2511 0.614674
\(700\) 0 0
\(701\) 0.974946 0.0368232 0.0184116 0.999830i \(-0.494139\pi\)
0.0184116 + 0.999830i \(0.494139\pi\)
\(702\) 0 0
\(703\) −4.21008 −0.158786
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.30283 −0.124216
\(708\) 0 0
\(709\) 4.14238 0.155570 0.0777852 0.996970i \(-0.475215\pi\)
0.0777852 + 0.996970i \(0.475215\pi\)
\(710\) 0 0
\(711\) −9.23060 −0.346174
\(712\) 0 0
\(713\) −20.5997 −0.771465
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.5152 −0.915536
\(718\) 0 0
\(719\) 9.26180 0.345407 0.172703 0.984974i \(-0.444750\pi\)
0.172703 + 0.984974i \(0.444750\pi\)
\(720\) 0 0
\(721\) −2.33033 −0.0867861
\(722\) 0 0
\(723\) −10.1568 −0.377734
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −38.9165 −1.44333 −0.721667 0.692240i \(-0.756624\pi\)
−0.721667 + 0.692240i \(0.756624\pi\)
\(728\) 0 0
\(729\) 21.3812 0.791897
\(730\) 0 0
\(731\) 9.75872 0.360939
\(732\) 0 0
\(733\) −51.1917 −1.89081 −0.945403 0.325903i \(-0.894332\pi\)
−0.945403 + 0.325903i \(0.894332\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.81658 −0.0669147
\(738\) 0 0
\(739\) 10.8260 0.398242 0.199121 0.979975i \(-0.436191\pi\)
0.199121 + 0.979975i \(0.436191\pi\)
\(740\) 0 0
\(741\) 1.02893 0.0377987
\(742\) 0 0
\(743\) 43.3667 1.59097 0.795484 0.605974i \(-0.207217\pi\)
0.795484 + 0.605974i \(0.207217\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.67808 −0.0613977
\(748\) 0 0
\(749\) −10.0000 −0.365392
\(750\) 0 0
\(751\) −23.9299 −0.873213 −0.436606 0.899653i \(-0.643820\pi\)
−0.436606 + 0.899653i \(0.643820\pi\)
\(752\) 0 0
\(753\) −10.0410 −0.365916
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −25.9733 −0.944017 −0.472009 0.881594i \(-0.656471\pi\)
−0.472009 + 0.881594i \(0.656471\pi\)
\(758\) 0 0
\(759\) −1.63317 −0.0592801
\(760\) 0 0
\(761\) 17.7854 0.644720 0.322360 0.946617i \(-0.395524\pi\)
0.322360 + 0.946617i \(0.395524\pi\)
\(762\) 0 0
\(763\) 2.40787 0.0871708
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.29791 −0.299620
\(768\) 0 0
\(769\) −13.9011 −0.501287 −0.250643 0.968080i \(-0.580642\pi\)
−0.250643 + 0.968080i \(0.580642\pi\)
\(770\) 0 0
\(771\) 16.6803 0.600728
\(772\) 0 0
\(773\) −10.7298 −0.385924 −0.192962 0.981206i \(-0.561809\pi\)
−0.192962 + 0.981206i \(0.561809\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.53427 −0.126791
\(778\) 0 0
\(779\) −3.00614 −0.107706
\(780\) 0 0
\(781\) 4.88655 0.174854
\(782\) 0 0
\(783\) 12.4124 0.443583
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.76260 −0.347999 −0.174000 0.984746i \(-0.555669\pi\)
−0.174000 + 0.984746i \(0.555669\pi\)
\(788\) 0 0
\(789\) 12.6719 0.451133
\(790\) 0 0
\(791\) −7.22076 −0.256741
\(792\) 0 0
\(793\) −4.04945 −0.143800
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42.7792 1.51532 0.757659 0.652650i \(-0.226343\pi\)
0.757659 + 0.652650i \(0.226343\pi\)
\(798\) 0 0
\(799\) 27.5343 0.974092
\(800\) 0 0
\(801\) 27.4596 0.970237
\(802\) 0 0
\(803\) 6.58145 0.232254
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −25.0784 −0.882801
\(808\) 0 0
\(809\) 23.1155 0.812699 0.406350 0.913718i \(-0.366802\pi\)
0.406350 + 0.913718i \(0.366802\pi\)
\(810\) 0 0
\(811\) −7.59090 −0.266553 −0.133276 0.991079i \(-0.542550\pi\)
−0.133276 + 0.991079i \(0.542550\pi\)
\(812\) 0 0
\(813\) −25.1278 −0.881271
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.78765 −0.0975276
\(818\) 0 0
\(819\) −1.02893 −0.0359537
\(820\) 0 0
\(821\) 14.0722 0.491124 0.245562 0.969381i \(-0.421027\pi\)
0.245562 + 0.969381i \(0.421027\pi\)
\(822\) 0 0
\(823\) 8.10608 0.282560 0.141280 0.989970i \(-0.454878\pi\)
0.141280 + 0.989970i \(0.454878\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −50.1750 −1.74476 −0.872378 0.488832i \(-0.837423\pi\)
−0.872378 + 0.488832i \(0.837423\pi\)
\(828\) 0 0
\(829\) 21.2123 0.736735 0.368368 0.929680i \(-0.379917\pi\)
0.368368 + 0.929680i \(0.379917\pi\)
\(830\) 0 0
\(831\) 3.84778 0.133478
\(832\) 0 0
\(833\) −20.3234 −0.704162
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −43.1194 −1.49043
\(838\) 0 0
\(839\) 46.4645 1.60413 0.802066 0.597235i \(-0.203734\pi\)
0.802066 + 0.597235i \(0.203734\pi\)
\(840\) 0 0
\(841\) −23.7526 −0.819055
\(842\) 0 0
\(843\) −32.9939 −1.13637
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.75646 0.232155
\(848\) 0 0
\(849\) 14.2329 0.488471
\(850\) 0 0
\(851\) −12.3935 −0.424844
\(852\) 0 0
\(853\) −3.99159 −0.136669 −0.0683347 0.997662i \(-0.521769\pi\)
−0.0683347 + 0.997662i \(0.521769\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.8843 1.08915 0.544573 0.838713i \(-0.316692\pi\)
0.544573 + 0.838713i \(0.316692\pi\)
\(858\) 0 0
\(859\) −26.8059 −0.914606 −0.457303 0.889311i \(-0.651184\pi\)
−0.457303 + 0.889311i \(0.651184\pi\)
\(860\) 0 0
\(861\) −2.52359 −0.0860037
\(862\) 0 0
\(863\) 41.5259 1.41356 0.706778 0.707435i \(-0.250148\pi\)
0.706778 + 0.707435i \(0.250148\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8.80325 −0.298974
\(868\) 0 0
\(869\) 3.05172 0.103522
\(870\) 0 0
\(871\) 3.36910 0.114158
\(872\) 0 0
\(873\) 8.53797 0.288966
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.98562 −0.337191 −0.168595 0.985685i \(-0.553923\pi\)
−0.168595 + 0.985685i \(0.553923\pi\)
\(878\) 0 0
\(879\) 10.9627 0.369761
\(880\) 0 0
\(881\) 8.41628 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(882\) 0 0
\(883\) −30.4585 −1.02501 −0.512506 0.858684i \(-0.671283\pi\)
−0.512506 + 0.858684i \(0.671283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 54.7454 1.83817 0.919085 0.394059i \(-0.128929\pi\)
0.919085 + 0.394059i \(0.128929\pi\)
\(888\) 0 0
\(889\) −3.37751 −0.113278
\(890\) 0 0
\(891\) −0.780465 −0.0261466
\(892\) 0 0
\(893\) −7.86537 −0.263205
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.02893 0.101133
\(898\) 0 0
\(899\) −18.2290 −0.607971
\(900\) 0 0
\(901\) −1.52973 −0.0509628
\(902\) 0 0
\(903\) −2.34017 −0.0778761
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −30.4007 −1.00944 −0.504719 0.863284i \(-0.668404\pi\)
−0.504719 + 0.863284i \(0.668404\pi\)
\(908\) 0 0
\(909\) −8.53797 −0.283186
\(910\) 0 0
\(911\) 10.7526 0.356249 0.178124 0.984008i \(-0.442997\pi\)
0.178124 + 0.984008i \(0.442997\pi\)
\(912\) 0 0
\(913\) 0.554787 0.0183608
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.9467 0.394514
\(918\) 0 0
\(919\) 37.3607 1.23242 0.616208 0.787584i \(-0.288668\pi\)
0.616208 + 0.787584i \(0.288668\pi\)
\(920\) 0 0
\(921\) −36.3545 −1.19792
\(922\) 0 0
\(923\) −9.06278 −0.298305
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6.02401 −0.197854
\(928\) 0 0
\(929\) 33.6742 1.10481 0.552407 0.833574i \(-0.313709\pi\)
0.552407 + 0.833574i \(0.313709\pi\)
\(930\) 0 0
\(931\) 5.80552 0.190268
\(932\) 0 0
\(933\) 4.31351 0.141218
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −25.0394 −0.818003 −0.409001 0.912534i \(-0.634123\pi\)
−0.409001 + 0.912534i \(0.634123\pi\)
\(938\) 0 0
\(939\) −2.92162 −0.0953435
\(940\) 0 0
\(941\) 7.07838 0.230749 0.115374 0.993322i \(-0.463193\pi\)
0.115374 + 0.993322i \(0.463193\pi\)
\(942\) 0 0
\(943\) −8.84939 −0.288176
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.1795 0.785730 0.392865 0.919596i \(-0.371484\pi\)
0.392865 + 0.919596i \(0.371484\pi\)
\(948\) 0 0
\(949\) −12.2062 −0.396230
\(950\) 0 0
\(951\) −32.1880 −1.04377
\(952\) 0 0
\(953\) −21.6742 −0.702096 −0.351048 0.936357i \(-0.614175\pi\)
−0.351048 + 0.936357i \(0.614175\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.44521 −0.0467171
\(958\) 0 0
\(959\) 3.84778 0.124251
\(960\) 0 0
\(961\) 32.3256 1.04276
\(962\) 0 0
\(963\) −25.8504 −0.833019
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.14220 −0.0367307 −0.0183654 0.999831i \(-0.505846\pi\)
−0.0183654 + 0.999831i \(0.505846\pi\)
\(968\) 0 0
\(969\) −3.16743 −0.101753
\(970\) 0 0
\(971\) 41.9565 1.34645 0.673224 0.739438i \(-0.264909\pi\)
0.673224 + 0.739438i \(0.264909\pi\)
\(972\) 0 0
\(973\) −13.5921 −0.435744
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0023 0.671922 0.335961 0.941876i \(-0.390939\pi\)
0.335961 + 0.941876i \(0.390939\pi\)
\(978\) 0 0
\(979\) −9.07838 −0.290146
\(980\) 0 0
\(981\) 6.22446 0.198732
\(982\) 0 0
\(983\) −44.1171 −1.40712 −0.703559 0.710637i \(-0.748407\pi\)
−0.703559 + 0.710637i \(0.748407\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.60281 −0.210170
\(988\) 0 0
\(989\) −8.20620 −0.260942
\(990\) 0 0
\(991\) −48.9549 −1.55510 −0.777552 0.628819i \(-0.783539\pi\)
−0.777552 + 0.628819i \(0.783539\pi\)
\(992\) 0 0
\(993\) 10.8865 0.345474
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.9914 −1.67825 −0.839127 0.543935i \(-0.816934\pi\)
−0.839127 + 0.543935i \(0.816934\pi\)
\(998\) 0 0
\(999\) −25.9421 −0.820773
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.cc.1.3 3
4.3 odd 2 2600.2.a.y.1.1 3
5.2 odd 4 1040.2.d.e.209.2 6
5.3 odd 4 1040.2.d.e.209.5 6
5.4 even 2 5200.2.a.ch.1.1 3
20.3 even 4 520.2.d.b.209.2 6
20.7 even 4 520.2.d.b.209.5 yes 6
20.19 odd 2 2600.2.a.x.1.3 3
60.23 odd 4 4680.2.l.d.2809.4 6
60.47 odd 4 4680.2.l.d.2809.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.d.b.209.2 6 20.3 even 4
520.2.d.b.209.5 yes 6 20.7 even 4
1040.2.d.e.209.2 6 5.2 odd 4
1040.2.d.e.209.5 6 5.3 odd 4
2600.2.a.x.1.3 3 20.19 odd 2
2600.2.a.y.1.1 3 4.3 odd 2
4680.2.l.d.2809.3 6 60.47 odd 4
4680.2.l.d.2809.4 6 60.23 odd 4
5200.2.a.cc.1.3 3 1.1 even 1 trivial
5200.2.a.ch.1.1 3 5.4 even 2