Properties

Label 520.2.w.e.73.6
Level $520$
Weight $2$
Character 520.73
Analytic conductor $4.152$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [520,2,Mod(57,520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("520.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(520, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 6 x^{9} + 25 x^{8} - 106 x^{7} + 242 x^{6} + 268 x^{5} + 316 x^{4} + \cdots + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.6
Root \(2.10080 + 2.10080i\) of defining polynomial
Character \(\chi\) \(=\) 520.73
Dual form 520.2.w.e.57.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10080 + 2.10080i) q^{3} +(-2.23468 + 0.0786365i) q^{5} -0.625152i q^{7} +5.82676i q^{9} +(-1.43009 + 1.43009i) q^{11} +(-1.21252 + 3.39556i) q^{13} +(-4.85984 - 4.52944i) q^{15} +(4.15605 + 4.15605i) q^{17} +(-3.07381 + 3.07381i) q^{19} +(1.31332 - 1.31332i) q^{21} +(1.05524 - 1.05524i) q^{23} +(4.98763 - 0.351456i) q^{25} +(-5.93847 + 5.93847i) q^{27} -4.78242i q^{29} +(4.05673 + 4.05673i) q^{31} -6.00869 q^{33} +(0.0491597 + 1.39702i) q^{35} -2.88074i q^{37} +(-9.68066 + 4.58614i) q^{39} +(-2.64372 - 2.64372i) q^{41} +(5.55160 - 5.55160i) q^{43} +(-0.458196 - 13.0210i) q^{45} -6.93725i q^{47} +6.60919 q^{49} +17.4621i q^{51} +(-7.66949 - 7.66949i) q^{53} +(3.08335 - 3.30826i) q^{55} -12.9150 q^{57} +(-7.66332 - 7.66332i) q^{59} +10.3797 q^{61} +3.64261 q^{63} +(2.44258 - 7.68335i) q^{65} -4.43372 q^{67} +4.43372 q^{69} +(6.97626 + 6.97626i) q^{71} +11.4091 q^{73} +(11.2164 + 9.73970i) q^{75} +(0.894024 + 0.894024i) q^{77} +15.9184i q^{79} -7.47086 q^{81} +10.3232i q^{83} +(-9.61428 - 8.96064i) q^{85} +(10.0469 - 10.0469i) q^{87} +(3.78962 + 3.78962i) q^{89} +(2.12274 + 0.758007i) q^{91} +17.0448i q^{93} +(6.62729 - 7.11072i) q^{95} +13.1745 q^{97} +(-8.33280 - 8.33280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} + 8 q^{5} - 14 q^{11} - 2 q^{13} - 12 q^{15} + 14 q^{17} - 6 q^{19} - 18 q^{21} - 2 q^{23} + 2 q^{25} - 26 q^{27} - 22 q^{31} - 4 q^{33} - 12 q^{35} + 4 q^{39} - 4 q^{41} - 8 q^{43} + 16 q^{49}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10080 + 2.10080i 1.21290 + 1.21290i 0.970068 + 0.242832i \(0.0780763\pi\)
0.242832 + 0.970068i \(0.421924\pi\)
\(4\) 0 0
\(5\) −2.23468 + 0.0786365i −0.999381 + 0.0351673i
\(6\) 0 0
\(7\) 0.625152i 0.236285i −0.992997 0.118143i \(-0.962306\pi\)
0.992997 0.118143i \(-0.0376940\pi\)
\(8\) 0 0
\(9\) 5.82676i 1.94225i
\(10\) 0 0
\(11\) −1.43009 + 1.43009i −0.431189 + 0.431189i −0.889033 0.457844i \(-0.848622\pi\)
0.457844 + 0.889033i \(0.348622\pi\)
\(12\) 0 0
\(13\) −1.21252 + 3.39556i −0.336292 + 0.941758i
\(14\) 0 0
\(15\) −4.85984 4.52944i −1.25480 1.16950i
\(16\) 0 0
\(17\) 4.15605 + 4.15605i 1.00799 + 1.00799i 0.999968 + 0.00802196i \(0.00255350\pi\)
0.00802196 + 0.999968i \(0.497447\pi\)
\(18\) 0 0
\(19\) −3.07381 + 3.07381i −0.705181 + 0.705181i −0.965518 0.260337i \(-0.916166\pi\)
0.260337 + 0.965518i \(0.416166\pi\)
\(20\) 0 0
\(21\) 1.31332 1.31332i 0.286590 0.286590i
\(22\) 0 0
\(23\) 1.05524 1.05524i 0.220034 0.220034i −0.588479 0.808513i \(-0.700273\pi\)
0.808513 + 0.588479i \(0.200273\pi\)
\(24\) 0 0
\(25\) 4.98763 0.351456i 0.997527 0.0702911i
\(26\) 0 0
\(27\) −5.93847 + 5.93847i −1.14286 + 1.14286i
\(28\) 0 0
\(29\) 4.78242i 0.888074i −0.896008 0.444037i \(-0.853546\pi\)
0.896008 0.444037i \(-0.146454\pi\)
\(30\) 0 0
\(31\) 4.05673 + 4.05673i 0.728611 + 0.728611i 0.970343 0.241732i \(-0.0777155\pi\)
−0.241732 + 0.970343i \(0.577715\pi\)
\(32\) 0 0
\(33\) −6.00869 −1.04598
\(34\) 0 0
\(35\) 0.0491597 + 1.39702i 0.00830951 + 0.236139i
\(36\) 0 0
\(37\) 2.88074i 0.473591i −0.971559 0.236796i \(-0.923903\pi\)
0.971559 0.236796i \(-0.0760972\pi\)
\(38\) 0 0
\(39\) −9.68066 + 4.58614i −1.55015 + 0.734370i
\(40\) 0 0
\(41\) −2.64372 2.64372i −0.412880 0.412880i 0.469861 0.882741i \(-0.344304\pi\)
−0.882741 + 0.469861i \(0.844304\pi\)
\(42\) 0 0
\(43\) 5.55160 5.55160i 0.846612 0.846612i −0.143097 0.989709i \(-0.545706\pi\)
0.989709 + 0.143097i \(0.0457061\pi\)
\(44\) 0 0
\(45\) −0.458196 13.0210i −0.0683038 1.94105i
\(46\) 0 0
\(47\) 6.93725i 1.01190i −0.862562 0.505951i \(-0.831142\pi\)
0.862562 0.505951i \(-0.168858\pi\)
\(48\) 0 0
\(49\) 6.60919 0.944169
\(50\) 0 0
\(51\) 17.4621i 2.44518i
\(52\) 0 0
\(53\) −7.66949 7.66949i −1.05349 1.05349i −0.998486 0.0549988i \(-0.982485\pi\)
−0.0549988 0.998486i \(-0.517515\pi\)
\(54\) 0 0
\(55\) 3.08335 3.30826i 0.415759 0.446086i
\(56\) 0 0
\(57\) −12.9150 −1.71063
\(58\) 0 0
\(59\) −7.66332 7.66332i −0.997679 0.997679i 0.00231846 0.999997i \(-0.499262\pi\)
−0.999997 + 0.00231846i \(0.999262\pi\)
\(60\) 0 0
\(61\) 10.3797 1.32899 0.664495 0.747293i \(-0.268647\pi\)
0.664495 + 0.747293i \(0.268647\pi\)
\(62\) 0 0
\(63\) 3.64261 0.458926
\(64\) 0 0
\(65\) 2.44258 7.68335i 0.302964 0.953002i
\(66\) 0 0
\(67\) −4.43372 −0.541665 −0.270833 0.962626i \(-0.587299\pi\)
−0.270833 + 0.962626i \(0.587299\pi\)
\(68\) 0 0
\(69\) 4.43372 0.533757
\(70\) 0 0
\(71\) 6.97626 + 6.97626i 0.827930 + 0.827930i 0.987230 0.159300i \(-0.0509239\pi\)
−0.159300 + 0.987230i \(0.550924\pi\)
\(72\) 0 0
\(73\) 11.4091 1.33533 0.667665 0.744462i \(-0.267294\pi\)
0.667665 + 0.744462i \(0.267294\pi\)
\(74\) 0 0
\(75\) 11.2164 + 9.73970i 1.29516 + 1.12464i
\(76\) 0 0
\(77\) 0.894024 + 0.894024i 0.101884 + 0.101884i
\(78\) 0 0
\(79\) 15.9184i 1.79096i 0.445106 + 0.895478i \(0.353166\pi\)
−0.445106 + 0.895478i \(0.646834\pi\)
\(80\) 0 0
\(81\) −7.47086 −0.830096
\(82\) 0 0
\(83\) 10.3232i 1.13312i 0.824020 + 0.566561i \(0.191726\pi\)
−0.824020 + 0.566561i \(0.808274\pi\)
\(84\) 0 0
\(85\) −9.61428 8.96064i −1.04281 0.971918i
\(86\) 0 0
\(87\) 10.0469 10.0469i 1.07715 1.07715i
\(88\) 0 0
\(89\) 3.78962 + 3.78962i 0.401699 + 0.401699i 0.878831 0.477132i \(-0.158324\pi\)
−0.477132 + 0.878831i \(0.658324\pi\)
\(90\) 0 0
\(91\) 2.12274 + 0.758007i 0.222523 + 0.0794607i
\(92\) 0 0
\(93\) 17.0448i 1.76746i
\(94\) 0 0
\(95\) 6.62729 7.11072i 0.679946 0.729544i
\(96\) 0 0
\(97\) 13.1745 1.33767 0.668834 0.743412i \(-0.266794\pi\)
0.668834 + 0.743412i \(0.266794\pi\)
\(98\) 0 0
\(99\) −8.33280 8.33280i −0.837478 0.837478i
\(100\) 0 0
\(101\) 0.366080i 0.0364263i 0.999834 + 0.0182131i \(0.00579774\pi\)
−0.999834 + 0.0182131i \(0.994202\pi\)
\(102\) 0 0
\(103\) −4.36213 + 4.36213i −0.429814 + 0.429814i −0.888565 0.458751i \(-0.848297\pi\)
0.458751 + 0.888565i \(0.348297\pi\)
\(104\) 0 0
\(105\) −2.83158 + 3.03813i −0.276334 + 0.296492i
\(106\) 0 0
\(107\) −8.24089 + 8.24089i −0.796677 + 0.796677i −0.982570 0.185893i \(-0.940482\pi\)
0.185893 + 0.982570i \(0.440482\pi\)
\(108\) 0 0
\(109\) 10.5593 10.5593i 1.01139 1.01139i 0.0114600 0.999934i \(-0.496352\pi\)
0.999934 0.0114600i \(-0.00364792\pi\)
\(110\) 0 0
\(111\) 6.05188 6.05188i 0.574419 0.574419i
\(112\) 0 0
\(113\) −7.12321 7.12321i −0.670095 0.670095i 0.287643 0.957738i \(-0.407128\pi\)
−0.957738 + 0.287643i \(0.907128\pi\)
\(114\) 0 0
\(115\) −2.27516 + 2.44112i −0.212159 + 0.227635i
\(116\) 0 0
\(117\) −19.7851 7.06504i −1.82913 0.653164i
\(118\) 0 0
\(119\) 2.59816 2.59816i 0.238173 0.238173i
\(120\) 0 0
\(121\) 6.90967i 0.628152i
\(122\) 0 0
\(123\) 11.1079i 1.00156i
\(124\) 0 0
\(125\) −11.1181 + 1.17760i −0.994438 + 0.105328i
\(126\) 0 0
\(127\) −12.9989 12.9989i −1.15347 1.15347i −0.985853 0.167612i \(-0.946394\pi\)
−0.167612 0.985853i \(-0.553606\pi\)
\(128\) 0 0
\(129\) 23.3257 2.05371
\(130\) 0 0
\(131\) −0.0465615 −0.00406810 −0.00203405 0.999998i \(-0.500647\pi\)
−0.00203405 + 0.999998i \(0.500647\pi\)
\(132\) 0 0
\(133\) 1.92160 + 1.92160i 0.166624 + 0.166624i
\(134\) 0 0
\(135\) 12.8036 13.7376i 1.10196 1.18234i
\(136\) 0 0
\(137\) 2.98845i 0.255320i 0.991818 + 0.127660i \(0.0407467\pi\)
−0.991818 + 0.127660i \(0.959253\pi\)
\(138\) 0 0
\(139\) 18.3978i 1.56049i −0.625477 0.780243i \(-0.715096\pi\)
0.625477 0.780243i \(-0.284904\pi\)
\(140\) 0 0
\(141\) 14.5738 14.5738i 1.22734 1.22734i
\(142\) 0 0
\(143\) −3.12195 6.58997i −0.261070 0.551081i
\(144\) 0 0
\(145\) 0.376073 + 10.6872i 0.0312312 + 0.887525i
\(146\) 0 0
\(147\) 13.8846 + 13.8846i 1.14518 + 1.14518i
\(148\) 0 0
\(149\) 9.92602 9.92602i 0.813171 0.813171i −0.171937 0.985108i \(-0.555003\pi\)
0.985108 + 0.171937i \(0.0550025\pi\)
\(150\) 0 0
\(151\) 1.92037 1.92037i 0.156277 0.156277i −0.624637 0.780915i \(-0.714753\pi\)
0.780915 + 0.624637i \(0.214753\pi\)
\(152\) 0 0
\(153\) −24.2163 + 24.2163i −1.95777 + 1.95777i
\(154\) 0 0
\(155\) −9.38453 8.74652i −0.753784 0.702537i
\(156\) 0 0
\(157\) −2.67422 + 2.67422i −0.213426 + 0.213426i −0.805721 0.592295i \(-0.798222\pi\)
0.592295 + 0.805721i \(0.298222\pi\)
\(158\) 0 0
\(159\) 32.2242i 2.55554i
\(160\) 0 0
\(161\) −0.659687 0.659687i −0.0519906 0.0519906i
\(162\) 0 0
\(163\) −7.35286 −0.575920 −0.287960 0.957642i \(-0.592977\pi\)
−0.287960 + 0.957642i \(0.592977\pi\)
\(164\) 0 0
\(165\) 13.4275 0.472502i 1.04533 0.0367842i
\(166\) 0 0
\(167\) 8.16527i 0.631847i 0.948785 + 0.315924i \(0.102314\pi\)
−0.948785 + 0.315924i \(0.897686\pi\)
\(168\) 0 0
\(169\) −10.0596 8.23434i −0.773816 0.633411i
\(170\) 0 0
\(171\) −17.9104 17.9104i −1.36964 1.36964i
\(172\) 0 0
\(173\) 0.911103 0.911103i 0.0692699 0.0692699i −0.671623 0.740893i \(-0.734403\pi\)
0.740893 + 0.671623i \(0.234403\pi\)
\(174\) 0 0
\(175\) −0.219713 3.11803i −0.0166087 0.235701i
\(176\) 0 0
\(177\) 32.1983i 2.42017i
\(178\) 0 0
\(179\) 20.3221 1.51894 0.759471 0.650541i \(-0.225458\pi\)
0.759471 + 0.650541i \(0.225458\pi\)
\(180\) 0 0
\(181\) 20.9432i 1.55669i 0.627835 + 0.778346i \(0.283941\pi\)
−0.627835 + 0.778346i \(0.716059\pi\)
\(182\) 0 0
\(183\) 21.8058 + 21.8058i 1.61193 + 1.61193i
\(184\) 0 0
\(185\) 0.226532 + 6.43755i 0.0166549 + 0.473298i
\(186\) 0 0
\(187\) −11.8871 −0.869268
\(188\) 0 0
\(189\) 3.71245 + 3.71245i 0.270041 + 0.270041i
\(190\) 0 0
\(191\) −14.1798 −1.02601 −0.513007 0.858384i \(-0.671469\pi\)
−0.513007 + 0.858384i \(0.671469\pi\)
\(192\) 0 0
\(193\) 4.98622 0.358916 0.179458 0.983766i \(-0.442566\pi\)
0.179458 + 0.983766i \(0.442566\pi\)
\(194\) 0 0
\(195\) 21.2726 11.0098i 1.52336 0.788430i
\(196\) 0 0
\(197\) −14.9509 −1.06521 −0.532604 0.846365i \(-0.678786\pi\)
−0.532604 + 0.846365i \(0.678786\pi\)
\(198\) 0 0
\(199\) −13.6756 −0.969436 −0.484718 0.874671i \(-0.661078\pi\)
−0.484718 + 0.874671i \(0.661078\pi\)
\(200\) 0 0
\(201\) −9.31438 9.31438i −0.656986 0.656986i
\(202\) 0 0
\(203\) −2.98974 −0.209839
\(204\) 0 0
\(205\) 6.11578 + 5.69999i 0.427144 + 0.398105i
\(206\) 0 0
\(207\) 6.14865 + 6.14865i 0.427361 + 0.427361i
\(208\) 0 0
\(209\) 8.79167i 0.608133i
\(210\) 0 0
\(211\) −5.07122 −0.349117 −0.174558 0.984647i \(-0.555850\pi\)
−0.174558 + 0.984647i \(0.555850\pi\)
\(212\) 0 0
\(213\) 29.3115i 2.00839i
\(214\) 0 0
\(215\) −11.9695 + 12.8426i −0.816315 + 0.875861i
\(216\) 0 0
\(217\) 2.53607 2.53607i 0.172160 0.172160i
\(218\) 0 0
\(219\) 23.9682 + 23.9682i 1.61962 + 1.61962i
\(220\) 0 0
\(221\) −19.1514 + 9.07282i −1.28826 + 0.610304i
\(222\) 0 0
\(223\) 11.9673i 0.801392i −0.916211 0.400696i \(-0.868768\pi\)
0.916211 0.400696i \(-0.131232\pi\)
\(224\) 0 0
\(225\) 2.04785 + 29.0617i 0.136523 + 1.93745i
\(226\) 0 0
\(227\) −22.4365 −1.48916 −0.744581 0.667532i \(-0.767351\pi\)
−0.744581 + 0.667532i \(0.767351\pi\)
\(228\) 0 0
\(229\) 13.5075 + 13.5075i 0.892601 + 0.892601i 0.994767 0.102167i \(-0.0325775\pi\)
−0.102167 + 0.994767i \(0.532577\pi\)
\(230\) 0 0
\(231\) 3.75634i 0.247149i
\(232\) 0 0
\(233\) 3.80548 3.80548i 0.249305 0.249305i −0.571380 0.820685i \(-0.693592\pi\)
0.820685 + 0.571380i \(0.193592\pi\)
\(234\) 0 0
\(235\) 0.545521 + 15.5026i 0.0355859 + 1.01128i
\(236\) 0 0
\(237\) −33.4414 + 33.4414i −2.17225 + 2.17225i
\(238\) 0 0
\(239\) 6.28140 6.28140i 0.406310 0.406310i −0.474140 0.880450i \(-0.657241\pi\)
0.880450 + 0.474140i \(0.157241\pi\)
\(240\) 0 0
\(241\) 11.5260 11.5260i 0.742452 0.742452i −0.230597 0.973049i \(-0.574068\pi\)
0.973049 + 0.230597i \(0.0740680\pi\)
\(242\) 0 0
\(243\) 2.12060 + 2.12060i 0.136036 + 0.136036i
\(244\) 0 0
\(245\) −14.7694 + 0.519723i −0.943585 + 0.0332039i
\(246\) 0 0
\(247\) −6.71026 14.1644i −0.426963 0.901256i
\(248\) 0 0
\(249\) −21.6871 + 21.6871i −1.37436 + 1.37436i
\(250\) 0 0
\(251\) 6.91172i 0.436264i 0.975919 + 0.218132i \(0.0699963\pi\)
−0.975919 + 0.218132i \(0.930004\pi\)
\(252\) 0 0
\(253\) 3.01819i 0.189752i
\(254\) 0 0
\(255\) −1.37316 39.0223i −0.0859905 2.44367i
\(256\) 0 0
\(257\) −8.90543 8.90543i −0.555505 0.555505i 0.372519 0.928025i \(-0.378494\pi\)
−0.928025 + 0.372519i \(0.878494\pi\)
\(258\) 0 0
\(259\) −1.80090 −0.111903
\(260\) 0 0
\(261\) 27.8660 1.72486
\(262\) 0 0
\(263\) −1.20176 1.20176i −0.0741035 0.0741035i 0.669084 0.743187i \(-0.266687\pi\)
−0.743187 + 0.669084i \(0.766687\pi\)
\(264\) 0 0
\(265\) 17.7420 + 16.5358i 1.08988 + 1.01579i
\(266\) 0 0
\(267\) 15.9225i 0.974442i
\(268\) 0 0
\(269\) 18.3364i 1.11799i 0.829172 + 0.558994i \(0.188813\pi\)
−0.829172 + 0.558994i \(0.811187\pi\)
\(270\) 0 0
\(271\) −6.82939 + 6.82939i −0.414856 + 0.414856i −0.883426 0.468570i \(-0.844769\pi\)
0.468570 + 0.883426i \(0.344769\pi\)
\(272\) 0 0
\(273\) 2.86703 + 6.05188i 0.173521 + 0.366276i
\(274\) 0 0
\(275\) −6.63016 + 7.63539i −0.399814 + 0.460431i
\(276\) 0 0
\(277\) 2.47038 + 2.47038i 0.148431 + 0.148431i 0.777417 0.628986i \(-0.216530\pi\)
−0.628986 + 0.777417i \(0.716530\pi\)
\(278\) 0 0
\(279\) −23.6376 + 23.6376i −1.41515 + 1.41515i
\(280\) 0 0
\(281\) 20.3045 20.3045i 1.21127 1.21127i 0.240654 0.970611i \(-0.422638\pi\)
0.970611 0.240654i \(-0.0773619\pi\)
\(282\) 0 0
\(283\) 18.8607 18.8607i 1.12115 1.12115i 0.129582 0.991569i \(-0.458637\pi\)
0.991569 0.129582i \(-0.0413634\pi\)
\(284\) 0 0
\(285\) 28.8609 1.01559i 1.70957 0.0601582i
\(286\) 0 0
\(287\) −1.65273 + 1.65273i −0.0975574 + 0.0975574i
\(288\) 0 0
\(289\) 17.5455i 1.03209i
\(290\) 0 0
\(291\) 27.6771 + 27.6771i 1.62246 + 1.62246i
\(292\) 0 0
\(293\) 26.4437 1.54486 0.772428 0.635102i \(-0.219042\pi\)
0.772428 + 0.635102i \(0.219042\pi\)
\(294\) 0 0
\(295\) 17.7277 + 16.5225i 1.03215 + 0.961976i
\(296\) 0 0
\(297\) 16.9851i 0.985577i
\(298\) 0 0
\(299\) 2.30364 + 4.86264i 0.133223 + 0.281214i
\(300\) 0 0
\(301\) −3.47059 3.47059i −0.200042 0.200042i
\(302\) 0 0
\(303\) −0.769062 + 0.769062i −0.0441815 + 0.0441815i
\(304\) 0 0
\(305\) −23.1954 + 0.816226i −1.32817 + 0.0467370i
\(306\) 0 0
\(307\) 16.5030i 0.941878i 0.882166 + 0.470939i \(0.156085\pi\)
−0.882166 + 0.470939i \(0.843915\pi\)
\(308\) 0 0
\(309\) −18.3280 −1.04264
\(310\) 0 0
\(311\) 1.19135i 0.0675552i −0.999429 0.0337776i \(-0.989246\pi\)
0.999429 0.0337776i \(-0.0107538\pi\)
\(312\) 0 0
\(313\) −23.9521 23.9521i −1.35385 1.35385i −0.881308 0.472542i \(-0.843337\pi\)
−0.472542 0.881308i \(-0.656663\pi\)
\(314\) 0 0
\(315\) −8.14008 + 0.286442i −0.458642 + 0.0161392i
\(316\) 0 0
\(317\) −5.64869 −0.317262 −0.158631 0.987338i \(-0.550708\pi\)
−0.158631 + 0.987338i \(0.550708\pi\)
\(318\) 0 0
\(319\) 6.83931 + 6.83931i 0.382928 + 0.382928i
\(320\) 0 0
\(321\) −34.6250 −1.93258
\(322\) 0 0
\(323\) −25.5498 −1.42163
\(324\) 0 0
\(325\) −4.85420 + 17.3619i −0.269263 + 0.963067i
\(326\) 0 0
\(327\) 44.3659 2.45344
\(328\) 0 0
\(329\) −4.33683 −0.239097
\(330\) 0 0
\(331\) 12.0711 + 12.0711i 0.663489 + 0.663489i 0.956201 0.292712i \(-0.0945576\pi\)
−0.292712 + 0.956201i \(0.594558\pi\)
\(332\) 0 0
\(333\) 16.7854 0.919835
\(334\) 0 0
\(335\) 9.90797 0.348652i 0.541330 0.0190489i
\(336\) 0 0
\(337\) −10.2997 10.2997i −0.561058 0.561058i 0.368550 0.929608i \(-0.379854\pi\)
−0.929608 + 0.368550i \(0.879854\pi\)
\(338\) 0 0
\(339\) 29.9289i 1.62552i
\(340\) 0 0
\(341\) −11.6030 −0.628338
\(342\) 0 0
\(343\) 8.50780i 0.459378i
\(344\) 0 0
\(345\) −9.90797 + 0.348652i −0.533427 + 0.0187708i
\(346\) 0 0
\(347\) 23.4309 23.4309i 1.25784 1.25784i 0.305712 0.952124i \(-0.401105\pi\)
0.952124 0.305712i \(-0.0988945\pi\)
\(348\) 0 0
\(349\) −21.2807 21.2807i −1.13913 1.13913i −0.988607 0.150521i \(-0.951905\pi\)
−0.150521 0.988607i \(-0.548095\pi\)
\(350\) 0 0
\(351\) −12.9639 27.3649i −0.691963 1.46063i
\(352\) 0 0
\(353\) 34.0709i 1.81341i −0.421762 0.906706i \(-0.638588\pi\)
0.421762 0.906706i \(-0.361412\pi\)
\(354\) 0 0
\(355\) −16.1383 15.0412i −0.856534 0.798301i
\(356\) 0 0
\(357\) 10.9165 0.577760
\(358\) 0 0
\(359\) −2.23393 2.23393i −0.117902 0.117902i 0.645694 0.763596i \(-0.276568\pi\)
−0.763596 + 0.645694i \(0.776568\pi\)
\(360\) 0 0
\(361\) 0.103344i 0.00543918i
\(362\) 0 0
\(363\) −14.5159 + 14.5159i −0.761886 + 0.761886i
\(364\) 0 0
\(365\) −25.4957 + 0.897169i −1.33450 + 0.0469600i
\(366\) 0 0
\(367\) −17.1522 + 17.1522i −0.895339 + 0.895339i −0.995019 0.0996806i \(-0.968218\pi\)
0.0996806 + 0.995019i \(0.468218\pi\)
\(368\) 0 0
\(369\) 15.4043 15.4043i 0.801917 0.801917i
\(370\) 0 0
\(371\) −4.79459 + 4.79459i −0.248923 + 0.248923i
\(372\) 0 0
\(373\) −9.22477 9.22477i −0.477641 0.477641i 0.426736 0.904376i \(-0.359663\pi\)
−0.904376 + 0.426736i \(0.859663\pi\)
\(374\) 0 0
\(375\) −25.8310 20.8831i −1.33391 1.07840i
\(376\) 0 0
\(377\) 16.2390 + 5.79877i 0.836351 + 0.298652i
\(378\) 0 0
\(379\) −11.5450 + 11.5450i −0.593026 + 0.593026i −0.938448 0.345421i \(-0.887736\pi\)
0.345421 + 0.938448i \(0.387736\pi\)
\(380\) 0 0
\(381\) 54.6163i 2.79808i
\(382\) 0 0
\(383\) 11.5813i 0.591775i 0.955223 + 0.295888i \(0.0956154\pi\)
−0.955223 + 0.295888i \(0.904385\pi\)
\(384\) 0 0
\(385\) −2.06817 1.92756i −0.105403 0.0982375i
\(386\) 0 0
\(387\) 32.3479 + 32.3479i 1.64433 + 1.64433i
\(388\) 0 0
\(389\) 1.68545 0.0854559 0.0427280 0.999087i \(-0.486395\pi\)
0.0427280 + 0.999087i \(0.486395\pi\)
\(390\) 0 0
\(391\) 8.77129 0.443583
\(392\) 0 0
\(393\) −0.0978166 0.0978166i −0.00493419 0.00493419i
\(394\) 0 0
\(395\) −1.25176 35.5725i −0.0629831 1.78985i
\(396\) 0 0
\(397\) 22.5437i 1.13144i 0.824599 + 0.565718i \(0.191401\pi\)
−0.824599 + 0.565718i \(0.808599\pi\)
\(398\) 0 0
\(399\) 8.07381i 0.404196i
\(400\) 0 0
\(401\) −22.0230 + 22.0230i −1.09978 + 1.09978i −0.105340 + 0.994436i \(0.533593\pi\)
−0.994436 + 0.105340i \(0.966407\pi\)
\(402\) 0 0
\(403\) −18.6937 + 8.85601i −0.931201 + 0.441149i
\(404\) 0 0
\(405\) 16.6950 0.587482i 0.829582 0.0291922i
\(406\) 0 0
\(407\) 4.11973 + 4.11973i 0.204207 + 0.204207i
\(408\) 0 0
\(409\) −1.20825 + 1.20825i −0.0597443 + 0.0597443i −0.736348 0.676603i \(-0.763451\pi\)
0.676603 + 0.736348i \(0.263451\pi\)
\(410\) 0 0
\(411\) −6.27814 + 6.27814i −0.309678 + 0.309678i
\(412\) 0 0
\(413\) −4.79073 + 4.79073i −0.235737 + 0.235737i
\(414\) 0 0
\(415\) −0.811783 23.0692i −0.0398489 1.13242i
\(416\) 0 0
\(417\) 38.6503 38.6503i 1.89271 1.89271i
\(418\) 0 0
\(419\) 19.2798i 0.941882i 0.882165 + 0.470941i \(0.156086\pi\)
−0.882165 + 0.470941i \(0.843914\pi\)
\(420\) 0 0
\(421\) 19.9104 + 19.9104i 0.970374 + 0.970374i 0.999574 0.0291995i \(-0.00929582\pi\)
−0.0291995 + 0.999574i \(0.509296\pi\)
\(422\) 0 0
\(423\) 40.4217 1.96537
\(424\) 0 0
\(425\) 22.1895 + 19.2682i 1.07635 + 0.934644i
\(426\) 0 0
\(427\) 6.48891i 0.314020i
\(428\) 0 0
\(429\) 7.28563 20.4028i 0.351754 0.985058i
\(430\) 0 0
\(431\) −13.3786 13.3786i −0.644424 0.644424i 0.307216 0.951640i \(-0.400603\pi\)
−0.951640 + 0.307216i \(0.900603\pi\)
\(432\) 0 0
\(433\) 11.1481 11.1481i 0.535745 0.535745i −0.386531 0.922276i \(-0.626327\pi\)
0.922276 + 0.386531i \(0.126327\pi\)
\(434\) 0 0
\(435\) −21.6617 + 23.2418i −1.03860 + 1.11436i
\(436\) 0 0
\(437\) 6.48724i 0.310327i
\(438\) 0 0
\(439\) 11.7278 0.559737 0.279869 0.960038i \(-0.409709\pi\)
0.279869 + 0.960038i \(0.409709\pi\)
\(440\) 0 0
\(441\) 38.5101i 1.83382i
\(442\) 0 0
\(443\) −20.8920 20.8920i −0.992608 0.992608i 0.00736499 0.999973i \(-0.497656\pi\)
−0.999973 + 0.00736499i \(0.997656\pi\)
\(444\) 0 0
\(445\) −8.76661 8.17061i −0.415577 0.387324i
\(446\) 0 0
\(447\) 41.7053 1.97259
\(448\) 0 0
\(449\) 1.81112 + 1.81112i 0.0854720 + 0.0854720i 0.748550 0.663078i \(-0.230750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(450\) 0 0
\(451\) 7.56153 0.356059
\(452\) 0 0
\(453\) 8.06864 0.379098
\(454\) 0 0
\(455\) −4.80326 1.52698i −0.225180 0.0715860i
\(456\) 0 0
\(457\) 9.50414 0.444585 0.222292 0.974980i \(-0.428646\pi\)
0.222292 + 0.974980i \(0.428646\pi\)
\(458\) 0 0
\(459\) −49.3612 −2.30398
\(460\) 0 0
\(461\) 6.71519 + 6.71519i 0.312758 + 0.312758i 0.845977 0.533219i \(-0.179018\pi\)
−0.533219 + 0.845977i \(0.679018\pi\)
\(462\) 0 0
\(463\) 12.1627 0.565251 0.282625 0.959230i \(-0.408795\pi\)
0.282625 + 0.959230i \(0.408795\pi\)
\(464\) 0 0
\(465\) −1.34034 38.0898i −0.0621570 1.76637i
\(466\) 0 0
\(467\) 8.81665 + 8.81665i 0.407986 + 0.407986i 0.881036 0.473050i \(-0.156847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(468\) 0 0
\(469\) 2.77175i 0.127987i
\(470\) 0 0
\(471\) −11.2360 −0.517730
\(472\) 0 0
\(473\) 15.8786i 0.730099i
\(474\) 0 0
\(475\) −14.2507 + 16.4114i −0.653869 + 0.753005i
\(476\) 0 0
\(477\) 44.6883 44.6883i 2.04614 2.04614i
\(478\) 0 0
\(479\) −11.1541 11.1541i −0.509643 0.509643i 0.404773 0.914417i \(-0.367350\pi\)
−0.914417 + 0.404773i \(0.867350\pi\)
\(480\) 0 0
\(481\) 9.78173 + 3.49295i 0.446008 + 0.159265i
\(482\) 0 0
\(483\) 2.77175i 0.126119i
\(484\) 0 0
\(485\) −29.4409 + 1.03600i −1.33684 + 0.0470422i
\(486\) 0 0
\(487\) −24.9546 −1.13080 −0.565401 0.824816i \(-0.691279\pi\)
−0.565401 + 0.824816i \(0.691279\pi\)
\(488\) 0 0
\(489\) −15.4469 15.4469i −0.698534 0.698534i
\(490\) 0 0
\(491\) 14.9353i 0.674020i −0.941501 0.337010i \(-0.890584\pi\)
0.941501 0.337010i \(-0.109416\pi\)
\(492\) 0 0
\(493\) 19.8760 19.8760i 0.895169 0.895169i
\(494\) 0 0
\(495\) 19.2765 + 17.9659i 0.866412 + 0.807508i
\(496\) 0 0
\(497\) 4.36122 4.36122i 0.195627 0.195627i
\(498\) 0 0
\(499\) −0.958355 + 0.958355i −0.0429019 + 0.0429019i −0.728232 0.685330i \(-0.759658\pi\)
0.685330 + 0.728232i \(0.259658\pi\)
\(500\) 0 0
\(501\) −17.1536 + 17.1536i −0.766368 + 0.766368i
\(502\) 0 0
\(503\) 1.59172 + 1.59172i 0.0709714 + 0.0709714i 0.741701 0.670730i \(-0.234019\pi\)
−0.670730 + 0.741701i \(0.734019\pi\)
\(504\) 0 0
\(505\) −0.0287872 0.818073i −0.00128101 0.0364038i
\(506\) 0 0
\(507\) −3.83454 38.4320i −0.170298 1.70683i
\(508\) 0 0
\(509\) 10.4868 10.4868i 0.464820 0.464820i −0.435411 0.900232i \(-0.643397\pi\)
0.900232 + 0.435411i \(0.143397\pi\)
\(510\) 0 0
\(511\) 7.13240i 0.315519i
\(512\) 0 0
\(513\) 36.5075i 1.61185i
\(514\) 0 0
\(515\) 9.40497 10.0910i 0.414433 0.444663i
\(516\) 0 0
\(517\) 9.92090 + 9.92090i 0.436321 + 0.436321i
\(518\) 0 0
\(519\) 3.82810 0.168035
\(520\) 0 0
\(521\) 3.91703 0.171608 0.0858041 0.996312i \(-0.472654\pi\)
0.0858041 + 0.996312i \(0.472654\pi\)
\(522\) 0 0
\(523\) −12.5403 12.5403i −0.548347 0.548347i 0.377615 0.925963i \(-0.376744\pi\)
−0.925963 + 0.377615i \(0.876744\pi\)
\(524\) 0 0
\(525\) 6.08879 7.01194i 0.265737 0.306026i
\(526\) 0 0
\(527\) 33.7200i 1.46887i
\(528\) 0 0
\(529\) 20.7729i 0.903171i
\(530\) 0 0
\(531\) 44.6523 44.6523i 1.93775 1.93775i
\(532\) 0 0
\(533\) 12.1825 5.77135i 0.527681 0.249985i
\(534\) 0 0
\(535\) 17.7678 19.0638i 0.768167 0.824201i
\(536\) 0 0
\(537\) 42.6927 + 42.6927i 1.84232 + 1.84232i
\(538\) 0 0
\(539\) −9.45174 + 9.45174i −0.407115 + 0.407115i
\(540\) 0 0
\(541\) 12.8645 12.8645i 0.553090 0.553090i −0.374241 0.927331i \(-0.622097\pi\)
0.927331 + 0.374241i \(0.122097\pi\)
\(542\) 0 0
\(543\) −43.9975 + 43.9975i −1.88811 + 1.88811i
\(544\) 0 0
\(545\) −22.7663 + 24.4270i −0.975201 + 1.04634i
\(546\) 0 0
\(547\) −0.897666 + 0.897666i −0.0383814 + 0.0383814i −0.726037 0.687656i \(-0.758640\pi\)
0.687656 + 0.726037i \(0.258640\pi\)
\(548\) 0 0
\(549\) 60.4803i 2.58123i
\(550\) 0 0
\(551\) 14.7003 + 14.7003i 0.626253 + 0.626253i
\(552\) 0 0
\(553\) 9.95139 0.423176
\(554\) 0 0
\(555\) −13.0481 + 13.9999i −0.553863 + 0.594265i
\(556\) 0 0
\(557\) 12.1237i 0.513697i −0.966452 0.256848i \(-0.917316\pi\)
0.966452 0.256848i \(-0.0826841\pi\)
\(558\) 0 0
\(559\) 12.1194 + 25.5822i 0.512595 + 1.08201i
\(560\) 0 0
\(561\) −24.9724 24.9724i −1.05434 1.05434i
\(562\) 0 0
\(563\) −5.13582 + 5.13582i −0.216449 + 0.216449i −0.807000 0.590551i \(-0.798910\pi\)
0.590551 + 0.807000i \(0.298910\pi\)
\(564\) 0 0
\(565\) 16.4783 + 15.3580i 0.693246 + 0.646115i
\(566\) 0 0
\(567\) 4.67042i 0.196139i
\(568\) 0 0
\(569\) −33.3065 −1.39628 −0.698142 0.715960i \(-0.745989\pi\)
−0.698142 + 0.715960i \(0.745989\pi\)
\(570\) 0 0
\(571\) 16.1774i 0.677003i 0.940966 + 0.338502i \(0.109920\pi\)
−0.940966 + 0.338502i \(0.890080\pi\)
\(572\) 0 0
\(573\) −29.7890 29.7890i −1.24445 1.24445i
\(574\) 0 0
\(575\) 4.89230 5.63404i 0.204023 0.234956i
\(576\) 0 0
\(577\) −17.8546 −0.743298 −0.371649 0.928373i \(-0.621208\pi\)
−0.371649 + 0.928373i \(0.621208\pi\)
\(578\) 0 0
\(579\) 10.4751 + 10.4751i 0.435329 + 0.435329i
\(580\) 0 0
\(581\) 6.45359 0.267740
\(582\) 0 0
\(583\) 21.9361 0.908502
\(584\) 0 0
\(585\) 44.7690 + 14.2323i 1.85097 + 0.588434i
\(586\) 0 0
\(587\) 30.4634 1.25736 0.628680 0.777664i \(-0.283595\pi\)
0.628680 + 0.777664i \(0.283595\pi\)
\(588\) 0 0
\(589\) −24.9393 −1.02761
\(590\) 0 0
\(591\) −31.4089 31.4089i −1.29199 1.29199i
\(592\) 0 0
\(593\) 10.5132 0.431724 0.215862 0.976424i \(-0.430744\pi\)
0.215862 + 0.976424i \(0.430744\pi\)
\(594\) 0 0
\(595\) −5.60176 + 6.01038i −0.229650 + 0.246402i
\(596\) 0 0
\(597\) −28.7297 28.7297i −1.17583 1.17583i
\(598\) 0 0
\(599\) 43.0711i 1.75984i −0.475126 0.879918i \(-0.657598\pi\)
0.475126 0.879918i \(-0.342402\pi\)
\(600\) 0 0
\(601\) 23.2359 0.947813 0.473907 0.880575i \(-0.342843\pi\)
0.473907 + 0.880575i \(0.342843\pi\)
\(602\) 0 0
\(603\) 25.8342i 1.05205i
\(604\) 0 0
\(605\) −0.543352 15.4409i −0.0220904 0.627764i
\(606\) 0 0
\(607\) 24.5847 24.5847i 0.997861 0.997861i −0.00213629 0.999998i \(-0.500680\pi\)
0.999998 + 0.00213629i \(0.000680002\pi\)
\(608\) 0 0
\(609\) −6.28086 6.28086i −0.254513 0.254513i
\(610\) 0 0
\(611\) 23.5558 + 8.41153i 0.952966 + 0.340294i
\(612\) 0 0
\(613\) 0.669386i 0.0270363i 0.999909 + 0.0135181i \(0.00430308\pi\)
−0.999909 + 0.0135181i \(0.995697\pi\)
\(614\) 0 0
\(615\) 0.873485 + 24.8226i 0.0352223 + 1.00094i
\(616\) 0 0
\(617\) −19.4299 −0.782217 −0.391108 0.920345i \(-0.627908\pi\)
−0.391108 + 0.920345i \(0.627908\pi\)
\(618\) 0 0
\(619\) −15.3796 15.3796i −0.618160 0.618160i 0.326899 0.945059i \(-0.393996\pi\)
−0.945059 + 0.326899i \(0.893996\pi\)
\(620\) 0 0
\(621\) 12.5331i 0.502935i
\(622\) 0 0
\(623\) 2.36909 2.36909i 0.0949155 0.0949155i
\(624\) 0 0
\(625\) 24.7530 3.50586i 0.990118 0.140234i
\(626\) 0 0
\(627\) 18.4696 18.4696i 0.737604 0.737604i
\(628\) 0 0
\(629\) 11.9725 11.9725i 0.477375 0.477375i
\(630\) 0 0
\(631\) −16.6091 + 16.6091i −0.661197 + 0.661197i −0.955662 0.294466i \(-0.904858\pi\)
0.294466 + 0.955662i \(0.404858\pi\)
\(632\) 0 0
\(633\) −10.6536 10.6536i −0.423444 0.423444i
\(634\) 0 0
\(635\) 30.0706 + 28.0262i 1.19332 + 1.11219i
\(636\) 0 0
\(637\) −8.01375 + 22.4419i −0.317516 + 0.889179i
\(638\) 0 0
\(639\) −40.6490 + 40.6490i −1.60805 + 1.60805i
\(640\) 0 0
\(641\) 5.60958i 0.221565i −0.993845 0.110783i \(-0.964664\pi\)
0.993845 0.110783i \(-0.0353357\pi\)
\(642\) 0 0
\(643\) 32.7184i 1.29029i −0.764061 0.645144i \(-0.776798\pi\)
0.764061 0.645144i \(-0.223202\pi\)
\(644\) 0 0
\(645\) −52.1255 + 1.83425i −2.05244 + 0.0722235i
\(646\) 0 0
\(647\) −19.6159 19.6159i −0.771180 0.771180i 0.207133 0.978313i \(-0.433587\pi\)
−0.978313 + 0.207133i \(0.933587\pi\)
\(648\) 0 0
\(649\) 21.9185 0.860376
\(650\) 0 0
\(651\) 10.6556 0.417626
\(652\) 0 0
\(653\) −3.70498 3.70498i −0.144987 0.144987i 0.630887 0.775874i \(-0.282691\pi\)
−0.775874 + 0.630887i \(0.782691\pi\)
\(654\) 0 0
\(655\) 0.104050 0.00366143i 0.00406558 0.000143064i
\(656\) 0 0
\(657\) 66.4779i 2.59355i
\(658\) 0 0
\(659\) 0.600315i 0.0233850i 0.999932 + 0.0116925i \(0.00372192\pi\)
−0.999932 + 0.0116925i \(0.996278\pi\)
\(660\) 0 0
\(661\) −13.3229 + 13.3229i −0.518199 + 0.518199i −0.917026 0.398827i \(-0.869417\pi\)
0.398827 + 0.917026i \(0.369417\pi\)
\(662\) 0 0
\(663\) −59.2935 21.1731i −2.30277 0.822294i
\(664\) 0 0
\(665\) −4.44528 4.14306i −0.172380 0.160661i
\(666\) 0 0
\(667\) −5.04662 5.04662i −0.195406 0.195406i
\(668\) 0 0
\(669\) 25.1410 25.1410i 0.972008 0.972008i
\(670\) 0 0
\(671\) −14.8440 + 14.8440i −0.573046 + 0.573046i
\(672\) 0 0
\(673\) 17.9518 17.9518i 0.691989 0.691989i −0.270680 0.962669i \(-0.587249\pi\)
0.962669 + 0.270680i \(0.0872485\pi\)
\(674\) 0 0
\(675\) −27.5318 + 31.7060i −1.05970 + 1.22037i
\(676\) 0 0
\(677\) −4.11061 + 4.11061i −0.157983 + 0.157983i −0.781673 0.623689i \(-0.785633\pi\)
0.623689 + 0.781673i \(0.285633\pi\)
\(678\) 0 0
\(679\) 8.23606i 0.316071i
\(680\) 0 0
\(681\) −47.1347 47.1347i −1.80620 1.80620i
\(682\) 0 0
\(683\) 41.5283 1.58904 0.794518 0.607241i \(-0.207724\pi\)
0.794518 + 0.607241i \(0.207724\pi\)
\(684\) 0 0
\(685\) −0.235001 6.67823i −0.00897892 0.255162i
\(686\) 0 0
\(687\) 56.7532i 2.16527i
\(688\) 0 0
\(689\) 35.3416 16.7428i 1.34641 0.637850i
\(690\) 0 0
\(691\) −21.7721 21.7721i −0.828251 0.828251i 0.159024 0.987275i \(-0.449165\pi\)
−0.987275 + 0.159024i \(0.949165\pi\)
\(692\) 0 0
\(693\) −5.20927 + 5.20927i −0.197884 + 0.197884i
\(694\) 0 0
\(695\) 1.44674 + 41.1134i 0.0548781 + 1.55952i
\(696\) 0 0
\(697\) 21.9749i 0.832357i
\(698\) 0 0
\(699\) 15.9891 0.604764
\(700\) 0 0
\(701\) 9.81277i 0.370623i 0.982680 + 0.185312i \(0.0593295\pi\)
−0.982680 + 0.185312i \(0.940671\pi\)
\(702\) 0 0
\(703\) 8.85487 + 8.85487i 0.333968 + 0.333968i
\(704\) 0 0
\(705\) −31.4218 + 33.7139i −1.18341 + 1.26974i
\(706\) 0 0
\(707\) 0.228855 0.00860699
\(708\) 0 0
\(709\) −20.4477 20.4477i −0.767931 0.767931i 0.209811 0.977742i \(-0.432715\pi\)
−0.977742 + 0.209811i \(0.932715\pi\)
\(710\) 0 0
\(711\) −92.7525 −3.47849
\(712\) 0 0
\(713\) 8.56169 0.320638
\(714\) 0 0
\(715\) 7.49478 + 14.4810i 0.280289 + 0.541559i
\(716\) 0 0
\(717\) 26.3920 0.985626
\(718\) 0 0
\(719\) 8.51967 0.317730 0.158865 0.987300i \(-0.449216\pi\)
0.158865 + 0.987300i \(0.449216\pi\)
\(720\) 0 0
\(721\) 2.72699 + 2.72699i 0.101559 + 0.101559i
\(722\) 0 0
\(723\) 48.4276 1.80104
\(724\) 0 0
\(725\) −1.68081 23.8530i −0.0624237 0.885877i
\(726\) 0 0
\(727\) −24.6182 24.6182i −0.913038 0.913038i 0.0834725 0.996510i \(-0.473399\pi\)
−0.996510 + 0.0834725i \(0.973399\pi\)
\(728\) 0 0
\(729\) 31.3225i 1.16009i
\(730\) 0 0
\(731\) 46.1455 1.70675
\(732\) 0 0
\(733\) 25.4304i 0.939293i −0.882855 0.469646i \(-0.844381\pi\)
0.882855 0.469646i \(-0.155619\pi\)
\(734\) 0 0
\(735\) −32.1196 29.9359i −1.18475 1.10420i
\(736\) 0 0
\(737\) 6.34063 6.34063i 0.233560 0.233560i
\(738\) 0 0
\(739\) 0.982511 + 0.982511i 0.0361422 + 0.0361422i 0.724947 0.688805i \(-0.241864\pi\)
−0.688805 + 0.724947i \(0.741864\pi\)
\(740\) 0 0
\(741\) 15.6596 43.8535i 0.575270 1.61100i
\(742\) 0 0
\(743\) 26.0191i 0.954548i 0.878755 + 0.477274i \(0.158375\pi\)
−0.878755 + 0.477274i \(0.841625\pi\)
\(744\) 0 0
\(745\) −21.4010 + 22.9621i −0.784071 + 0.841265i
\(746\) 0 0
\(747\) −60.1510 −2.20081
\(748\) 0 0
\(749\) 5.15180 + 5.15180i 0.188243 + 0.188243i
\(750\) 0 0
\(751\) 24.4105i 0.890751i 0.895344 + 0.445375i \(0.146930\pi\)
−0.895344 + 0.445375i \(0.853070\pi\)
\(752\) 0 0
\(753\) −14.5202 + 14.5202i −0.529144 + 0.529144i
\(754\) 0 0
\(755\) −4.14041 + 4.44243i −0.150685 + 0.161677i
\(756\) 0 0
\(757\) −5.21745 + 5.21745i −0.189632 + 0.189632i −0.795537 0.605905i \(-0.792811\pi\)
0.605905 + 0.795537i \(0.292811\pi\)
\(758\) 0 0
\(759\) −6.34063 + 6.34063i −0.230150 + 0.230150i
\(760\) 0 0
\(761\) 23.7644 23.7644i 0.861459 0.861459i −0.130049 0.991508i \(-0.541513\pi\)
0.991508 + 0.130049i \(0.0415134\pi\)
\(762\) 0 0
\(763\) −6.60114 6.60114i −0.238977 0.238977i
\(764\) 0 0
\(765\) 52.2115 56.0201i 1.88771 2.02541i
\(766\) 0 0
\(767\) 35.3131 16.7293i 1.27508 0.604061i
\(768\) 0 0
\(769\) −5.72519 + 5.72519i −0.206456 + 0.206456i −0.802759 0.596304i \(-0.796635\pi\)
0.596304 + 0.802759i \(0.296635\pi\)
\(770\) 0 0
\(771\) 37.4171i 1.34755i
\(772\) 0 0
\(773\) 43.6133i 1.56866i 0.620344 + 0.784330i \(0.286993\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(774\) 0 0
\(775\) 21.6593 + 18.8077i 0.778024 + 0.675594i
\(776\) 0 0
\(777\) −3.78334 3.78334i −0.135727 0.135727i
\(778\) 0 0
\(779\) 16.2526 0.582310
\(780\) 0 0
\(781\) −19.9534 −0.713988
\(782\) 0 0
\(783\) 28.4003 + 28.4003i 1.01494 + 1.01494i
\(784\) 0 0
\(785\) 5.76576 6.18634i 0.205789 0.220800i
\(786\) 0 0
\(787\) 22.5183i 0.802692i −0.915926 0.401346i \(-0.868542\pi\)
0.915926 0.401346i \(-0.131458\pi\)
\(788\) 0 0
\(789\) 5.04932i 0.179760i
\(790\) 0 0
\(791\) −4.45308 + 4.45308i −0.158333 + 0.158333i
\(792\) 0 0
\(793\) −12.5856 + 35.2450i −0.446928 + 1.25159i
\(794\) 0 0
\(795\) 2.53400 + 72.0109i 0.0898716 + 2.55396i
\(796\) 0 0
\(797\) −5.28800 5.28800i −0.187311 0.187311i 0.607222 0.794532i \(-0.292284\pi\)
−0.794532 + 0.607222i \(0.792284\pi\)
\(798\) 0 0
\(799\) 28.8315 28.8315i 1.01999 1.01999i
\(800\) 0 0
\(801\) −22.0812 + 22.0812i −0.780202 + 0.780202i
\(802\) 0 0
\(803\) −16.3160 + 16.3160i −0.575780 + 0.575780i
\(804\) 0 0
\(805\) 1.52607 + 1.42232i 0.0537868 + 0.0501301i
\(806\) 0 0
\(807\) −38.5211 + 38.5211i −1.35601 + 1.35601i
\(808\) 0 0
\(809\) 30.1040i 1.05840i 0.848497 + 0.529199i \(0.177508\pi\)
−0.848497 + 0.529199i \(0.822492\pi\)
\(810\) 0 0
\(811\) 22.5132 + 22.5132i 0.790547 + 0.790547i 0.981583 0.191036i \(-0.0611848\pi\)
−0.191036 + 0.981583i \(0.561185\pi\)
\(812\) 0 0
\(813\) −28.6944 −1.00636
\(814\) 0 0
\(815\) 16.4313 0.578203i 0.575564 0.0202536i
\(816\) 0 0
\(817\) 34.1292i 1.19403i
\(818\) 0 0
\(819\) −4.41672 + 12.3687i −0.154333 + 0.432197i
\(820\) 0 0
\(821\) −23.1426 23.1426i −0.807682 0.807682i 0.176600 0.984283i \(-0.443490\pi\)
−0.984283 + 0.176600i \(0.943490\pi\)
\(822\) 0 0
\(823\) −2.54836 + 2.54836i −0.0888301 + 0.0888301i −0.750126 0.661295i \(-0.770007\pi\)
0.661295 + 0.750126i \(0.270007\pi\)
\(824\) 0 0
\(825\) −29.9691 + 2.11179i −1.04339 + 0.0735230i
\(826\) 0 0
\(827\) 7.98441i 0.277645i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443318\pi\)
\(828\) 0 0
\(829\) −32.6036 −1.13237 −0.566186 0.824278i \(-0.691581\pi\)
−0.566186 + 0.824278i \(0.691581\pi\)
\(830\) 0 0
\(831\) 10.3796i 0.360064i
\(832\) 0 0
\(833\) 27.4681 + 27.4681i 0.951713 + 0.951713i
\(834\) 0 0
\(835\) −0.642088 18.2468i −0.0222204 0.631456i
\(836\) 0 0
\(837\) −48.1816 −1.66540
\(838\) 0 0
\(839\) 17.7214 + 17.7214i 0.611810 + 0.611810i 0.943418 0.331607i \(-0.107591\pi\)
−0.331607 + 0.943418i \(0.607591\pi\)
\(840\) 0 0
\(841\) 6.12842 0.211325
\(842\) 0 0
\(843\) 85.3116 2.93829
\(844\) 0 0
\(845\) 23.1276 + 17.6101i 0.795613 + 0.605806i
\(846\) 0 0
\(847\) 4.31959 0.148423
\(848\) 0 0
\(849\) 79.2452 2.71969
\(850\) 0 0
\(851\) −3.03989 3.03989i −0.104206 0.104206i
\(852\) 0 0
\(853\) −40.3100 −1.38019 −0.690095 0.723719i \(-0.742431\pi\)
−0.690095 + 0.723719i \(0.742431\pi\)
\(854\) 0 0
\(855\) 41.4325 + 38.6156i 1.41696 + 1.32063i
\(856\) 0 0
\(857\) 10.2248 + 10.2248i 0.349274 + 0.349274i 0.859839 0.510565i \(-0.170564\pi\)
−0.510565 + 0.859839i \(0.670564\pi\)
\(858\) 0 0
\(859\) 30.9345i 1.05547i −0.849409 0.527735i \(-0.823041\pi\)
0.849409 0.527735i \(-0.176959\pi\)
\(860\) 0 0
\(861\) −6.94411 −0.236655
\(862\) 0 0
\(863\) 4.54648i 0.154764i 0.997002 + 0.0773820i \(0.0246561\pi\)
−0.997002 + 0.0773820i \(0.975344\pi\)
\(864\) 0 0
\(865\) −1.96438 + 2.10767i −0.0667910 + 0.0716630i
\(866\) 0 0
\(867\) −36.8596 + 36.8596i −1.25182 + 1.25182i
\(868\) 0 0
\(869\) −22.7647 22.7647i −0.772240 0.772240i
\(870\) 0 0
\(871\) 5.37596 15.0550i 0.182157 0.510118i
\(872\) 0 0
\(873\) 76.7647i 2.59809i
\(874\) 0 0
\(875\) 0.736180 + 6.95053i 0.0248874 + 0.234971i
\(876\) 0 0
\(877\) 52.1926 1.76242 0.881210 0.472725i \(-0.156730\pi\)
0.881210 + 0.472725i \(0.156730\pi\)
\(878\) 0 0
\(879\) 55.5530 + 55.5530i 1.87376 + 1.87376i
\(880\) 0 0
\(881\) 13.1925i 0.444466i −0.974994 0.222233i \(-0.928665\pi\)
0.974994 0.222233i \(-0.0713346\pi\)
\(882\) 0 0
\(883\) −8.85507 + 8.85507i −0.297997 + 0.297997i −0.840229 0.542232i \(-0.817579\pi\)
0.542232 + 0.840229i \(0.317579\pi\)
\(884\) 0 0
\(885\) 2.53196 + 71.9530i 0.0851109 + 2.41867i
\(886\) 0 0
\(887\) 8.82709 8.82709i 0.296385 0.296385i −0.543211 0.839596i \(-0.682792\pi\)
0.839596 + 0.543211i \(0.182792\pi\)
\(888\) 0 0
\(889\) −8.12628 + 8.12628i −0.272547 + 0.272547i
\(890\) 0 0
\(891\) 10.6840 10.6840i 0.357928 0.357928i
\(892\) 0 0
\(893\) 21.3238 + 21.3238i 0.713574 + 0.713574i
\(894\) 0 0
\(895\) −45.4134 + 1.59805i −1.51800 + 0.0534171i
\(896\) 0 0
\(897\) −5.37596 + 15.0550i −0.179498 + 0.502670i
\(898\) 0 0
\(899\) 19.4010 19.4010i 0.647061 0.647061i
\(900\) 0 0
\(901\) 63.7495i 2.12380i
\(902\) 0 0
\(903\) 14.5821i 0.485261i
\(904\) 0 0
\(905\) −1.64690 46.8013i −0.0547447 1.55573i
\(906\) 0 0
\(907\) −21.0591 21.0591i −0.699256 0.699256i 0.264994 0.964250i \(-0.414630\pi\)
−0.964250 + 0.264994i \(0.914630\pi\)
\(908\) 0 0
\(909\) −2.13306 −0.0707491
\(910\) 0 0
\(911\) −13.2480 −0.438925 −0.219463 0.975621i \(-0.570430\pi\)
−0.219463 + 0.975621i \(0.570430\pi\)
\(912\) 0 0
\(913\) −14.7632 14.7632i −0.488590 0.488590i
\(914\) 0 0
\(915\) −50.4438 47.0144i −1.66762 1.55425i
\(916\) 0 0
\(917\) 0.0291080i 0.000961230i
\(918\) 0 0
\(919\) 49.3292i 1.62722i 0.581412 + 0.813610i \(0.302501\pi\)
−0.581412 + 0.813610i \(0.697499\pi\)
\(920\) 0 0
\(921\) −34.6696 + 34.6696i −1.14240 + 1.14240i
\(922\) 0 0
\(923\) −32.1471 + 15.2295i −1.05814 + 0.501284i
\(924\) 0 0
\(925\) −1.01245 14.3681i −0.0332893 0.472420i
\(926\) 0 0
\(927\) −25.4171 25.4171i −0.834807 0.834807i
\(928\) 0 0
\(929\) 8.16689 8.16689i 0.267947 0.267947i −0.560325 0.828273i \(-0.689324\pi\)
0.828273 + 0.560325i \(0.189324\pi\)
\(930\) 0 0
\(931\) −20.3154 + 20.3154i −0.665810 + 0.665810i
\(932\) 0 0
\(933\) 2.50279 2.50279i 0.0819378 0.0819378i
\(934\) 0 0
\(935\) 26.5638 0.934757i 0.868730 0.0305698i
\(936\) 0 0
\(937\) −29.6443 + 29.6443i −0.968438 + 0.968438i −0.999517 0.0310793i \(-0.990106\pi\)
0.0310793 + 0.999517i \(0.490106\pi\)
\(938\) 0 0
\(939\) 100.637i 3.28417i
\(940\) 0 0
\(941\) 25.5489 + 25.5489i 0.832871 + 0.832871i 0.987909 0.155038i \(-0.0495499\pi\)
−0.155038 + 0.987909i \(0.549550\pi\)
\(942\) 0 0
\(943\) −5.57954 −0.181695
\(944\) 0 0
\(945\) −8.58808 8.00421i −0.279370 0.260377i
\(946\) 0 0
\(947\) 37.4564i 1.21717i −0.793489 0.608585i \(-0.791738\pi\)
0.793489 0.608585i \(-0.208262\pi\)
\(948\) 0 0
\(949\) −13.8337 + 38.7401i −0.449060 + 1.25756i
\(950\) 0 0
\(951\) −11.8668 11.8668i −0.384807 0.384807i
\(952\) 0 0
\(953\) −1.64519 + 1.64519i −0.0532930 + 0.0532930i −0.733251 0.679958i \(-0.761998\pi\)
0.679958 + 0.733251i \(0.261998\pi\)
\(954\) 0 0
\(955\) 31.6874 1.11505i 1.02538 0.0360822i
\(956\) 0 0
\(957\) 28.7361i 0.928906i
\(958\) 0 0
\(959\) 1.86823 0.0603283
\(960\) 0 0
\(961\) 1.91419i 0.0617482i
\(962\) 0 0
\(963\) −48.0177 48.0177i −1.54735 1.54735i
\(964\) 0 0
\(965\) −11.1426 + 0.392099i −0.358694 + 0.0126221i
\(966\) 0 0
\(967\) −15.1821 −0.488223 −0.244111 0.969747i \(-0.578496\pi\)
−0.244111 + 0.969747i \(0.578496\pi\)
\(968\) 0 0
\(969\) −53.6752 53.6752i −1.72430 1.72430i
\(970\) 0 0
\(971\) 45.4645 1.45902 0.729512 0.683968i \(-0.239747\pi\)
0.729512 + 0.683968i \(0.239747\pi\)
\(972\) 0 0
\(973\) −11.5014 −0.368719
\(974\) 0 0
\(975\) −46.6718 + 26.2763i −1.49469 + 0.841515i
\(976\) 0 0
\(977\) −3.47995 −0.111334 −0.0556668 0.998449i \(-0.517728\pi\)
−0.0556668 + 0.998449i \(0.517728\pi\)
\(978\) 0 0
\(979\) −10.8390 −0.346416
\(980\) 0 0
\(981\) 61.5263 + 61.5263i 1.96438 + 1.96438i
\(982\) 0 0
\(983\) 30.8871 0.985145 0.492572 0.870271i \(-0.336057\pi\)
0.492572 + 0.870271i \(0.336057\pi\)
\(984\) 0 0
\(985\) 33.4106 1.17569i 1.06455 0.0374605i
\(986\) 0 0
\(987\) −9.11084 9.11084i −0.290001 0.290001i
\(988\) 0 0
\(989\) 11.7166i 0.372566i
\(990\) 0 0
\(991\) −16.6535 −0.529014 −0.264507 0.964384i \(-0.585209\pi\)
−0.264507 + 0.964384i \(0.585209\pi\)
\(992\) 0 0
\(993\) 50.7182i 1.60949i
\(994\) 0 0
\(995\) 30.5606 1.07540i 0.968836 0.0340924i
\(996\) 0 0
\(997\) 28.4391 28.4391i 0.900675 0.900675i −0.0948197 0.995494i \(-0.530227\pi\)
0.995494 + 0.0948197i \(0.0302275\pi\)
\(998\) 0 0
\(999\) 17.1072 + 17.1072i 0.541248 + 0.541248i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.w.e.73.6 yes 12
4.3 odd 2 1040.2.bg.o.593.1 12
5.2 odd 4 520.2.bh.e.177.6 yes 12
13.5 odd 4 520.2.bh.e.473.6 yes 12
20.7 even 4 1040.2.cd.o.177.1 12
52.31 even 4 1040.2.cd.o.993.1 12
65.57 even 4 inner 520.2.w.e.57.6 12
260.187 odd 4 1040.2.bg.o.577.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.w.e.57.6 12 65.57 even 4 inner
520.2.w.e.73.6 yes 12 1.1 even 1 trivial
520.2.bh.e.177.6 yes 12 5.2 odd 4
520.2.bh.e.473.6 yes 12 13.5 odd 4
1040.2.bg.o.577.1 12 260.187 odd 4
1040.2.bg.o.593.1 12 4.3 odd 2
1040.2.cd.o.177.1 12 20.7 even 4
1040.2.cd.o.993.1 12 52.31 even 4