Properties

Label 520.2.d.b.209.5
Level $520$
Weight $2$
Character 520.209
Analytic conductor $4.152$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [520,2,Mod(209,520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("520.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.5
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 520.209
Dual form 520.2.d.b.209.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17009i q^{3} +(0.539189 + 2.17009i) q^{5} +0.630898i q^{7} +1.63090 q^{9} -0.539189 q^{11} +1.00000i q^{13} +(-2.53919 + 0.630898i) q^{15} +3.07838i q^{17} -0.879362 q^{19} -0.738205 q^{21} -2.58864i q^{23} +(-4.41855 + 2.34017i) q^{25} +5.41855i q^{27} +2.29072 q^{29} -7.95774 q^{31} -0.630898i q^{33} +(-1.36910 + 0.340173i) q^{35} +4.78765i q^{37} -1.17009 q^{39} +3.41855 q^{41} +3.17009i q^{43} +(0.879362 + 3.53919i) q^{45} -8.94441i q^{47} +6.60197 q^{49} -3.60197 q^{51} +0.496928i q^{53} +(-0.290725 - 1.17009i) q^{55} -1.02893i q^{57} +8.29791 q^{59} +4.04945 q^{61} +1.02893i q^{63} +(-2.17009 + 0.539189i) q^{65} +3.36910i q^{67} +3.02893 q^{69} -9.06278 q^{71} -12.2062i q^{73} +(-2.73820 - 5.17009i) q^{75} -0.340173i q^{77} +5.65983 q^{79} -1.44748 q^{81} +1.02893i q^{83} +(-6.68035 + 1.65983i) q^{85} +2.68035i q^{87} +16.8371 q^{89} -0.630898 q^{91} -9.31124i q^{93} +(-0.474142 - 1.90829i) q^{95} -5.23513i q^{97} -0.879362 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{9} - 12 q^{15} + 20 q^{19} - 20 q^{21} + 2 q^{25} + 28 q^{29} - 16 q^{31} - 16 q^{35} + 4 q^{39} - 8 q^{41} - 20 q^{45} + 2 q^{49} + 16 q^{51} - 16 q^{55} - 4 q^{59} - 12 q^{61} - 2 q^{65} + 48 q^{69}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17009i 0.675550i 0.941227 + 0.337775i \(0.109674\pi\)
−0.941227 + 0.337775i \(0.890326\pi\)
\(4\) 0 0
\(5\) 0.539189 + 2.17009i 0.241133 + 0.970492i
\(6\) 0 0
\(7\) 0.630898i 0.238457i 0.992867 + 0.119228i \(0.0380421\pi\)
−0.992867 + 0.119228i \(0.961958\pi\)
\(8\) 0 0
\(9\) 1.63090 0.543633
\(10\) 0 0
\(11\) −0.539189 −0.162572 −0.0812858 0.996691i \(-0.525903\pi\)
−0.0812858 + 0.996691i \(0.525903\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −2.53919 + 0.630898i −0.655616 + 0.162897i
\(16\) 0 0
\(17\) 3.07838i 0.746616i 0.927707 + 0.373308i \(0.121777\pi\)
−0.927707 + 0.373308i \(0.878223\pi\)
\(18\) 0 0
\(19\) −0.879362 −0.201739 −0.100870 0.994900i \(-0.532163\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(20\) 0 0
\(21\) −0.738205 −0.161089
\(22\) 0 0
\(23\) 2.58864i 0.539768i −0.962893 0.269884i \(-0.913015\pi\)
0.962893 0.269884i \(-0.0869854\pi\)
\(24\) 0 0
\(25\) −4.41855 + 2.34017i −0.883710 + 0.468035i
\(26\) 0 0
\(27\) 5.41855i 1.04280i
\(28\) 0 0
\(29\) 2.29072 0.425377 0.212688 0.977120i \(-0.431778\pi\)
0.212688 + 0.977120i \(0.431778\pi\)
\(30\) 0 0
\(31\) −7.95774 −1.42925 −0.714626 0.699507i \(-0.753403\pi\)
−0.714626 + 0.699507i \(0.753403\pi\)
\(32\) 0 0
\(33\) 0.630898i 0.109825i
\(34\) 0 0
\(35\) −1.36910 + 0.340173i −0.231421 + 0.0574997i
\(36\) 0 0
\(37\) 4.78765i 0.787085i 0.919306 + 0.393543i \(0.128751\pi\)
−0.919306 + 0.393543i \(0.871249\pi\)
\(38\) 0 0
\(39\) −1.17009 −0.187364
\(40\) 0 0
\(41\) 3.41855 0.533888 0.266944 0.963712i \(-0.413986\pi\)
0.266944 + 0.963712i \(0.413986\pi\)
\(42\) 0 0
\(43\) 3.17009i 0.483434i 0.970347 + 0.241717i \(0.0777105\pi\)
−0.970347 + 0.241717i \(0.922289\pi\)
\(44\) 0 0
\(45\) 0.879362 + 3.53919i 0.131088 + 0.527591i
\(46\) 0 0
\(47\) 8.94441i 1.30468i −0.757928 0.652338i \(-0.773788\pi\)
0.757928 0.652338i \(-0.226212\pi\)
\(48\) 0 0
\(49\) 6.60197 0.943138
\(50\) 0 0
\(51\) −3.60197 −0.504376
\(52\) 0 0
\(53\) 0.496928i 0.0682584i 0.999417 + 0.0341292i \(0.0108658\pi\)
−0.999417 + 0.0341292i \(0.989134\pi\)
\(54\) 0 0
\(55\) −0.290725 1.17009i −0.0392013 0.157774i
\(56\) 0 0
\(57\) 1.02893i 0.136285i
\(58\) 0 0
\(59\) 8.29791 1.08030 0.540148 0.841570i \(-0.318368\pi\)
0.540148 + 0.841570i \(0.318368\pi\)
\(60\) 0 0
\(61\) 4.04945 0.518479 0.259239 0.965813i \(-0.416528\pi\)
0.259239 + 0.965813i \(0.416528\pi\)
\(62\) 0 0
\(63\) 1.02893i 0.129633i
\(64\) 0 0
\(65\) −2.17009 + 0.539189i −0.269166 + 0.0668781i
\(66\) 0 0
\(67\) 3.36910i 0.411601i 0.978594 + 0.205801i \(0.0659799\pi\)
−0.978594 + 0.205801i \(0.934020\pi\)
\(68\) 0 0
\(69\) 3.02893 0.364640
\(70\) 0 0
\(71\) −9.06278 −1.07555 −0.537777 0.843087i \(-0.680736\pi\)
−0.537777 + 0.843087i \(0.680736\pi\)
\(72\) 0 0
\(73\) 12.2062i 1.42863i −0.699825 0.714314i \(-0.746739\pi\)
0.699825 0.714314i \(-0.253261\pi\)
\(74\) 0 0
\(75\) −2.73820 5.17009i −0.316181 0.596990i
\(76\) 0 0
\(77\) 0.340173i 0.0387663i
\(78\) 0 0
\(79\) 5.65983 0.636780 0.318390 0.947960i \(-0.396858\pi\)
0.318390 + 0.947960i \(0.396858\pi\)
\(80\) 0 0
\(81\) −1.44748 −0.160831
\(82\) 0 0
\(83\) 1.02893i 0.112940i 0.998404 + 0.0564698i \(0.0179845\pi\)
−0.998404 + 0.0564698i \(0.982016\pi\)
\(84\) 0 0
\(85\) −6.68035 + 1.65983i −0.724585 + 0.180034i
\(86\) 0 0
\(87\) 2.68035i 0.287363i
\(88\) 0 0
\(89\) 16.8371 1.78473 0.892365 0.451315i \(-0.149045\pi\)
0.892365 + 0.451315i \(0.149045\pi\)
\(90\) 0 0
\(91\) −0.630898 −0.0661360
\(92\) 0 0
\(93\) 9.31124i 0.965531i
\(94\) 0 0
\(95\) −0.474142 1.90829i −0.0486460 0.195787i
\(96\) 0 0
\(97\) 5.23513i 0.531547i −0.964035 0.265774i \(-0.914373\pi\)
0.964035 0.265774i \(-0.0856274\pi\)
\(98\) 0 0
\(99\) −0.879362 −0.0883792
\(100\) 0 0
\(101\) 5.23513 0.520915 0.260458 0.965485i \(-0.416127\pi\)
0.260458 + 0.965485i \(0.416127\pi\)
\(102\) 0 0
\(103\) 3.69368i 0.363949i 0.983303 + 0.181974i \(0.0582488\pi\)
−0.983303 + 0.181974i \(0.941751\pi\)
\(104\) 0 0
\(105\) −0.398032 1.60197i −0.0388439 0.156336i
\(106\) 0 0
\(107\) 15.8504i 1.53232i −0.642650 0.766160i \(-0.722165\pi\)
0.642650 0.766160i \(-0.277835\pi\)
\(108\) 0 0
\(109\) 3.81658 0.365562 0.182781 0.983154i \(-0.441490\pi\)
0.182781 + 0.983154i \(0.441490\pi\)
\(110\) 0 0
\(111\) −5.60197 −0.531715
\(112\) 0 0
\(113\) 11.4452i 1.07668i −0.842729 0.538338i \(-0.819053\pi\)
0.842729 0.538338i \(-0.180947\pi\)
\(114\) 0 0
\(115\) 5.61757 1.39576i 0.523841 0.130156i
\(116\) 0 0
\(117\) 1.63090i 0.150777i
\(118\) 0 0
\(119\) −1.94214 −0.178036
\(120\) 0 0
\(121\) −10.7093 −0.973570
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) −7.46081 8.32684i −0.667315 0.744775i
\(126\) 0 0
\(127\) 5.35350i 0.475047i −0.971382 0.237523i \(-0.923664\pi\)
0.971382 0.237523i \(-0.0763356\pi\)
\(128\) 0 0
\(129\) −3.70928 −0.326583
\(130\) 0 0
\(131\) 18.9360 1.65445 0.827223 0.561874i \(-0.189919\pi\)
0.827223 + 0.561874i \(0.189919\pi\)
\(132\) 0 0
\(133\) 0.554787i 0.0481062i
\(134\) 0 0
\(135\) −11.7587 + 2.92162i −1.01203 + 0.251453i
\(136\) 0 0
\(137\) 6.09890i 0.521064i −0.965465 0.260532i \(-0.916102\pi\)
0.965465 0.260532i \(-0.0838979\pi\)
\(138\) 0 0
\(139\) 21.5441 1.82735 0.913674 0.406448i \(-0.133233\pi\)
0.913674 + 0.406448i \(0.133233\pi\)
\(140\) 0 0
\(141\) 10.4657 0.881374
\(142\) 0 0
\(143\) 0.539189i 0.0450892i
\(144\) 0 0
\(145\) 1.23513 + 4.97107i 0.102572 + 0.412825i
\(146\) 0 0
\(147\) 7.72487i 0.637137i
\(148\) 0 0
\(149\) −8.28231 −0.678514 −0.339257 0.940694i \(-0.610176\pi\)
−0.339257 + 0.940694i \(0.610176\pi\)
\(150\) 0 0
\(151\) −7.61757 −0.619909 −0.309954 0.950751i \(-0.600314\pi\)
−0.309954 + 0.950751i \(0.600314\pi\)
\(152\) 0 0
\(153\) 5.02052i 0.405885i
\(154\) 0 0
\(155\) −4.29072 17.2690i −0.344639 1.38708i
\(156\) 0 0
\(157\) 3.47641i 0.277448i 0.990331 + 0.138724i \(0.0443000\pi\)
−0.990331 + 0.138724i \(0.955700\pi\)
\(158\) 0 0
\(159\) −0.581449 −0.0461119
\(160\) 0 0
\(161\) 1.63317 0.128711
\(162\) 0 0
\(163\) 9.12783i 0.714947i 0.933923 + 0.357473i \(0.116362\pi\)
−0.933923 + 0.357473i \(0.883638\pi\)
\(164\) 0 0
\(165\) 1.36910 0.340173i 0.106584 0.0264824i
\(166\) 0 0
\(167\) 12.8143i 0.991601i −0.868436 0.495801i \(-0.834875\pi\)
0.868436 0.495801i \(-0.165125\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −1.43415 −0.109672
\(172\) 0 0
\(173\) 4.18342i 0.318059i −0.987274 0.159030i \(-0.949163\pi\)
0.987274 0.159030i \(-0.0508366\pi\)
\(174\) 0 0
\(175\) −1.47641 2.78765i −0.111606 0.210727i
\(176\) 0 0
\(177\) 9.70928i 0.729794i
\(178\) 0 0
\(179\) 13.7587 1.02838 0.514188 0.857678i \(-0.328093\pi\)
0.514188 + 0.857678i \(0.328093\pi\)
\(180\) 0 0
\(181\) −21.8082 −1.62099 −0.810494 0.585746i \(-0.800801\pi\)
−0.810494 + 0.585746i \(0.800801\pi\)
\(182\) 0 0
\(183\) 4.73820i 0.350258i
\(184\) 0 0
\(185\) −10.3896 + 2.58145i −0.763860 + 0.189792i
\(186\) 0 0
\(187\) 1.65983i 0.121379i
\(188\) 0 0
\(189\) −3.41855 −0.248663
\(190\) 0 0
\(191\) −2.83710 −0.205285 −0.102643 0.994718i \(-0.532730\pi\)
−0.102643 + 0.994718i \(0.532730\pi\)
\(192\) 0 0
\(193\) 21.6163i 1.55598i 0.628278 + 0.777989i \(0.283760\pi\)
−0.628278 + 0.777989i \(0.716240\pi\)
\(194\) 0 0
\(195\) −0.630898 2.53919i −0.0451795 0.181835i
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 14.4391 1.02356 0.511779 0.859117i \(-0.328987\pi\)
0.511779 + 0.859117i \(0.328987\pi\)
\(200\) 0 0
\(201\) −3.94214 −0.278057
\(202\) 0 0
\(203\) 1.44521i 0.101434i
\(204\) 0 0
\(205\) 1.84324 + 7.41855i 0.128738 + 0.518134i
\(206\) 0 0
\(207\) 4.22180i 0.293436i
\(208\) 0 0
\(209\) 0.474142 0.0327971
\(210\) 0 0
\(211\) 4.28231 0.294807 0.147403 0.989076i \(-0.452908\pi\)
0.147403 + 0.989076i \(0.452908\pi\)
\(212\) 0 0
\(213\) 10.6042i 0.726590i
\(214\) 0 0
\(215\) −6.87936 + 1.70928i −0.469169 + 0.116572i
\(216\) 0 0
\(217\) 5.02052i 0.340815i
\(218\) 0 0
\(219\) 14.2823 0.965109
\(220\) 0 0
\(221\) −3.07838 −0.207074
\(222\) 0 0
\(223\) 22.8865i 1.53260i 0.642485 + 0.766298i \(0.277904\pi\)
−0.642485 + 0.766298i \(0.722096\pi\)
\(224\) 0 0
\(225\) −7.20620 + 3.81658i −0.480414 + 0.254439i
\(226\) 0 0
\(227\) 5.89269i 0.391112i −0.980693 0.195556i \(-0.937349\pi\)
0.980693 0.195556i \(-0.0626511\pi\)
\(228\) 0 0
\(229\) −17.1194 −1.13128 −0.565641 0.824651i \(-0.691371\pi\)
−0.565641 + 0.824651i \(0.691371\pi\)
\(230\) 0 0
\(231\) 0.398032 0.0261886
\(232\) 0 0
\(233\) 13.8888i 0.909887i −0.890520 0.454943i \(-0.849660\pi\)
0.890520 0.454943i \(-0.150340\pi\)
\(234\) 0 0
\(235\) 19.4101 4.82273i 1.26618 0.314600i
\(236\) 0 0
\(237\) 6.62249i 0.430177i
\(238\) 0 0
\(239\) −20.9516 −1.35525 −0.677623 0.735409i \(-0.736990\pi\)
−0.677623 + 0.735409i \(0.736990\pi\)
\(240\) 0 0
\(241\) −8.68035 −0.559150 −0.279575 0.960124i \(-0.590194\pi\)
−0.279575 + 0.960124i \(0.590194\pi\)
\(242\) 0 0
\(243\) 14.5620i 0.934151i
\(244\) 0 0
\(245\) 3.55971 + 14.3268i 0.227421 + 0.915308i
\(246\) 0 0
\(247\) 0.879362i 0.0559525i
\(248\) 0 0
\(249\) −1.20394 −0.0762964
\(250\) 0 0
\(251\) 8.58145 0.541656 0.270828 0.962628i \(-0.412702\pi\)
0.270828 + 0.962628i \(0.412702\pi\)
\(252\) 0 0
\(253\) 1.39576i 0.0877510i
\(254\) 0 0
\(255\) −1.94214 7.81658i −0.121622 0.489493i
\(256\) 0 0
\(257\) 14.2557i 0.889243i 0.895719 + 0.444622i \(0.146662\pi\)
−0.895719 + 0.444622i \(0.853338\pi\)
\(258\) 0 0
\(259\) −3.02052 −0.187686
\(260\) 0 0
\(261\) 3.73594 0.231249
\(262\) 0 0
\(263\) 10.8299i 0.667801i 0.942608 + 0.333901i \(0.108365\pi\)
−0.942608 + 0.333901i \(0.891635\pi\)
\(264\) 0 0
\(265\) −1.07838 + 0.267938i −0.0662442 + 0.0164593i
\(266\) 0 0
\(267\) 19.7009i 1.20567i
\(268\) 0 0
\(269\) 21.4329 1.30679 0.653394 0.757018i \(-0.273344\pi\)
0.653394 + 0.757018i \(0.273344\pi\)
\(270\) 0 0
\(271\) 21.4752 1.30452 0.652262 0.757993i \(-0.273820\pi\)
0.652262 + 0.757993i \(0.273820\pi\)
\(272\) 0 0
\(273\) 0.738205i 0.0446782i
\(274\) 0 0
\(275\) 2.38243 1.26180i 0.143666 0.0760891i
\(276\) 0 0
\(277\) 3.28846i 0.197584i 0.995108 + 0.0987921i \(0.0314979\pi\)
−0.995108 + 0.0987921i \(0.968502\pi\)
\(278\) 0 0
\(279\) −12.9783 −0.776988
\(280\) 0 0
\(281\) −28.1978 −1.68214 −0.841070 0.540927i \(-0.818074\pi\)
−0.841070 + 0.540927i \(0.818074\pi\)
\(282\) 0 0
\(283\) 12.1639i 0.723071i 0.932358 + 0.361536i \(0.117747\pi\)
−0.932358 + 0.361536i \(0.882253\pi\)
\(284\) 0 0
\(285\) 2.23287 0.554787i 0.132264 0.0328628i
\(286\) 0 0
\(287\) 2.15676i 0.127309i
\(288\) 0 0
\(289\) 7.52359 0.442564
\(290\) 0 0
\(291\) 6.12556 0.359087
\(292\) 0 0
\(293\) 9.36910i 0.547349i −0.961822 0.273674i \(-0.911761\pi\)
0.961822 0.273674i \(-0.0882391\pi\)
\(294\) 0 0
\(295\) 4.47414 + 18.0072i 0.260495 + 1.04842i
\(296\) 0 0
\(297\) 2.92162i 0.169530i
\(298\) 0 0
\(299\) 2.58864 0.149705
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 0 0
\(303\) 6.12556i 0.351904i
\(304\) 0 0
\(305\) 2.18342 + 8.78765i 0.125022 + 0.503180i
\(306\) 0 0
\(307\) 31.0700i 1.77326i 0.462483 + 0.886628i \(0.346959\pi\)
−0.462483 + 0.886628i \(0.653041\pi\)
\(308\) 0 0
\(309\) −4.32192 −0.245866
\(310\) 0 0
\(311\) −3.68649 −0.209042 −0.104521 0.994523i \(-0.533331\pi\)
−0.104521 + 0.994523i \(0.533331\pi\)
\(312\) 0 0
\(313\) 2.49693i 0.141135i 0.997507 + 0.0705674i \(0.0224810\pi\)
−0.997507 + 0.0705674i \(0.977519\pi\)
\(314\) 0 0
\(315\) −2.23287 + 0.554787i −0.125808 + 0.0312587i
\(316\) 0 0
\(317\) 27.5090i 1.54506i −0.634977 0.772531i \(-0.718991\pi\)
0.634977 0.772531i \(-0.281009\pi\)
\(318\) 0 0
\(319\) −1.23513 −0.0691542
\(320\) 0 0
\(321\) 18.5464 1.03516
\(322\) 0 0
\(323\) 2.70701i 0.150622i
\(324\) 0 0
\(325\) −2.34017 4.41855i −0.129809 0.245097i
\(326\) 0 0
\(327\) 4.46573i 0.246956i
\(328\) 0 0
\(329\) 5.64301 0.311109
\(330\) 0 0
\(331\) −9.30406 −0.511397 −0.255699 0.966757i \(-0.582305\pi\)
−0.255699 + 0.966757i \(0.582305\pi\)
\(332\) 0 0
\(333\) 7.80817i 0.427885i
\(334\) 0 0
\(335\) −7.31124 + 1.81658i −0.399456 + 0.0992505i
\(336\) 0 0
\(337\) 21.0205i 1.14506i 0.819884 + 0.572530i \(0.194038\pi\)
−0.819884 + 0.572530i \(0.805962\pi\)
\(338\) 0 0
\(339\) 13.3919 0.727348
\(340\) 0 0
\(341\) 4.29072 0.232356
\(342\) 0 0
\(343\) 8.58145i 0.463355i
\(344\) 0 0
\(345\) 1.63317 + 6.57304i 0.0879266 + 0.353881i
\(346\) 0 0
\(347\) 11.9083i 0.639271i 0.947541 + 0.319635i \(0.103560\pi\)
−0.947541 + 0.319635i \(0.896440\pi\)
\(348\) 0 0
\(349\) −4.07223 −0.217982 −0.108991 0.994043i \(-0.534762\pi\)
−0.108991 + 0.994043i \(0.534762\pi\)
\(350\) 0 0
\(351\) −5.41855 −0.289221
\(352\) 0 0
\(353\) 26.5152i 1.41126i −0.708580 0.705630i \(-0.750664\pi\)
0.708580 0.705630i \(-0.249336\pi\)
\(354\) 0 0
\(355\) −4.88655 19.6670i −0.259351 1.04382i
\(356\) 0 0
\(357\) 2.27247i 0.120272i
\(358\) 0 0
\(359\) −28.4501 −1.50154 −0.750770 0.660563i \(-0.770317\pi\)
−0.750770 + 0.660563i \(0.770317\pi\)
\(360\) 0 0
\(361\) −18.2267 −0.959301
\(362\) 0 0
\(363\) 12.5308i 0.657695i
\(364\) 0 0
\(365\) 26.4885 6.58145i 1.38647 0.344489i
\(366\) 0 0
\(367\) 36.3740i 1.89871i −0.314208 0.949354i \(-0.601739\pi\)
0.314208 0.949354i \(-0.398261\pi\)
\(368\) 0 0
\(369\) 5.57531 0.290239
\(370\) 0 0
\(371\) −0.313511 −0.0162767
\(372\) 0 0
\(373\) 23.3607i 1.20957i −0.796388 0.604785i \(-0.793259\pi\)
0.796388 0.604785i \(-0.206741\pi\)
\(374\) 0 0
\(375\) 9.74313 8.72979i 0.503133 0.450805i
\(376\) 0 0
\(377\) 2.29072i 0.117978i
\(378\) 0 0
\(379\) −30.0300 −1.54254 −0.771268 0.636510i \(-0.780377\pi\)
−0.771268 + 0.636510i \(0.780377\pi\)
\(380\) 0 0
\(381\) 6.26406 0.320918
\(382\) 0 0
\(383\) 2.02279i 0.103360i −0.998664 0.0516798i \(-0.983542\pi\)
0.998664 0.0516798i \(-0.0164575\pi\)
\(384\) 0 0
\(385\) 0.738205 0.183417i 0.0376224 0.00934782i
\(386\) 0 0
\(387\) 5.17009i 0.262810i
\(388\) 0 0
\(389\) −35.6742 −1.80875 −0.904377 0.426735i \(-0.859664\pi\)
−0.904377 + 0.426735i \(0.859664\pi\)
\(390\) 0 0
\(391\) 7.96880 0.403000
\(392\) 0 0
\(393\) 22.1568i 1.11766i
\(394\) 0 0
\(395\) 3.05172 + 12.2823i 0.153548 + 0.617990i
\(396\) 0 0
\(397\) 9.05559i 0.454487i −0.973838 0.227244i \(-0.927029\pi\)
0.973838 0.227244i \(-0.0729713\pi\)
\(398\) 0 0
\(399\) 0.649149 0.0324981
\(400\) 0 0
\(401\) 27.9421 1.39536 0.697682 0.716408i \(-0.254215\pi\)
0.697682 + 0.716408i \(0.254215\pi\)
\(402\) 0 0
\(403\) 7.95774i 0.396403i
\(404\) 0 0
\(405\) −0.780465 3.14116i −0.0387816 0.156085i
\(406\) 0 0
\(407\) 2.58145i 0.127958i
\(408\) 0 0
\(409\) −32.0989 −1.58719 −0.793594 0.608447i \(-0.791793\pi\)
−0.793594 + 0.608447i \(0.791793\pi\)
\(410\) 0 0
\(411\) 7.13624 0.352005
\(412\) 0 0
\(413\) 5.23513i 0.257604i
\(414\) 0 0
\(415\) −2.23287 + 0.554787i −0.109607 + 0.0272334i
\(416\) 0 0
\(417\) 25.2085i 1.23446i
\(418\) 0 0
\(419\) −18.3090 −0.894452 −0.447226 0.894421i \(-0.647588\pi\)
−0.447226 + 0.894421i \(0.647588\pi\)
\(420\) 0 0
\(421\) −27.0205 −1.31690 −0.658450 0.752625i \(-0.728787\pi\)
−0.658450 + 0.752625i \(0.728787\pi\)
\(422\) 0 0
\(423\) 14.5874i 0.709264i
\(424\) 0 0
\(425\) −7.20394 13.6020i −0.349442 0.659792i
\(426\) 0 0
\(427\) 2.55479i 0.123635i
\(428\) 0 0
\(429\) 0.630898 0.0304600
\(430\) 0 0
\(431\) 14.7636 0.711140 0.355570 0.934650i \(-0.384287\pi\)
0.355570 + 0.934650i \(0.384287\pi\)
\(432\) 0 0
\(433\) 26.7214i 1.28415i −0.766643 0.642074i \(-0.778074\pi\)
0.766643 0.642074i \(-0.221926\pi\)
\(434\) 0 0
\(435\) −5.81658 + 1.44521i −0.278884 + 0.0692926i
\(436\) 0 0
\(437\) 2.27635i 0.108893i
\(438\) 0 0
\(439\) 23.6475 1.12864 0.564318 0.825558i \(-0.309139\pi\)
0.564318 + 0.825558i \(0.309139\pi\)
\(440\) 0 0
\(441\) 10.7671 0.512721
\(442\) 0 0
\(443\) 25.4524i 1.20928i −0.796499 0.604640i \(-0.793317\pi\)
0.796499 0.604640i \(-0.206683\pi\)
\(444\) 0 0
\(445\) 9.07838 + 36.5380i 0.430356 + 1.73207i
\(446\) 0 0
\(447\) 9.69102i 0.458370i
\(448\) 0 0
\(449\) 28.2967 1.33540 0.667702 0.744429i \(-0.267278\pi\)
0.667702 + 0.744429i \(0.267278\pi\)
\(450\) 0 0
\(451\) −1.84324 −0.0867950
\(452\) 0 0
\(453\) 8.91321i 0.418779i
\(454\) 0 0
\(455\) −0.340173 1.36910i −0.0159476 0.0641845i
\(456\) 0 0
\(457\) 21.9155i 1.02516i −0.858639 0.512581i \(-0.828689\pi\)
0.858639 0.512581i \(-0.171311\pi\)
\(458\) 0 0
\(459\) −16.6803 −0.778572
\(460\) 0 0
\(461\) 20.3402 0.947336 0.473668 0.880703i \(-0.342930\pi\)
0.473668 + 0.880703i \(0.342930\pi\)
\(462\) 0 0
\(463\) 11.7503i 0.546083i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880297\pi\)
\(464\) 0 0
\(465\) 20.2062 5.02052i 0.937040 0.232821i
\(466\) 0 0
\(467\) 19.1578i 0.886517i −0.896394 0.443259i \(-0.853822\pi\)
0.896394 0.443259i \(-0.146178\pi\)
\(468\) 0 0
\(469\) −2.12556 −0.0981492
\(470\) 0 0
\(471\) −4.06770 −0.187430
\(472\) 0 0
\(473\) 1.70928i 0.0785926i
\(474\) 0 0
\(475\) 3.88550 2.05786i 0.178279 0.0944210i
\(476\) 0 0
\(477\) 0.810439i 0.0371075i
\(478\) 0 0
\(479\) −1.72875 −0.0789886 −0.0394943 0.999220i \(-0.512575\pi\)
−0.0394943 + 0.999220i \(0.512575\pi\)
\(480\) 0 0
\(481\) −4.78765 −0.218298
\(482\) 0 0
\(483\) 1.91094i 0.0869510i
\(484\) 0 0
\(485\) 11.3607 2.82273i 0.515862 0.128173i
\(486\) 0 0
\(487\) 42.4885i 1.92534i −0.270680 0.962669i \(-0.587249\pi\)
0.270680 0.962669i \(-0.412751\pi\)
\(488\) 0 0
\(489\) −10.6803 −0.482982
\(490\) 0 0
\(491\) −0.398032 −0.0179629 −0.00898146 0.999960i \(-0.502859\pi\)
−0.00898146 + 0.999960i \(0.502859\pi\)
\(492\) 0 0
\(493\) 7.05172i 0.317593i
\(494\) 0 0
\(495\) −0.474142 1.90829i −0.0213111 0.0857713i
\(496\) 0 0
\(497\) 5.71769i 0.256473i
\(498\) 0 0
\(499\) −8.56585 −0.383460 −0.191730 0.981448i \(-0.561410\pi\)
−0.191730 + 0.981448i \(0.561410\pi\)
\(500\) 0 0
\(501\) 14.9939 0.669876
\(502\) 0 0
\(503\) 35.7347i 1.59333i 0.604420 + 0.796666i \(0.293405\pi\)
−0.604420 + 0.796666i \(0.706595\pi\)
\(504\) 0 0
\(505\) 2.82273 + 11.3607i 0.125610 + 0.505544i
\(506\) 0 0
\(507\) 1.17009i 0.0519654i
\(508\) 0 0
\(509\) 6.13009 0.271712 0.135856 0.990729i \(-0.456622\pi\)
0.135856 + 0.990729i \(0.456622\pi\)
\(510\) 0 0
\(511\) 7.70086 0.340666
\(512\) 0 0
\(513\) 4.76487i 0.210374i
\(514\) 0 0
\(515\) −8.01560 + 1.99159i −0.353209 + 0.0877599i
\(516\) 0 0
\(517\) 4.82273i 0.212103i
\(518\) 0 0
\(519\) 4.89496 0.214865
\(520\) 0 0
\(521\) 24.7442 1.08406 0.542031 0.840359i \(-0.317656\pi\)
0.542031 + 0.840359i \(0.317656\pi\)
\(522\) 0 0
\(523\) 23.7081i 1.03668i −0.855174 0.518340i \(-0.826550\pi\)
0.855174 0.518340i \(-0.173450\pi\)
\(524\) 0 0
\(525\) 3.26180 1.72753i 0.142356 0.0753955i
\(526\) 0 0
\(527\) 24.4969i 1.06710i
\(528\) 0 0
\(529\) 16.2990 0.708650
\(530\) 0 0
\(531\) 13.5330 0.587284
\(532\) 0 0
\(533\) 3.41855i 0.148074i
\(534\) 0 0
\(535\) 34.3968 8.54638i 1.48710 0.369492i
\(536\) 0 0
\(537\) 16.0989i 0.694719i
\(538\) 0 0
\(539\) −3.55971 −0.153327
\(540\) 0 0
\(541\) 17.6475 0.758727 0.379364 0.925248i \(-0.376143\pi\)
0.379364 + 0.925248i \(0.376143\pi\)
\(542\) 0 0
\(543\) 25.5174i 1.09506i
\(544\) 0 0
\(545\) 2.05786 + 8.28231i 0.0881490 + 0.354775i
\(546\) 0 0
\(547\) 24.8299i 1.06165i 0.847481 + 0.530825i \(0.178118\pi\)
−0.847481 + 0.530825i \(0.821882\pi\)
\(548\) 0 0
\(549\) 6.60424 0.281862
\(550\) 0 0
\(551\) −2.01438 −0.0858153
\(552\) 0 0
\(553\) 3.57077i 0.151845i
\(554\) 0 0
\(555\) −3.02052 12.1568i −0.128214 0.516026i
\(556\) 0 0
\(557\) 18.0950i 0.766711i 0.923601 + 0.383355i \(0.125232\pi\)
−0.923601 + 0.383355i \(0.874768\pi\)
\(558\) 0 0
\(559\) −3.17009 −0.134080
\(560\) 0 0
\(561\) 1.94214 0.0819973
\(562\) 0 0
\(563\) 6.67316i 0.281240i −0.990064 0.140620i \(-0.955090\pi\)
0.990064 0.140620i \(-0.0449096\pi\)
\(564\) 0 0
\(565\) 24.8371 6.17113i 1.04490 0.259621i
\(566\) 0 0
\(567\) 0.913212i 0.0383513i
\(568\) 0 0
\(569\) −10.7877 −0.452242 −0.226121 0.974099i \(-0.572604\pi\)
−0.226121 + 0.974099i \(0.572604\pi\)
\(570\) 0 0
\(571\) −22.2245 −0.930065 −0.465032 0.885294i \(-0.653957\pi\)
−0.465032 + 0.885294i \(0.653957\pi\)
\(572\) 0 0
\(573\) 3.31965i 0.138681i
\(574\) 0 0
\(575\) 6.05786 + 11.4380i 0.252630 + 0.476999i
\(576\) 0 0
\(577\) 34.6309i 1.44170i −0.693089 0.720852i \(-0.743751\pi\)
0.693089 0.720852i \(-0.256249\pi\)
\(578\) 0 0
\(579\) −25.2930 −1.05114
\(580\) 0 0
\(581\) −0.649149 −0.0269312
\(582\) 0 0
\(583\) 0.267938i 0.0110969i
\(584\) 0 0
\(585\) −3.53919 + 0.879362i −0.146327 + 0.0363571i
\(586\) 0 0
\(587\) 23.8660i 0.985057i 0.870296 + 0.492528i \(0.163927\pi\)
−0.870296 + 0.492528i \(0.836073\pi\)
\(588\) 0 0
\(589\) 6.99773 0.288337
\(590\) 0 0
\(591\) −2.34017 −0.0962619
\(592\) 0 0
\(593\) 2.39803i 0.0984754i −0.998787 0.0492377i \(-0.984321\pi\)
0.998787 0.0492377i \(-0.0156792\pi\)
\(594\) 0 0
\(595\) −1.04718 4.21461i −0.0429302 0.172782i
\(596\) 0 0
\(597\) 16.8950i 0.691465i
\(598\) 0 0
\(599\) −40.8248 −1.66806 −0.834028 0.551722i \(-0.813971\pi\)
−0.834028 + 0.551722i \(0.813971\pi\)
\(600\) 0 0
\(601\) −20.4703 −0.835000 −0.417500 0.908677i \(-0.637094\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(602\) 0 0
\(603\) 5.49466i 0.223760i
\(604\) 0 0
\(605\) −5.77432 23.2401i −0.234760 0.944843i
\(606\) 0 0
\(607\) 37.1578i 1.50819i 0.656766 + 0.754094i \(0.271924\pi\)
−0.656766 + 0.754094i \(0.728076\pi\)
\(608\) 0 0
\(609\) −1.69102 −0.0685237
\(610\) 0 0
\(611\) 8.94441 0.361852
\(612\) 0 0
\(613\) 20.1711i 0.814704i −0.913271 0.407352i \(-0.866452\pi\)
0.913271 0.407352i \(-0.133548\pi\)
\(614\) 0 0
\(615\) −8.68035 + 2.15676i −0.350025 + 0.0869688i
\(616\) 0 0
\(617\) 14.4657i 0.582368i −0.956667 0.291184i \(-0.905951\pi\)
0.956667 0.291184i \(-0.0940493\pi\)
\(618\) 0 0
\(619\) −19.5330 −0.785099 −0.392550 0.919731i \(-0.628407\pi\)
−0.392550 + 0.919731i \(0.628407\pi\)
\(620\) 0 0
\(621\) 14.0267 0.562871
\(622\) 0 0
\(623\) 10.6225i 0.425581i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) 0 0
\(627\) 0.554787i 0.0221561i
\(628\) 0 0
\(629\) −14.7382 −0.587651
\(630\) 0 0
\(631\) −22.9783 −0.914750 −0.457375 0.889274i \(-0.651210\pi\)
−0.457375 + 0.889274i \(0.651210\pi\)
\(632\) 0 0
\(633\) 5.01068i 0.199157i
\(634\) 0 0
\(635\) 11.6176 2.88655i 0.461029 0.114549i
\(636\) 0 0
\(637\) 6.60197i 0.261580i
\(638\) 0 0
\(639\) −14.7805 −0.584706
\(640\) 0 0
\(641\) 5.00614 0.197731 0.0988654 0.995101i \(-0.468479\pi\)
0.0988654 + 0.995101i \(0.468479\pi\)
\(642\) 0 0
\(643\) 3.95055i 0.155795i 0.996961 + 0.0778973i \(0.0248206\pi\)
−0.996961 + 0.0778973i \(0.975179\pi\)
\(644\) 0 0
\(645\) −2.00000 8.04945i −0.0787499 0.316947i
\(646\) 0 0
\(647\) 32.8710i 1.29229i −0.763214 0.646145i \(-0.776380\pi\)
0.763214 0.646145i \(-0.223620\pi\)
\(648\) 0 0
\(649\) −4.47414 −0.175625
\(650\) 0 0
\(651\) 5.87444 0.230238
\(652\) 0 0
\(653\) 24.4703i 0.957596i 0.877925 + 0.478798i \(0.158927\pi\)
−0.877925 + 0.478798i \(0.841073\pi\)
\(654\) 0 0
\(655\) 10.2101 + 41.0928i 0.398941 + 1.60563i
\(656\) 0 0
\(657\) 19.9071i 0.776649i
\(658\) 0 0
\(659\) −21.0928 −0.821657 −0.410829 0.911713i \(-0.634761\pi\)
−0.410829 + 0.911713i \(0.634761\pi\)
\(660\) 0 0
\(661\) −28.5958 −1.11225 −0.556124 0.831099i \(-0.687712\pi\)
−0.556124 + 0.831099i \(0.687712\pi\)
\(662\) 0 0
\(663\) 3.60197i 0.139889i
\(664\) 0 0
\(665\) 1.20394 0.299135i 0.0466867 0.0116000i
\(666\) 0 0
\(667\) 5.92986i 0.229605i
\(668\) 0 0
\(669\) −26.7792 −1.03535
\(670\) 0 0
\(671\) −2.18342 −0.0842899
\(672\) 0 0
\(673\) 1.02052i 0.0393381i −0.999807 0.0196691i \(-0.993739\pi\)
0.999807 0.0196691i \(-0.00626126\pi\)
\(674\) 0 0
\(675\) −12.6803 23.9421i −0.488067 0.921533i
\(676\) 0 0
\(677\) 33.3295i 1.28096i 0.767976 + 0.640478i \(0.221264\pi\)
−0.767976 + 0.640478i \(0.778736\pi\)
\(678\) 0 0
\(679\) 3.30283 0.126751
\(680\) 0 0
\(681\) 6.89496 0.264215
\(682\) 0 0
\(683\) 1.52586i 0.0583853i −0.999574 0.0291927i \(-0.990706\pi\)
0.999574 0.0291927i \(-0.00929363\pi\)
\(684\) 0 0
\(685\) 13.2351 3.28846i 0.505688 0.125645i
\(686\) 0 0
\(687\) 20.0312i 0.764238i
\(688\) 0 0
\(689\) −0.496928 −0.0189315
\(690\) 0 0
\(691\) −21.2339 −0.807776 −0.403888 0.914808i \(-0.632341\pi\)
−0.403888 + 0.914808i \(0.632341\pi\)
\(692\) 0 0
\(693\) 0.554787i 0.0210746i
\(694\) 0 0
\(695\) 11.6163 + 46.7526i 0.440633 + 1.77343i
\(696\) 0 0
\(697\) 10.5236i 0.398609i
\(698\) 0 0
\(699\) 16.2511 0.614674
\(700\) 0 0
\(701\) 0.974946 0.0368232 0.0184116 0.999830i \(-0.494139\pi\)
0.0184116 + 0.999830i \(0.494139\pi\)
\(702\) 0 0
\(703\) 4.21008i 0.158786i
\(704\) 0 0
\(705\) 5.64301 + 22.7115i 0.212528 + 0.855366i
\(706\) 0 0
\(707\) 3.30283i 0.124216i
\(708\) 0 0
\(709\) −4.14238 −0.155570 −0.0777852 0.996970i \(-0.524785\pi\)
−0.0777852 + 0.996970i \(0.524785\pi\)
\(710\) 0 0
\(711\) 9.23060 0.346174
\(712\) 0 0
\(713\) 20.5997i 0.771465i
\(714\) 0 0
\(715\) 1.17009 0.290725i 0.0437588 0.0108725i
\(716\) 0 0
\(717\) 24.5152i 0.915536i
\(718\) 0 0
\(719\) 9.26180 0.345407 0.172703 0.984974i \(-0.444750\pi\)
0.172703 + 0.984974i \(0.444750\pi\)
\(720\) 0 0
\(721\) −2.33033 −0.0867861
\(722\) 0 0
\(723\) 10.1568i 0.377734i
\(724\) 0 0
\(725\) −10.1217 + 5.36069i −0.375910 + 0.199091i
\(726\) 0 0
\(727\) 38.9165i 1.44333i 0.692240 + 0.721667i \(0.256624\pi\)
−0.692240 + 0.721667i \(0.743376\pi\)
\(728\) 0 0
\(729\) −21.3812 −0.791897
\(730\) 0 0
\(731\) −9.75872 −0.360939
\(732\) 0 0
\(733\) 51.1917i 1.89081i 0.325903 + 0.945403i \(0.394332\pi\)
−0.325903 + 0.945403i \(0.605668\pi\)
\(734\) 0 0
\(735\) −16.7636 + 4.16517i −0.618336 + 0.153634i
\(736\) 0 0
\(737\) 1.81658i 0.0669147i
\(738\) 0 0
\(739\) 10.8260 0.398242 0.199121 0.979975i \(-0.436191\pi\)
0.199121 + 0.979975i \(0.436191\pi\)
\(740\) 0 0
\(741\) 1.02893 0.0377987
\(742\) 0 0
\(743\) 43.3667i 1.59097i 0.605974 + 0.795484i \(0.292783\pi\)
−0.605974 + 0.795484i \(0.707217\pi\)
\(744\) 0 0
\(745\) −4.46573 17.9733i −0.163612 0.658492i
\(746\) 0 0
\(747\) 1.67808i 0.0613977i
\(748\) 0 0
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) 23.9299 0.873213 0.436606 0.899653i \(-0.356180\pi\)
0.436606 + 0.899653i \(0.356180\pi\)
\(752\) 0 0
\(753\) 10.0410i 0.365916i
\(754\) 0 0
\(755\) −4.10731 16.5308i −0.149480 0.601617i
\(756\) 0 0
\(757\) 25.9733i 0.944017i −0.881594 0.472009i \(-0.843529\pi\)
0.881594 0.472009i \(-0.156471\pi\)
\(758\) 0 0
\(759\) −1.63317 −0.0592801
\(760\) 0 0
\(761\) 17.7854 0.644720 0.322360 0.946617i \(-0.395524\pi\)
0.322360 + 0.946617i \(0.395524\pi\)
\(762\) 0 0
\(763\) 2.40787i 0.0871708i
\(764\) 0 0
\(765\) −10.8950 + 2.70701i −0.393908 + 0.0978721i
\(766\) 0 0
\(767\) 8.29791i 0.299620i
\(768\) 0 0
\(769\) 13.9011 0.501287 0.250643 0.968080i \(-0.419358\pi\)
0.250643 + 0.968080i \(0.419358\pi\)
\(770\) 0 0
\(771\) −16.6803 −0.600728
\(772\) 0 0
\(773\) 10.7298i 0.385924i 0.981206 + 0.192962i \(0.0618094\pi\)
−0.981206 + 0.192962i \(0.938191\pi\)
\(774\) 0 0
\(775\) 35.1617 18.6225i 1.26304 0.668939i
\(776\) 0 0
\(777\) 3.53427i 0.126791i
\(778\) 0 0
\(779\) −3.00614 −0.107706
\(780\) 0 0
\(781\) 4.88655 0.174854
\(782\) 0 0
\(783\) 12.4124i 0.443583i
\(784\) 0 0
\(785\) −7.54411 + 1.87444i −0.269261 + 0.0669017i
\(786\) 0 0
\(787\) 9.76260i 0.347999i 0.984746 + 0.174000i \(0.0556691\pi\)
−0.984746 + 0.174000i \(0.944331\pi\)
\(788\) 0 0
\(789\) −12.6719 −0.451133
\(790\) 0 0
\(791\) 7.22076 0.256741
\(792\) 0 0
\(793\) 4.04945i 0.143800i
\(794\) 0 0
\(795\) −0.313511 1.26180i −0.0111191 0.0447513i
\(796\) 0 0
\(797\) 42.7792i 1.51532i 0.652650 + 0.757659i \(0.273657\pi\)
−0.652650 + 0.757659i \(0.726343\pi\)
\(798\) 0 0
\(799\) 27.5343 0.974092
\(800\) 0 0
\(801\) 27.4596 0.970237
\(802\) 0 0
\(803\) 6.58145i 0.232254i
\(804\) 0 0
\(805\) 0.880584 + 3.54411i 0.0310365 + 0.124913i
\(806\) 0 0
\(807\) 25.0784i 0.882801i
\(808\) 0 0
\(809\) −23.1155 −0.812699 −0.406350 0.913718i \(-0.633198\pi\)
−0.406350 + 0.913718i \(0.633198\pi\)
\(810\) 0 0
\(811\) 7.59090 0.266553 0.133276 0.991079i \(-0.457450\pi\)
0.133276 + 0.991079i \(0.457450\pi\)
\(812\) 0 0
\(813\) 25.1278i 0.881271i
\(814\) 0 0
\(815\) −19.8082 + 4.92162i −0.693850 + 0.172397i
\(816\) 0 0
\(817\) 2.78765i 0.0975276i
\(818\) 0 0
\(819\) −1.02893 −0.0359537
\(820\) 0 0
\(821\) 14.0722 0.491124 0.245562 0.969381i \(-0.421027\pi\)
0.245562 + 0.969381i \(0.421027\pi\)
\(822\) 0 0
\(823\) 8.10608i 0.282560i 0.989970 + 0.141280i \(0.0451218\pi\)
−0.989970 + 0.141280i \(0.954878\pi\)
\(824\) 0 0
\(825\) 1.47641 + 2.78765i 0.0514020 + 0.0970536i
\(826\) 0 0
\(827\) 50.1750i 1.74476i 0.488832 + 0.872378i \(0.337423\pi\)
−0.488832 + 0.872378i \(0.662577\pi\)
\(828\) 0 0
\(829\) −21.2123 −0.736735 −0.368368 0.929680i \(-0.620083\pi\)
−0.368368 + 0.929680i \(0.620083\pi\)
\(830\) 0 0
\(831\) −3.84778 −0.133478
\(832\) 0 0
\(833\) 20.3234i 0.704162i
\(834\) 0 0
\(835\) 27.8082 6.90934i 0.962341 0.239107i
\(836\) 0 0
\(837\) 43.1194i 1.49043i
\(838\) 0 0
\(839\) 46.4645 1.60413 0.802066 0.597235i \(-0.203734\pi\)
0.802066 + 0.597235i \(0.203734\pi\)
\(840\) 0 0
\(841\) −23.7526 −0.819055
\(842\) 0 0
\(843\) 32.9939i 1.13637i
\(844\) 0 0
\(845\) −0.539189 2.17009i −0.0185487 0.0746532i
\(846\) 0 0
\(847\) 6.75646i 0.232155i
\(848\) 0 0
\(849\) −14.2329 −0.488471
\(850\) 0 0
\(851\) 12.3935 0.424844
\(852\) 0 0
\(853\) 3.99159i 0.136669i 0.997662 + 0.0683347i \(0.0217686\pi\)
−0.997662 + 0.0683347i \(0.978231\pi\)
\(854\) 0 0
\(855\) −0.773277 3.11223i −0.0264455 0.106436i
\(856\) 0 0
\(857\) 31.8843i 1.08915i 0.838713 + 0.544573i \(0.183308\pi\)
−0.838713 + 0.544573i \(0.816692\pi\)
\(858\) 0 0
\(859\) −26.8059 −0.914606 −0.457303 0.889311i \(-0.651184\pi\)
−0.457303 + 0.889311i \(0.651184\pi\)
\(860\) 0 0
\(861\) −2.52359 −0.0860037
\(862\) 0 0
\(863\) 41.5259i 1.41356i 0.707435 + 0.706778i \(0.249852\pi\)
−0.707435 + 0.706778i \(0.750148\pi\)
\(864\) 0 0
\(865\) 9.07838 2.25565i 0.308674 0.0766945i
\(866\) 0 0
\(867\) 8.80325i 0.298974i
\(868\) 0 0
\(869\) −3.05172 −0.103522
\(870\) 0 0
\(871\) −3.36910 −0.114158
\(872\) 0 0
\(873\) 8.53797i 0.288966i
\(874\) 0 0
\(875\) 5.25338 4.70701i 0.177597 0.159126i
\(876\) 0 0
\(877\) 9.98562i 0.337191i −0.985685 0.168595i \(-0.946077\pi\)
0.985685 0.168595i \(-0.0539231\pi\)
\(878\) 0 0
\(879\) 10.9627 0.369761
\(880\) 0 0
\(881\) 8.41628 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(882\) 0 0
\(883\) 30.4585i 1.02501i −0.858684 0.512506i \(-0.828717\pi\)
0.858684 0.512506i \(-0.171283\pi\)
\(884\) 0 0
\(885\) −21.0700 + 5.23513i −0.708259 + 0.175977i
\(886\) 0 0
\(887\) 54.7454i 1.83817i −0.394059 0.919085i \(-0.628929\pi\)
0.394059 0.919085i \(-0.371071\pi\)
\(888\) 0 0
\(889\) 3.37751 0.113278
\(890\) 0 0
\(891\) 0.780465 0.0261466
\(892\) 0 0
\(893\) 7.86537i 0.263205i
\(894\) 0 0
\(895\) 7.41855 + 29.8576i 0.247975 + 0.998030i
\(896\) 0 0
\(897\) 3.02893i 0.101133i
\(898\) 0 0
\(899\) −18.2290 −0.607971
\(900\) 0 0
\(901\) −1.52973 −0.0509628
\(902\) 0 0
\(903\) 2.34017i 0.0778761i
\(904\) 0 0
\(905\) −11.7587 47.3256i −0.390873 1.57316i
\(906\) 0 0
\(907\) 30.4007i 1.00944i 0.863284 + 0.504719i \(0.168404\pi\)
−0.863284 + 0.504719i \(0.831596\pi\)
\(908\) 0 0
\(909\) 8.53797 0.283186
\(910\) 0 0
\(911\) −10.7526 −0.356249 −0.178124 0.984008i \(-0.557003\pi\)
−0.178124 + 0.984008i \(0.557003\pi\)
\(912\) 0 0
\(913\) 0.554787i 0.0183608i
\(914\) 0 0
\(915\) −10.2823 + 2.55479i −0.339923 + 0.0844587i
\(916\) 0 0
\(917\) 11.9467i 0.394514i
\(918\) 0 0
\(919\) 37.3607 1.23242 0.616208 0.787584i \(-0.288668\pi\)
0.616208 + 0.787584i \(0.288668\pi\)
\(920\) 0 0
\(921\) −36.3545 −1.19792
\(922\) 0 0
\(923\) 9.06278i 0.298305i
\(924\) 0 0
\(925\) −11.2039 21.1545i −0.368383 0.695555i
\(926\) 0 0
\(927\) 6.02401i 0.197854i
\(928\) 0 0
\(929\) −33.6742 −1.10481 −0.552407 0.833574i \(-0.686291\pi\)
−0.552407 + 0.833574i \(0.686291\pi\)
\(930\) 0 0
\(931\) −5.80552 −0.190268
\(932\) 0 0
\(933\) 4.31351i 0.141218i
\(934\) 0 0
\(935\) 3.60197 0.894960i 0.117797 0.0292683i
\(936\) 0 0
\(937\) 25.0394i 0.818003i −0.912534 0.409001i \(-0.865877\pi\)
0.912534 0.409001i \(-0.134123\pi\)
\(938\) 0 0
\(939\) −2.92162 −0.0953435
\(940\) 0 0
\(941\) 7.07838 0.230749 0.115374 0.993322i \(-0.463193\pi\)
0.115374 + 0.993322i \(0.463193\pi\)
\(942\) 0 0
\(943\) 8.84939i 0.288176i
\(944\) 0 0
\(945\) −1.84324 7.41855i −0.0599607 0.241325i
\(946\) 0 0
\(947\) 24.1795i 0.785730i −0.919596 0.392865i \(-0.871484\pi\)
0.919596 0.392865i \(-0.128516\pi\)
\(948\) 0 0
\(949\) 12.2062 0.396230
\(950\) 0 0
\(951\) 32.1880 1.04377
\(952\) 0 0
\(953\) 21.6742i 0.702096i 0.936357 + 0.351048i \(0.114175\pi\)
−0.936357 + 0.351048i \(0.885825\pi\)
\(954\) 0 0
\(955\) −1.52973 6.15676i −0.0495010 0.199228i
\(956\) 0 0
\(957\) 1.44521i 0.0467171i
\(958\) 0 0
\(959\) 3.84778 0.124251
\(960\) 0 0
\(961\) 32.3256 1.04276
\(962\) 0 0
\(963\) 25.8504i 0.833019i
\(964\) 0 0
\(965\) −46.9093 + 11.6553i −1.51006 + 0.375197i
\(966\) 0 0
\(967\) 1.14220i 0.0367307i 0.999831 + 0.0183654i \(0.00584621\pi\)
−0.999831 + 0.0183654i \(0.994154\pi\)
\(968\) 0 0
\(969\) 3.16743 0.101753
\(970\) 0 0
\(971\) −41.9565 −1.34645 −0.673224 0.739438i \(-0.735091\pi\)
−0.673224 + 0.739438i \(0.735091\pi\)
\(972\) 0 0
\(973\) 13.5921i 0.435744i
\(974\) 0 0
\(975\) 5.17009 2.73820i 0.165575 0.0876927i
\(976\) 0 0
\(977\) 21.0023i 0.671922i 0.941876 + 0.335961i \(0.109061\pi\)
−0.941876 + 0.335961i \(0.890939\pi\)
\(978\) 0 0
\(979\) −9.07838 −0.290146
\(980\) 0 0
\(981\) 6.22446 0.198732
\(982\) 0 0
\(983\) 44.1171i 1.40712i −0.710637 0.703559i \(-0.751593\pi\)
0.710637 0.703559i \(-0.248407\pi\)
\(984\) 0 0
\(985\) −4.34017 + 1.07838i −0.138289 + 0.0343600i
\(986\) 0 0
\(987\) 6.60281i 0.210170i
\(988\) 0 0
\(989\) 8.20620 0.260942
\(990\) 0 0
\(991\) 48.9549 1.55510 0.777552 0.628819i \(-0.216461\pi\)
0.777552 + 0.628819i \(0.216461\pi\)
\(992\) 0 0
\(993\) 10.8865i 0.345474i
\(994\) 0 0
\(995\) 7.78539 + 31.3340i 0.246813 + 0.993356i
\(996\) 0 0
\(997\) 52.9914i 1.67825i −0.543935 0.839127i \(-0.683066\pi\)
0.543935 0.839127i \(-0.316934\pi\)
\(998\) 0 0
\(999\) −25.9421 −0.820773
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.d.b.209.5 yes 6
3.2 odd 2 4680.2.l.d.2809.3 6
4.3 odd 2 1040.2.d.e.209.2 6
5.2 odd 4 2600.2.a.x.1.3 3
5.3 odd 4 2600.2.a.y.1.1 3
5.4 even 2 inner 520.2.d.b.209.2 6
15.14 odd 2 4680.2.l.d.2809.4 6
20.3 even 4 5200.2.a.cc.1.3 3
20.7 even 4 5200.2.a.ch.1.1 3
20.19 odd 2 1040.2.d.e.209.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.d.b.209.2 6 5.4 even 2 inner
520.2.d.b.209.5 yes 6 1.1 even 1 trivial
1040.2.d.e.209.2 6 4.3 odd 2
1040.2.d.e.209.5 6 20.19 odd 2
2600.2.a.x.1.3 3 5.2 odd 4
2600.2.a.y.1.1 3 5.3 odd 4
4680.2.l.d.2809.3 6 3.2 odd 2
4680.2.l.d.2809.4 6 15.14 odd 2
5200.2.a.cc.1.3 3 20.3 even 4
5200.2.a.ch.1.1 3 20.7 even 4