Properties

Label 1040.2.bg.o.593.1
Level $1040$
Weight $2$
Character 1040.593
Analytic conductor $8.304$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(577,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,0,8,0,0,0,0,0,14,0,-2,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 6 x^{9} + 25 x^{8} - 106 x^{7} + 242 x^{6} + 268 x^{5} + 316 x^{4} + \cdots + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(2.10080 + 2.10080i\) of defining polynomial
Character \(\chi\) \(=\) 1040.593
Dual form 1040.2.bg.o.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.10080 - 2.10080i) q^{3} +(-2.23468 + 0.0786365i) q^{5} +0.625152i q^{7} +5.82676i q^{9} +(1.43009 - 1.43009i) q^{11} +(-1.21252 + 3.39556i) q^{13} +(4.85984 + 4.52944i) q^{15} +(4.15605 + 4.15605i) q^{17} +(3.07381 - 3.07381i) q^{19} +(1.31332 - 1.31332i) q^{21} +(-1.05524 + 1.05524i) q^{23} +(4.98763 - 0.351456i) q^{25} +(5.93847 - 5.93847i) q^{27} -4.78242i q^{29} +(-4.05673 - 4.05673i) q^{31} -6.00869 q^{33} +(-0.0491597 - 1.39702i) q^{35} -2.88074i q^{37} +(9.68066 - 4.58614i) q^{39} +(-2.64372 - 2.64372i) q^{41} +(-5.55160 + 5.55160i) q^{43} +(-0.458196 - 13.0210i) q^{45} +6.93725i q^{47} +6.60919 q^{49} -17.4621i q^{51} +(-7.66949 - 7.66949i) q^{53} +(-3.08335 + 3.30826i) q^{55} -12.9150 q^{57} +(7.66332 + 7.66332i) q^{59} +10.3797 q^{61} -3.64261 q^{63} +(2.44258 - 7.68335i) q^{65} +4.43372 q^{67} +4.43372 q^{69} +(-6.97626 - 6.97626i) q^{71} +11.4091 q^{73} +(-11.2164 - 9.73970i) q^{75} +(0.894024 + 0.894024i) q^{77} -15.9184i q^{79} -7.47086 q^{81} -10.3232i q^{83} +(-9.61428 - 8.96064i) q^{85} +(-10.0469 + 10.0469i) q^{87} +(3.78962 + 3.78962i) q^{89} +(-2.12274 - 0.758007i) q^{91} +17.0448i q^{93} +(-6.62729 + 7.11072i) q^{95} +13.1745 q^{97} +(8.33280 + 8.33280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 8 q^{5} + 14 q^{11} - 2 q^{13} + 12 q^{15} + 14 q^{17} + 6 q^{19} - 18 q^{21} + 2 q^{23} + 2 q^{25} + 26 q^{27} + 22 q^{31} - 4 q^{33} + 12 q^{35} - 4 q^{39} - 4 q^{41} + 8 q^{43} + 16 q^{49}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.10080 2.10080i −1.21290 1.21290i −0.970068 0.242832i \(-0.921924\pi\)
−0.242832 0.970068i \(-0.578076\pi\)
\(4\) 0 0
\(5\) −2.23468 + 0.0786365i −0.999381 + 0.0351673i
\(6\) 0 0
\(7\) 0.625152i 0.236285i 0.992997 + 0.118143i \(0.0376940\pi\)
−0.992997 + 0.118143i \(0.962306\pi\)
\(8\) 0 0
\(9\) 5.82676i 1.94225i
\(10\) 0 0
\(11\) 1.43009 1.43009i 0.431189 0.431189i −0.457844 0.889033i \(-0.651378\pi\)
0.889033 + 0.457844i \(0.151378\pi\)
\(12\) 0 0
\(13\) −1.21252 + 3.39556i −0.336292 + 0.941758i
\(14\) 0 0
\(15\) 4.85984 + 4.52944i 1.25480 + 1.16950i
\(16\) 0 0
\(17\) 4.15605 + 4.15605i 1.00799 + 1.00799i 0.999968 + 0.00802196i \(0.00255350\pi\)
0.00802196 + 0.999968i \(0.497447\pi\)
\(18\) 0 0
\(19\) 3.07381 3.07381i 0.705181 0.705181i −0.260337 0.965518i \(-0.583834\pi\)
0.965518 + 0.260337i \(0.0838336\pi\)
\(20\) 0 0
\(21\) 1.31332 1.31332i 0.286590 0.286590i
\(22\) 0 0
\(23\) −1.05524 + 1.05524i −0.220034 + 0.220034i −0.808513 0.588479i \(-0.799727\pi\)
0.588479 + 0.808513i \(0.299727\pi\)
\(24\) 0 0
\(25\) 4.98763 0.351456i 0.997527 0.0702911i
\(26\) 0 0
\(27\) 5.93847 5.93847i 1.14286 1.14286i
\(28\) 0 0
\(29\) 4.78242i 0.888074i −0.896008 0.444037i \(-0.853546\pi\)
0.896008 0.444037i \(-0.146454\pi\)
\(30\) 0 0
\(31\) −4.05673 4.05673i −0.728611 0.728611i 0.241732 0.970343i \(-0.422285\pi\)
−0.970343 + 0.241732i \(0.922285\pi\)
\(32\) 0 0
\(33\) −6.00869 −1.04598
\(34\) 0 0
\(35\) −0.0491597 1.39702i −0.00830951 0.236139i
\(36\) 0 0
\(37\) 2.88074i 0.473591i −0.971559 0.236796i \(-0.923903\pi\)
0.971559 0.236796i \(-0.0760972\pi\)
\(38\) 0 0
\(39\) 9.68066 4.58614i 1.55015 0.734370i
\(40\) 0 0
\(41\) −2.64372 2.64372i −0.412880 0.412880i 0.469861 0.882741i \(-0.344304\pi\)
−0.882741 + 0.469861i \(0.844304\pi\)
\(42\) 0 0
\(43\) −5.55160 + 5.55160i −0.846612 + 0.846612i −0.989709 0.143097i \(-0.954294\pi\)
0.143097 + 0.989709i \(0.454294\pi\)
\(44\) 0 0
\(45\) −0.458196 13.0210i −0.0683038 1.94105i
\(46\) 0 0
\(47\) 6.93725i 1.01190i 0.862562 + 0.505951i \(0.168858\pi\)
−0.862562 + 0.505951i \(0.831142\pi\)
\(48\) 0 0
\(49\) 6.60919 0.944169
\(50\) 0 0
\(51\) 17.4621i 2.44518i
\(52\) 0 0
\(53\) −7.66949 7.66949i −1.05349 1.05349i −0.998486 0.0549988i \(-0.982485\pi\)
−0.0549988 0.998486i \(-0.517515\pi\)
\(54\) 0 0
\(55\) −3.08335 + 3.30826i −0.415759 + 0.446086i
\(56\) 0 0
\(57\) −12.9150 −1.71063
\(58\) 0 0
\(59\) 7.66332 + 7.66332i 0.997679 + 0.997679i 0.999997 0.00231846i \(-0.000737991\pi\)
−0.00231846 + 0.999997i \(0.500738\pi\)
\(60\) 0 0
\(61\) 10.3797 1.32899 0.664495 0.747293i \(-0.268647\pi\)
0.664495 + 0.747293i \(0.268647\pi\)
\(62\) 0 0
\(63\) −3.64261 −0.458926
\(64\) 0 0
\(65\) 2.44258 7.68335i 0.302964 0.953002i
\(66\) 0 0
\(67\) 4.43372 0.541665 0.270833 0.962626i \(-0.412701\pi\)
0.270833 + 0.962626i \(0.412701\pi\)
\(68\) 0 0
\(69\) 4.43372 0.533757
\(70\) 0 0
\(71\) −6.97626 6.97626i −0.827930 0.827930i 0.159300 0.987230i \(-0.449076\pi\)
−0.987230 + 0.159300i \(0.949076\pi\)
\(72\) 0 0
\(73\) 11.4091 1.33533 0.667665 0.744462i \(-0.267294\pi\)
0.667665 + 0.744462i \(0.267294\pi\)
\(74\) 0 0
\(75\) −11.2164 9.73970i −1.29516 1.12464i
\(76\) 0 0
\(77\) 0.894024 + 0.894024i 0.101884 + 0.101884i
\(78\) 0 0
\(79\) 15.9184i 1.79096i −0.445106 0.895478i \(-0.646834\pi\)
0.445106 0.895478i \(-0.353166\pi\)
\(80\) 0 0
\(81\) −7.47086 −0.830096
\(82\) 0 0
\(83\) 10.3232i 1.13312i −0.824020 0.566561i \(-0.808274\pi\)
0.824020 0.566561i \(-0.191726\pi\)
\(84\) 0 0
\(85\) −9.61428 8.96064i −1.04281 0.971918i
\(86\) 0 0
\(87\) −10.0469 + 10.0469i −1.07715 + 1.07715i
\(88\) 0 0
\(89\) 3.78962 + 3.78962i 0.401699 + 0.401699i 0.878831 0.477132i \(-0.158324\pi\)
−0.477132 + 0.878831i \(0.658324\pi\)
\(90\) 0 0
\(91\) −2.12274 0.758007i −0.222523 0.0794607i
\(92\) 0 0
\(93\) 17.0448i 1.76746i
\(94\) 0 0
\(95\) −6.62729 + 7.11072i −0.679946 + 0.729544i
\(96\) 0 0
\(97\) 13.1745 1.33767 0.668834 0.743412i \(-0.266794\pi\)
0.668834 + 0.743412i \(0.266794\pi\)
\(98\) 0 0
\(99\) 8.33280 + 8.33280i 0.837478 + 0.837478i
\(100\) 0 0
\(101\) 0.366080i 0.0364263i 0.999834 + 0.0182131i \(0.00579774\pi\)
−0.999834 + 0.0182131i \(0.994202\pi\)
\(102\) 0 0
\(103\) 4.36213 4.36213i 0.429814 0.429814i −0.458751 0.888565i \(-0.651703\pi\)
0.888565 + 0.458751i \(0.151703\pi\)
\(104\) 0 0
\(105\) −2.83158 + 3.03813i −0.276334 + 0.296492i
\(106\) 0 0
\(107\) 8.24089 8.24089i 0.796677 0.796677i −0.185893 0.982570i \(-0.559518\pi\)
0.982570 + 0.185893i \(0.0595179\pi\)
\(108\) 0 0
\(109\) 10.5593 10.5593i 1.01139 1.01139i 0.0114600 0.999934i \(-0.496352\pi\)
0.999934 0.0114600i \(-0.00364792\pi\)
\(110\) 0 0
\(111\) −6.05188 + 6.05188i −0.574419 + 0.574419i
\(112\) 0 0
\(113\) −7.12321 7.12321i −0.670095 0.670095i 0.287643 0.957738i \(-0.407128\pi\)
−0.957738 + 0.287643i \(0.907128\pi\)
\(114\) 0 0
\(115\) 2.27516 2.44112i 0.212159 0.227635i
\(116\) 0 0
\(117\) −19.7851 7.06504i −1.82913 0.653164i
\(118\) 0 0
\(119\) −2.59816 + 2.59816i −0.238173 + 0.238173i
\(120\) 0 0
\(121\) 6.90967i 0.628152i
\(122\) 0 0
\(123\) 11.1079i 1.00156i
\(124\) 0 0
\(125\) −11.1181 + 1.17760i −0.994438 + 0.105328i
\(126\) 0 0
\(127\) 12.9989 + 12.9989i 1.15347 + 1.15347i 0.985853 + 0.167612i \(0.0536057\pi\)
0.167612 + 0.985853i \(0.446394\pi\)
\(128\) 0 0
\(129\) 23.3257 2.05371
\(130\) 0 0
\(131\) 0.0465615 0.00406810 0.00203405 0.999998i \(-0.499353\pi\)
0.00203405 + 0.999998i \(0.499353\pi\)
\(132\) 0 0
\(133\) 1.92160 + 1.92160i 0.166624 + 0.166624i
\(134\) 0 0
\(135\) −12.8036 + 13.7376i −1.10196 + 1.18234i
\(136\) 0 0
\(137\) 2.98845i 0.255320i 0.991818 + 0.127660i \(0.0407467\pi\)
−0.991818 + 0.127660i \(0.959253\pi\)
\(138\) 0 0
\(139\) 18.3978i 1.56049i 0.625477 + 0.780243i \(0.284904\pi\)
−0.625477 + 0.780243i \(0.715096\pi\)
\(140\) 0 0
\(141\) 14.5738 14.5738i 1.22734 1.22734i
\(142\) 0 0
\(143\) 3.12195 + 6.58997i 0.261070 + 0.551081i
\(144\) 0 0
\(145\) 0.376073 + 10.6872i 0.0312312 + 0.887525i
\(146\) 0 0
\(147\) −13.8846 13.8846i −1.14518 1.14518i
\(148\) 0 0
\(149\) 9.92602 9.92602i 0.813171 0.813171i −0.171937 0.985108i \(-0.555003\pi\)
0.985108 + 0.171937i \(0.0550025\pi\)
\(150\) 0 0
\(151\) −1.92037 + 1.92037i −0.156277 + 0.156277i −0.780915 0.624637i \(-0.785247\pi\)
0.624637 + 0.780915i \(0.285247\pi\)
\(152\) 0 0
\(153\) −24.2163 + 24.2163i −1.95777 + 1.95777i
\(154\) 0 0
\(155\) 9.38453 + 8.74652i 0.753784 + 0.702537i
\(156\) 0 0
\(157\) −2.67422 + 2.67422i −0.213426 + 0.213426i −0.805721 0.592295i \(-0.798222\pi\)
0.592295 + 0.805721i \(0.298222\pi\)
\(158\) 0 0
\(159\) 32.2242i 2.55554i
\(160\) 0 0
\(161\) −0.659687 0.659687i −0.0519906 0.0519906i
\(162\) 0 0
\(163\) 7.35286 0.575920 0.287960 0.957642i \(-0.407023\pi\)
0.287960 + 0.957642i \(0.407023\pi\)
\(164\) 0 0
\(165\) 13.4275 0.472502i 1.04533 0.0367842i
\(166\) 0 0
\(167\) 8.16527i 0.631847i −0.948785 0.315924i \(-0.897686\pi\)
0.948785 0.315924i \(-0.102314\pi\)
\(168\) 0 0
\(169\) −10.0596 8.23434i −0.773816 0.633411i
\(170\) 0 0
\(171\) 17.9104 + 17.9104i 1.36964 + 1.36964i
\(172\) 0 0
\(173\) 0.911103 0.911103i 0.0692699 0.0692699i −0.671623 0.740893i \(-0.734403\pi\)
0.740893 + 0.671623i \(0.234403\pi\)
\(174\) 0 0
\(175\) 0.219713 + 3.11803i 0.0166087 + 0.235701i
\(176\) 0 0
\(177\) 32.1983i 2.42017i
\(178\) 0 0
\(179\) −20.3221 −1.51894 −0.759471 0.650541i \(-0.774542\pi\)
−0.759471 + 0.650541i \(0.774542\pi\)
\(180\) 0 0
\(181\) 20.9432i 1.55669i 0.627835 + 0.778346i \(0.283941\pi\)
−0.627835 + 0.778346i \(0.716059\pi\)
\(182\) 0 0
\(183\) −21.8058 21.8058i −1.61193 1.61193i
\(184\) 0 0
\(185\) 0.226532 + 6.43755i 0.0166549 + 0.473298i
\(186\) 0 0
\(187\) 11.8871 0.869268
\(188\) 0 0
\(189\) 3.71245 + 3.71245i 0.270041 + 0.270041i
\(190\) 0 0
\(191\) 14.1798 1.02601 0.513007 0.858384i \(-0.328531\pi\)
0.513007 + 0.858384i \(0.328531\pi\)
\(192\) 0 0
\(193\) 4.98622 0.358916 0.179458 0.983766i \(-0.442566\pi\)
0.179458 + 0.983766i \(0.442566\pi\)
\(194\) 0 0
\(195\) −21.2726 + 11.0098i −1.52336 + 0.788430i
\(196\) 0 0
\(197\) −14.9509 −1.06521 −0.532604 0.846365i \(-0.678786\pi\)
−0.532604 + 0.846365i \(0.678786\pi\)
\(198\) 0 0
\(199\) 13.6756 0.969436 0.484718 0.874671i \(-0.338922\pi\)
0.484718 + 0.874671i \(0.338922\pi\)
\(200\) 0 0
\(201\) −9.31438 9.31438i −0.656986 0.656986i
\(202\) 0 0
\(203\) 2.98974 0.209839
\(204\) 0 0
\(205\) 6.11578 + 5.69999i 0.427144 + 0.398105i
\(206\) 0 0
\(207\) −6.14865 6.14865i −0.427361 0.427361i
\(208\) 0 0
\(209\) 8.79167i 0.608133i
\(210\) 0 0
\(211\) 5.07122 0.349117 0.174558 0.984647i \(-0.444150\pi\)
0.174558 + 0.984647i \(0.444150\pi\)
\(212\) 0 0
\(213\) 29.3115i 2.00839i
\(214\) 0 0
\(215\) 11.9695 12.8426i 0.816315 0.875861i
\(216\) 0 0
\(217\) 2.53607 2.53607i 0.172160 0.172160i
\(218\) 0 0
\(219\) −23.9682 23.9682i −1.61962 1.61962i
\(220\) 0 0
\(221\) −19.1514 + 9.07282i −1.28826 + 0.610304i
\(222\) 0 0
\(223\) 11.9673i 0.801392i 0.916211 + 0.400696i \(0.131232\pi\)
−0.916211 + 0.400696i \(0.868768\pi\)
\(224\) 0 0
\(225\) 2.04785 + 29.0617i 0.136523 + 1.93745i
\(226\) 0 0
\(227\) 22.4365 1.48916 0.744581 0.667532i \(-0.232649\pi\)
0.744581 + 0.667532i \(0.232649\pi\)
\(228\) 0 0
\(229\) 13.5075 + 13.5075i 0.892601 + 0.892601i 0.994767 0.102167i \(-0.0325775\pi\)
−0.102167 + 0.994767i \(0.532577\pi\)
\(230\) 0 0
\(231\) 3.75634i 0.247149i
\(232\) 0 0
\(233\) 3.80548 3.80548i 0.249305 0.249305i −0.571380 0.820685i \(-0.693592\pi\)
0.820685 + 0.571380i \(0.193592\pi\)
\(234\) 0 0
\(235\) −0.545521 15.5026i −0.0355859 1.01128i
\(236\) 0 0
\(237\) −33.4414 + 33.4414i −2.17225 + 2.17225i
\(238\) 0 0
\(239\) −6.28140 + 6.28140i −0.406310 + 0.406310i −0.880450 0.474140i \(-0.842759\pi\)
0.474140 + 0.880450i \(0.342759\pi\)
\(240\) 0 0
\(241\) 11.5260 11.5260i 0.742452 0.742452i −0.230597 0.973049i \(-0.574068\pi\)
0.973049 + 0.230597i \(0.0740680\pi\)
\(242\) 0 0
\(243\) −2.12060 2.12060i −0.136036 0.136036i
\(244\) 0 0
\(245\) −14.7694 + 0.519723i −0.943585 + 0.0332039i
\(246\) 0 0
\(247\) 6.71026 + 14.1644i 0.426963 + 0.901256i
\(248\) 0 0
\(249\) −21.6871 + 21.6871i −1.37436 + 1.37436i
\(250\) 0 0
\(251\) 6.91172i 0.436264i −0.975919 0.218132i \(-0.930004\pi\)
0.975919 0.218132i \(-0.0699963\pi\)
\(252\) 0 0
\(253\) 3.01819i 0.189752i
\(254\) 0 0
\(255\) 1.37316 + 39.0223i 0.0859905 + 2.44367i
\(256\) 0 0
\(257\) −8.90543 8.90543i −0.555505 0.555505i 0.372519 0.928025i \(-0.378494\pi\)
−0.928025 + 0.372519i \(0.878494\pi\)
\(258\) 0 0
\(259\) 1.80090 0.111903
\(260\) 0 0
\(261\) 27.8660 1.72486
\(262\) 0 0
\(263\) 1.20176 + 1.20176i 0.0741035 + 0.0741035i 0.743187 0.669084i \(-0.233313\pi\)
−0.669084 + 0.743187i \(0.733313\pi\)
\(264\) 0 0
\(265\) 17.7420 + 16.5358i 1.08988 + 1.01579i
\(266\) 0 0
\(267\) 15.9225i 0.974442i
\(268\) 0 0
\(269\) 18.3364i 1.11799i 0.829172 + 0.558994i \(0.188813\pi\)
−0.829172 + 0.558994i \(0.811187\pi\)
\(270\) 0 0
\(271\) 6.82939 6.82939i 0.414856 0.414856i −0.468570 0.883426i \(-0.655231\pi\)
0.883426 + 0.468570i \(0.155231\pi\)
\(272\) 0 0
\(273\) 2.86703 + 6.05188i 0.173521 + 0.366276i
\(274\) 0 0
\(275\) 6.63016 7.63539i 0.399814 0.460431i
\(276\) 0 0
\(277\) 2.47038 + 2.47038i 0.148431 + 0.148431i 0.777417 0.628986i \(-0.216530\pi\)
−0.628986 + 0.777417i \(0.716530\pi\)
\(278\) 0 0
\(279\) 23.6376 23.6376i 1.41515 1.41515i
\(280\) 0 0
\(281\) 20.3045 20.3045i 1.21127 1.21127i 0.240654 0.970611i \(-0.422638\pi\)
0.970611 0.240654i \(-0.0773619\pi\)
\(282\) 0 0
\(283\) −18.8607 + 18.8607i −1.12115 + 1.12115i −0.129582 + 0.991569i \(0.541363\pi\)
−0.991569 + 0.129582i \(0.958637\pi\)
\(284\) 0 0
\(285\) 28.8609 1.01559i 1.70957 0.0601582i
\(286\) 0 0
\(287\) 1.65273 1.65273i 0.0975574 0.0975574i
\(288\) 0 0
\(289\) 17.5455i 1.03209i
\(290\) 0 0
\(291\) −27.6771 27.6771i −1.62246 1.62246i
\(292\) 0 0
\(293\) 26.4437 1.54486 0.772428 0.635102i \(-0.219042\pi\)
0.772428 + 0.635102i \(0.219042\pi\)
\(294\) 0 0
\(295\) −17.7277 16.5225i −1.03215 0.961976i
\(296\) 0 0
\(297\) 16.9851i 0.985577i
\(298\) 0 0
\(299\) −2.30364 4.86264i −0.133223 0.281214i
\(300\) 0 0
\(301\) −3.47059 3.47059i −0.200042 0.200042i
\(302\) 0 0
\(303\) 0.769062 0.769062i 0.0441815 0.0441815i
\(304\) 0 0
\(305\) −23.1954 + 0.816226i −1.32817 + 0.0467370i
\(306\) 0 0
\(307\) 16.5030i 0.941878i −0.882166 0.470939i \(-0.843915\pi\)
0.882166 0.470939i \(-0.156085\pi\)
\(308\) 0 0
\(309\) −18.3280 −1.04264
\(310\) 0 0
\(311\) 1.19135i 0.0675552i 0.999429 + 0.0337776i \(0.0107538\pi\)
−0.999429 + 0.0337776i \(0.989246\pi\)
\(312\) 0 0
\(313\) −23.9521 23.9521i −1.35385 1.35385i −0.881308 0.472542i \(-0.843337\pi\)
−0.472542 0.881308i \(-0.656663\pi\)
\(314\) 0 0
\(315\) 8.14008 0.286442i 0.458642 0.0161392i
\(316\) 0 0
\(317\) −5.64869 −0.317262 −0.158631 0.987338i \(-0.550708\pi\)
−0.158631 + 0.987338i \(0.550708\pi\)
\(318\) 0 0
\(319\) −6.83931 6.83931i −0.382928 0.382928i
\(320\) 0 0
\(321\) −34.6250 −1.93258
\(322\) 0 0
\(323\) 25.5498 1.42163
\(324\) 0 0
\(325\) −4.85420 + 17.3619i −0.269263 + 0.963067i
\(326\) 0 0
\(327\) −44.3659 −2.45344
\(328\) 0 0
\(329\) −4.33683 −0.239097
\(330\) 0 0
\(331\) −12.0711 12.0711i −0.663489 0.663489i 0.292712 0.956201i \(-0.405442\pi\)
−0.956201 + 0.292712i \(0.905442\pi\)
\(332\) 0 0
\(333\) 16.7854 0.919835
\(334\) 0 0
\(335\) −9.90797 + 0.348652i −0.541330 + 0.0190489i
\(336\) 0 0
\(337\) −10.2997 10.2997i −0.561058 0.561058i 0.368550 0.929608i \(-0.379854\pi\)
−0.929608 + 0.368550i \(0.879854\pi\)
\(338\) 0 0
\(339\) 29.9289i 1.62552i
\(340\) 0 0
\(341\) −11.6030 −0.628338
\(342\) 0 0
\(343\) 8.50780i 0.459378i
\(344\) 0 0
\(345\) −9.90797 + 0.348652i −0.533427 + 0.0187708i
\(346\) 0 0
\(347\) −23.4309 + 23.4309i −1.25784 + 1.25784i −0.305712 + 0.952124i \(0.598895\pi\)
−0.952124 + 0.305712i \(0.901105\pi\)
\(348\) 0 0
\(349\) −21.2807 21.2807i −1.13913 1.13913i −0.988607 0.150521i \(-0.951905\pi\)
−0.150521 0.988607i \(-0.548095\pi\)
\(350\) 0 0
\(351\) 12.9639 + 27.3649i 0.691963 + 1.46063i
\(352\) 0 0
\(353\) 34.0709i 1.81341i −0.421762 0.906706i \(-0.638588\pi\)
0.421762 0.906706i \(-0.361412\pi\)
\(354\) 0 0
\(355\) 16.1383 + 15.0412i 0.856534 + 0.798301i
\(356\) 0 0
\(357\) 10.9165 0.577760
\(358\) 0 0
\(359\) 2.23393 + 2.23393i 0.117902 + 0.117902i 0.763596 0.645694i \(-0.223432\pi\)
−0.645694 + 0.763596i \(0.723432\pi\)
\(360\) 0 0
\(361\) 0.103344i 0.00543918i
\(362\) 0 0
\(363\) 14.5159 14.5159i 0.761886 0.761886i
\(364\) 0 0
\(365\) −25.4957 + 0.897169i −1.33450 + 0.0469600i
\(366\) 0 0
\(367\) 17.1522 17.1522i 0.895339 0.895339i −0.0996806 0.995019i \(-0.531782\pi\)
0.995019 + 0.0996806i \(0.0317821\pi\)
\(368\) 0 0
\(369\) 15.4043 15.4043i 0.801917 0.801917i
\(370\) 0 0
\(371\) 4.79459 4.79459i 0.248923 0.248923i
\(372\) 0 0
\(373\) −9.22477 9.22477i −0.477641 0.477641i 0.426736 0.904376i \(-0.359663\pi\)
−0.904376 + 0.426736i \(0.859663\pi\)
\(374\) 0 0
\(375\) 25.8310 + 20.8831i 1.33391 + 1.07840i
\(376\) 0 0
\(377\) 16.2390 + 5.79877i 0.836351 + 0.298652i
\(378\) 0 0
\(379\) 11.5450 11.5450i 0.593026 0.593026i −0.345421 0.938448i \(-0.612264\pi\)
0.938448 + 0.345421i \(0.112264\pi\)
\(380\) 0 0
\(381\) 54.6163i 2.79808i
\(382\) 0 0
\(383\) 11.5813i 0.591775i −0.955223 0.295888i \(-0.904385\pi\)
0.955223 0.295888i \(-0.0956154\pi\)
\(384\) 0 0
\(385\) −2.06817 1.92756i −0.105403 0.0982375i
\(386\) 0 0
\(387\) −32.3479 32.3479i −1.64433 1.64433i
\(388\) 0 0
\(389\) 1.68545 0.0854559 0.0427280 0.999087i \(-0.486395\pi\)
0.0427280 + 0.999087i \(0.486395\pi\)
\(390\) 0 0
\(391\) −8.77129 −0.443583
\(392\) 0 0
\(393\) −0.0978166 0.0978166i −0.00493419 0.00493419i
\(394\) 0 0
\(395\) 1.25176 + 35.5725i 0.0629831 + 1.78985i
\(396\) 0 0
\(397\) 22.5437i 1.13144i 0.824599 + 0.565718i \(0.191401\pi\)
−0.824599 + 0.565718i \(0.808599\pi\)
\(398\) 0 0
\(399\) 8.07381i 0.404196i
\(400\) 0 0
\(401\) −22.0230 + 22.0230i −1.09978 + 1.09978i −0.105340 + 0.994436i \(0.533593\pi\)
−0.994436 + 0.105340i \(0.966407\pi\)
\(402\) 0 0
\(403\) 18.6937 8.85601i 0.931201 0.441149i
\(404\) 0 0
\(405\) 16.6950 0.587482i 0.829582 0.0291922i
\(406\) 0 0
\(407\) −4.11973 4.11973i −0.204207 0.204207i
\(408\) 0 0
\(409\) −1.20825 + 1.20825i −0.0597443 + 0.0597443i −0.736348 0.676603i \(-0.763451\pi\)
0.676603 + 0.736348i \(0.263451\pi\)
\(410\) 0 0
\(411\) 6.27814 6.27814i 0.309678 0.309678i
\(412\) 0 0
\(413\) −4.79073 + 4.79073i −0.235737 + 0.235737i
\(414\) 0 0
\(415\) 0.811783 + 23.0692i 0.0398489 + 1.13242i
\(416\) 0 0
\(417\) 38.6503 38.6503i 1.89271 1.89271i
\(418\) 0 0
\(419\) 19.2798i 0.941882i −0.882165 0.470941i \(-0.843914\pi\)
0.882165 0.470941i \(-0.156086\pi\)
\(420\) 0 0
\(421\) 19.9104 + 19.9104i 0.970374 + 0.970374i 0.999574 0.0291995i \(-0.00929582\pi\)
−0.0291995 + 0.999574i \(0.509296\pi\)
\(422\) 0 0
\(423\) −40.4217 −1.96537
\(424\) 0 0
\(425\) 22.1895 + 19.2682i 1.07635 + 0.934644i
\(426\) 0 0
\(427\) 6.48891i 0.314020i
\(428\) 0 0
\(429\) 7.28563 20.4028i 0.351754 0.985058i
\(430\) 0 0
\(431\) 13.3786 + 13.3786i 0.644424 + 0.644424i 0.951640 0.307216i \(-0.0993974\pi\)
−0.307216 + 0.951640i \(0.599397\pi\)
\(432\) 0 0
\(433\) 11.1481 11.1481i 0.535745 0.535745i −0.386531 0.922276i \(-0.626327\pi\)
0.922276 + 0.386531i \(0.126327\pi\)
\(434\) 0 0
\(435\) 21.6617 23.2418i 1.03860 1.11436i
\(436\) 0 0
\(437\) 6.48724i 0.310327i
\(438\) 0 0
\(439\) −11.7278 −0.559737 −0.279869 0.960038i \(-0.590291\pi\)
−0.279869 + 0.960038i \(0.590291\pi\)
\(440\) 0 0
\(441\) 38.5101i 1.83382i
\(442\) 0 0
\(443\) 20.8920 + 20.8920i 0.992608 + 0.992608i 0.999973 0.00736499i \(-0.00234437\pi\)
−0.00736499 + 0.999973i \(0.502344\pi\)
\(444\) 0 0
\(445\) −8.76661 8.17061i −0.415577 0.387324i
\(446\) 0 0
\(447\) −41.7053 −1.97259
\(448\) 0 0
\(449\) 1.81112 + 1.81112i 0.0854720 + 0.0854720i 0.748550 0.663078i \(-0.230750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(450\) 0 0
\(451\) −7.56153 −0.356059
\(452\) 0 0
\(453\) 8.06864 0.379098
\(454\) 0 0
\(455\) 4.80326 + 1.52698i 0.225180 + 0.0715860i
\(456\) 0 0
\(457\) 9.50414 0.444585 0.222292 0.974980i \(-0.428646\pi\)
0.222292 + 0.974980i \(0.428646\pi\)
\(458\) 0 0
\(459\) 49.3612 2.30398
\(460\) 0 0
\(461\) 6.71519 + 6.71519i 0.312758 + 0.312758i 0.845977 0.533219i \(-0.179018\pi\)
−0.533219 + 0.845977i \(0.679018\pi\)
\(462\) 0 0
\(463\) −12.1627 −0.565251 −0.282625 0.959230i \(-0.591205\pi\)
−0.282625 + 0.959230i \(0.591205\pi\)
\(464\) 0 0
\(465\) −1.34034 38.0898i −0.0621570 1.76637i
\(466\) 0 0
\(467\) −8.81665 8.81665i −0.407986 0.407986i 0.473050 0.881036i \(-0.343153\pi\)
−0.881036 + 0.473050i \(0.843153\pi\)
\(468\) 0 0
\(469\) 2.77175i 0.127987i
\(470\) 0 0
\(471\) 11.2360 0.517730
\(472\) 0 0
\(473\) 15.8786i 0.730099i
\(474\) 0 0
\(475\) 14.2507 16.4114i 0.653869 0.753005i
\(476\) 0 0
\(477\) 44.6883 44.6883i 2.04614 2.04614i
\(478\) 0 0
\(479\) 11.1541 + 11.1541i 0.509643 + 0.509643i 0.914417 0.404773i \(-0.132650\pi\)
−0.404773 + 0.914417i \(0.632650\pi\)
\(480\) 0 0
\(481\) 9.78173 + 3.49295i 0.446008 + 0.159265i
\(482\) 0 0
\(483\) 2.77175i 0.126119i
\(484\) 0 0
\(485\) −29.4409 + 1.03600i −1.33684 + 0.0470422i
\(486\) 0 0
\(487\) 24.9546 1.13080 0.565401 0.824816i \(-0.308721\pi\)
0.565401 + 0.824816i \(0.308721\pi\)
\(488\) 0 0
\(489\) −15.4469 15.4469i −0.698534 0.698534i
\(490\) 0 0
\(491\) 14.9353i 0.674020i 0.941501 + 0.337010i \(0.109416\pi\)
−0.941501 + 0.337010i \(0.890584\pi\)
\(492\) 0 0
\(493\) 19.8760 19.8760i 0.895169 0.895169i
\(494\) 0 0
\(495\) −19.2765 17.9659i −0.866412 0.807508i
\(496\) 0 0
\(497\) 4.36122 4.36122i 0.195627 0.195627i
\(498\) 0 0
\(499\) 0.958355 0.958355i 0.0429019 0.0429019i −0.685330 0.728232i \(-0.740342\pi\)
0.728232 + 0.685330i \(0.240342\pi\)
\(500\) 0 0
\(501\) −17.1536 + 17.1536i −0.766368 + 0.766368i
\(502\) 0 0
\(503\) −1.59172 1.59172i −0.0709714 0.0709714i 0.670730 0.741701i \(-0.265981\pi\)
−0.741701 + 0.670730i \(0.765981\pi\)
\(504\) 0 0
\(505\) −0.0287872 0.818073i −0.00128101 0.0364038i
\(506\) 0 0
\(507\) 3.83454 + 38.4320i 0.170298 + 1.70683i
\(508\) 0 0
\(509\) 10.4868 10.4868i 0.464820 0.464820i −0.435411 0.900232i \(-0.643397\pi\)
0.900232 + 0.435411i \(0.143397\pi\)
\(510\) 0 0
\(511\) 7.13240i 0.315519i
\(512\) 0 0
\(513\) 36.5075i 1.61185i
\(514\) 0 0
\(515\) −9.40497 + 10.0910i −0.414433 + 0.444663i
\(516\) 0 0
\(517\) 9.92090 + 9.92090i 0.436321 + 0.436321i
\(518\) 0 0
\(519\) −3.82810 −0.168035
\(520\) 0 0
\(521\) 3.91703 0.171608 0.0858041 0.996312i \(-0.472654\pi\)
0.0858041 + 0.996312i \(0.472654\pi\)
\(522\) 0 0
\(523\) 12.5403 + 12.5403i 0.548347 + 0.548347i 0.925963 0.377615i \(-0.123256\pi\)
−0.377615 + 0.925963i \(0.623256\pi\)
\(524\) 0 0
\(525\) 6.08879 7.01194i 0.265737 0.306026i
\(526\) 0 0
\(527\) 33.7200i 1.46887i
\(528\) 0 0
\(529\) 20.7729i 0.903171i
\(530\) 0 0
\(531\) −44.6523 + 44.6523i −1.93775 + 1.93775i
\(532\) 0 0
\(533\) 12.1825 5.77135i 0.527681 0.249985i
\(534\) 0 0
\(535\) −17.7678 + 19.0638i −0.768167 + 0.824201i
\(536\) 0 0
\(537\) 42.6927 + 42.6927i 1.84232 + 1.84232i
\(538\) 0 0
\(539\) 9.45174 9.45174i 0.407115 0.407115i
\(540\) 0 0
\(541\) 12.8645 12.8645i 0.553090 0.553090i −0.374241 0.927331i \(-0.622097\pi\)
0.927331 + 0.374241i \(0.122097\pi\)
\(542\) 0 0
\(543\) 43.9975 43.9975i 1.88811 1.88811i
\(544\) 0 0
\(545\) −22.7663 + 24.4270i −0.975201 + 1.04634i
\(546\) 0 0
\(547\) 0.897666 0.897666i 0.0383814 0.0383814i −0.687656 0.726037i \(-0.741360\pi\)
0.726037 + 0.687656i \(0.241360\pi\)
\(548\) 0 0
\(549\) 60.4803i 2.58123i
\(550\) 0 0
\(551\) −14.7003 14.7003i −0.626253 0.626253i
\(552\) 0 0
\(553\) 9.95139 0.423176
\(554\) 0 0
\(555\) 13.0481 13.9999i 0.553863 0.594265i
\(556\) 0 0
\(557\) 12.1237i 0.513697i −0.966452 0.256848i \(-0.917316\pi\)
0.966452 0.256848i \(-0.0826841\pi\)
\(558\) 0 0
\(559\) −12.1194 25.5822i −0.512595 1.08201i
\(560\) 0 0
\(561\) −24.9724 24.9724i −1.05434 1.05434i
\(562\) 0 0
\(563\) 5.13582 5.13582i 0.216449 0.216449i −0.590551 0.807000i \(-0.701090\pi\)
0.807000 + 0.590551i \(0.201090\pi\)
\(564\) 0 0
\(565\) 16.4783 + 15.3580i 0.693246 + 0.646115i
\(566\) 0 0
\(567\) 4.67042i 0.196139i
\(568\) 0 0
\(569\) −33.3065 −1.39628 −0.698142 0.715960i \(-0.745989\pi\)
−0.698142 + 0.715960i \(0.745989\pi\)
\(570\) 0 0
\(571\) 16.1774i 0.677003i −0.940966 0.338502i \(-0.890080\pi\)
0.940966 0.338502i \(-0.109920\pi\)
\(572\) 0 0
\(573\) −29.7890 29.7890i −1.24445 1.24445i
\(574\) 0 0
\(575\) −4.89230 + 5.63404i −0.204023 + 0.234956i
\(576\) 0 0
\(577\) −17.8546 −0.743298 −0.371649 0.928373i \(-0.621208\pi\)
−0.371649 + 0.928373i \(0.621208\pi\)
\(578\) 0 0
\(579\) −10.4751 10.4751i −0.435329 0.435329i
\(580\) 0 0
\(581\) 6.45359 0.267740
\(582\) 0 0
\(583\) −21.9361 −0.908502
\(584\) 0 0
\(585\) 44.7690 + 14.2323i 1.85097 + 0.588434i
\(586\) 0 0
\(587\) −30.4634 −1.25736 −0.628680 0.777664i \(-0.716405\pi\)
−0.628680 + 0.777664i \(0.716405\pi\)
\(588\) 0 0
\(589\) −24.9393 −1.02761
\(590\) 0 0
\(591\) 31.4089 + 31.4089i 1.29199 + 1.29199i
\(592\) 0 0
\(593\) 10.5132 0.431724 0.215862 0.976424i \(-0.430744\pi\)
0.215862 + 0.976424i \(0.430744\pi\)
\(594\) 0 0
\(595\) 5.60176 6.01038i 0.229650 0.246402i
\(596\) 0 0
\(597\) −28.7297 28.7297i −1.17583 1.17583i
\(598\) 0 0
\(599\) 43.0711i 1.75984i 0.475126 + 0.879918i \(0.342402\pi\)
−0.475126 + 0.879918i \(0.657598\pi\)
\(600\) 0 0
\(601\) 23.2359 0.947813 0.473907 0.880575i \(-0.342843\pi\)
0.473907 + 0.880575i \(0.342843\pi\)
\(602\) 0 0
\(603\) 25.8342i 1.05205i
\(604\) 0 0
\(605\) −0.543352 15.4409i −0.0220904 0.627764i
\(606\) 0 0
\(607\) −24.5847 + 24.5847i −0.997861 + 0.997861i −0.999998 0.00213629i \(-0.999320\pi\)
0.00213629 + 0.999998i \(0.499320\pi\)
\(608\) 0 0
\(609\) −6.28086 6.28086i −0.254513 0.254513i
\(610\) 0 0
\(611\) −23.5558 8.41153i −0.952966 0.340294i
\(612\) 0 0
\(613\) 0.669386i 0.0270363i 0.999909 + 0.0135181i \(0.00430308\pi\)
−0.999909 + 0.0135181i \(0.995697\pi\)
\(614\) 0 0
\(615\) −0.873485 24.8226i −0.0352223 1.00094i
\(616\) 0 0
\(617\) −19.4299 −0.782217 −0.391108 0.920345i \(-0.627908\pi\)
−0.391108 + 0.920345i \(0.627908\pi\)
\(618\) 0 0
\(619\) 15.3796 + 15.3796i 0.618160 + 0.618160i 0.945059 0.326899i \(-0.106004\pi\)
−0.326899 + 0.945059i \(0.606004\pi\)
\(620\) 0 0
\(621\) 12.5331i 0.502935i
\(622\) 0 0
\(623\) −2.36909 + 2.36909i −0.0949155 + 0.0949155i
\(624\) 0 0
\(625\) 24.7530 3.50586i 0.990118 0.140234i
\(626\) 0 0
\(627\) −18.4696 + 18.4696i −0.737604 + 0.737604i
\(628\) 0 0
\(629\) 11.9725 11.9725i 0.477375 0.477375i
\(630\) 0 0
\(631\) 16.6091 16.6091i 0.661197 0.661197i −0.294466 0.955662i \(-0.595142\pi\)
0.955662 + 0.294466i \(0.0951416\pi\)
\(632\) 0 0
\(633\) −10.6536 10.6536i −0.423444 0.423444i
\(634\) 0 0
\(635\) −30.0706 28.0262i −1.19332 1.11219i
\(636\) 0 0
\(637\) −8.01375 + 22.4419i −0.317516 + 0.889179i
\(638\) 0 0
\(639\) 40.6490 40.6490i 1.60805 1.60805i
\(640\) 0 0
\(641\) 5.60958i 0.221565i −0.993845 0.110783i \(-0.964664\pi\)
0.993845 0.110783i \(-0.0353357\pi\)
\(642\) 0 0
\(643\) 32.7184i 1.29029i 0.764061 + 0.645144i \(0.223202\pi\)
−0.764061 + 0.645144i \(0.776798\pi\)
\(644\) 0 0
\(645\) −52.1255 + 1.83425i −2.05244 + 0.0722235i
\(646\) 0 0
\(647\) 19.6159 + 19.6159i 0.771180 + 0.771180i 0.978313 0.207133i \(-0.0664132\pi\)
−0.207133 + 0.978313i \(0.566413\pi\)
\(648\) 0 0
\(649\) 21.9185 0.860376
\(650\) 0 0
\(651\) −10.6556 −0.417626
\(652\) 0 0
\(653\) −3.70498 3.70498i −0.144987 0.144987i 0.630887 0.775874i \(-0.282691\pi\)
−0.775874 + 0.630887i \(0.782691\pi\)
\(654\) 0 0
\(655\) −0.104050 + 0.00366143i −0.00406558 + 0.000143064i
\(656\) 0 0
\(657\) 66.4779i 2.59355i
\(658\) 0 0
\(659\) 0.600315i 0.0233850i −0.999932 0.0116925i \(-0.996278\pi\)
0.999932 0.0116925i \(-0.00372192\pi\)
\(660\) 0 0
\(661\) −13.3229 + 13.3229i −0.518199 + 0.518199i −0.917026 0.398827i \(-0.869417\pi\)
0.398827 + 0.917026i \(0.369417\pi\)
\(662\) 0 0
\(663\) 59.2935 + 21.1731i 2.30277 + 0.822294i
\(664\) 0 0
\(665\) −4.44528 4.14306i −0.172380 0.160661i
\(666\) 0 0
\(667\) 5.04662 + 5.04662i 0.195406 + 0.195406i
\(668\) 0 0
\(669\) 25.1410 25.1410i 0.972008 0.972008i
\(670\) 0 0
\(671\) 14.8440 14.8440i 0.573046 0.573046i
\(672\) 0 0
\(673\) 17.9518 17.9518i 0.691989 0.691989i −0.270680 0.962669i \(-0.587249\pi\)
0.962669 + 0.270680i \(0.0872485\pi\)
\(674\) 0 0
\(675\) 27.5318 31.7060i 1.05970 1.22037i
\(676\) 0 0
\(677\) −4.11061 + 4.11061i −0.157983 + 0.157983i −0.781673 0.623689i \(-0.785633\pi\)
0.623689 + 0.781673i \(0.285633\pi\)
\(678\) 0 0
\(679\) 8.23606i 0.316071i
\(680\) 0 0
\(681\) −47.1347 47.1347i −1.80620 1.80620i
\(682\) 0 0
\(683\) −41.5283 −1.58904 −0.794518 0.607241i \(-0.792276\pi\)
−0.794518 + 0.607241i \(0.792276\pi\)
\(684\) 0 0
\(685\) −0.235001 6.67823i −0.00897892 0.255162i
\(686\) 0 0
\(687\) 56.7532i 2.16527i
\(688\) 0 0
\(689\) 35.3416 16.7428i 1.34641 0.637850i
\(690\) 0 0
\(691\) 21.7721 + 21.7721i 0.828251 + 0.828251i 0.987275 0.159024i \(-0.0508347\pi\)
−0.159024 + 0.987275i \(0.550835\pi\)
\(692\) 0 0
\(693\) −5.20927 + 5.20927i −0.197884 + 0.197884i
\(694\) 0 0
\(695\) −1.44674 41.1134i −0.0548781 1.55952i
\(696\) 0 0
\(697\) 21.9749i 0.832357i
\(698\) 0 0
\(699\) −15.9891 −0.604764
\(700\) 0 0
\(701\) 9.81277i 0.370623i 0.982680 + 0.185312i \(0.0593295\pi\)
−0.982680 + 0.185312i \(0.940671\pi\)
\(702\) 0 0
\(703\) −8.85487 8.85487i −0.333968 0.333968i
\(704\) 0 0
\(705\) −31.4218 + 33.7139i −1.18341 + 1.26974i
\(706\) 0 0
\(707\) −0.228855 −0.00860699
\(708\) 0 0
\(709\) −20.4477 20.4477i −0.767931 0.767931i 0.209811 0.977742i \(-0.432715\pi\)
−0.977742 + 0.209811i \(0.932715\pi\)
\(710\) 0 0
\(711\) 92.7525 3.47849
\(712\) 0 0
\(713\) 8.56169 0.320638
\(714\) 0 0
\(715\) −7.49478 14.4810i −0.280289 0.541559i
\(716\) 0 0
\(717\) 26.3920 0.985626
\(718\) 0 0
\(719\) −8.51967 −0.317730 −0.158865 0.987300i \(-0.550784\pi\)
−0.158865 + 0.987300i \(0.550784\pi\)
\(720\) 0 0
\(721\) 2.72699 + 2.72699i 0.101559 + 0.101559i
\(722\) 0 0
\(723\) −48.4276 −1.80104
\(724\) 0 0
\(725\) −1.68081 23.8530i −0.0624237 0.885877i
\(726\) 0 0
\(727\) 24.6182 + 24.6182i 0.913038 + 0.913038i 0.996510 0.0834725i \(-0.0266011\pi\)
−0.0834725 + 0.996510i \(0.526601\pi\)
\(728\) 0 0
\(729\) 31.3225i 1.16009i
\(730\) 0 0
\(731\) −46.1455 −1.70675
\(732\) 0 0
\(733\) 25.4304i 0.939293i −0.882855 0.469646i \(-0.844381\pi\)
0.882855 0.469646i \(-0.155619\pi\)
\(734\) 0 0
\(735\) 32.1196 + 29.9359i 1.18475 + 1.10420i
\(736\) 0 0
\(737\) 6.34063 6.34063i 0.233560 0.233560i
\(738\) 0 0
\(739\) −0.982511 0.982511i −0.0361422 0.0361422i 0.688805 0.724947i \(-0.258136\pi\)
−0.724947 + 0.688805i \(0.758136\pi\)
\(740\) 0 0
\(741\) 15.6596 43.8535i 0.575270 1.61100i
\(742\) 0 0
\(743\) 26.0191i 0.954548i −0.878755 0.477274i \(-0.841625\pi\)
0.878755 0.477274i \(-0.158375\pi\)
\(744\) 0 0
\(745\) −21.4010 + 22.9621i −0.784071 + 0.841265i
\(746\) 0 0
\(747\) 60.1510 2.20081
\(748\) 0 0
\(749\) 5.15180 + 5.15180i 0.188243 + 0.188243i
\(750\) 0 0
\(751\) 24.4105i 0.890751i −0.895344 0.445375i \(-0.853070\pi\)
0.895344 0.445375i \(-0.146930\pi\)
\(752\) 0 0
\(753\) −14.5202 + 14.5202i −0.529144 + 0.529144i
\(754\) 0 0
\(755\) 4.14041 4.44243i 0.150685 0.161677i
\(756\) 0 0
\(757\) −5.21745 + 5.21745i −0.189632 + 0.189632i −0.795537 0.605905i \(-0.792811\pi\)
0.605905 + 0.795537i \(0.292811\pi\)
\(758\) 0 0
\(759\) 6.34063 6.34063i 0.230150 0.230150i
\(760\) 0 0
\(761\) 23.7644 23.7644i 0.861459 0.861459i −0.130049 0.991508i \(-0.541513\pi\)
0.991508 + 0.130049i \(0.0415134\pi\)
\(762\) 0 0
\(763\) 6.60114 + 6.60114i 0.238977 + 0.238977i
\(764\) 0 0
\(765\) 52.2115 56.0201i 1.88771 2.02541i
\(766\) 0 0
\(767\) −35.3131 + 16.7293i −1.27508 + 0.604061i
\(768\) 0 0
\(769\) −5.72519 + 5.72519i −0.206456 + 0.206456i −0.802759 0.596304i \(-0.796635\pi\)
0.596304 + 0.802759i \(0.296635\pi\)
\(770\) 0 0
\(771\) 37.4171i 1.34755i
\(772\) 0 0
\(773\) 43.6133i 1.56866i 0.620344 + 0.784330i \(0.286993\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(774\) 0 0
\(775\) −21.6593 18.8077i −0.778024 0.675594i
\(776\) 0 0
\(777\) −3.78334 3.78334i −0.135727 0.135727i
\(778\) 0 0
\(779\) −16.2526 −0.582310
\(780\) 0 0
\(781\) −19.9534 −0.713988
\(782\) 0 0
\(783\) −28.4003 28.4003i −1.01494 1.01494i
\(784\) 0 0
\(785\) 5.76576 6.18634i 0.205789 0.220800i
\(786\) 0 0
\(787\) 22.5183i 0.802692i 0.915926 + 0.401346i \(0.131458\pi\)
−0.915926 + 0.401346i \(0.868542\pi\)
\(788\) 0 0
\(789\) 5.04932i 0.179760i
\(790\) 0 0
\(791\) 4.45308 4.45308i 0.158333 0.158333i
\(792\) 0 0
\(793\) −12.5856 + 35.2450i −0.446928 + 1.25159i
\(794\) 0 0
\(795\) −2.53400 72.0109i −0.0898716 2.55396i
\(796\) 0 0
\(797\) −5.28800 5.28800i −0.187311 0.187311i 0.607222 0.794532i \(-0.292284\pi\)
−0.794532 + 0.607222i \(0.792284\pi\)
\(798\) 0 0
\(799\) −28.8315 + 28.8315i −1.01999 + 1.01999i
\(800\) 0 0
\(801\) −22.0812 + 22.0812i −0.780202 + 0.780202i
\(802\) 0 0
\(803\) 16.3160 16.3160i 0.575780 0.575780i
\(804\) 0 0
\(805\) 1.52607 + 1.42232i 0.0537868 + 0.0501301i
\(806\) 0 0
\(807\) 38.5211 38.5211i 1.35601 1.35601i
\(808\) 0 0
\(809\) 30.1040i 1.05840i 0.848497 + 0.529199i \(0.177508\pi\)
−0.848497 + 0.529199i \(0.822492\pi\)
\(810\) 0 0
\(811\) −22.5132 22.5132i −0.790547 0.790547i 0.191036 0.981583i \(-0.438815\pi\)
−0.981583 + 0.191036i \(0.938815\pi\)
\(812\) 0 0
\(813\) −28.6944 −1.00636
\(814\) 0 0
\(815\) −16.4313 + 0.578203i −0.575564 + 0.0202536i
\(816\) 0 0
\(817\) 34.1292i 1.19403i
\(818\) 0 0
\(819\) 4.41672 12.3687i 0.154333 0.432197i
\(820\) 0 0
\(821\) −23.1426 23.1426i −0.807682 0.807682i 0.176600 0.984283i \(-0.443490\pi\)
−0.984283 + 0.176600i \(0.943490\pi\)
\(822\) 0 0
\(823\) 2.54836 2.54836i 0.0888301 0.0888301i −0.661295 0.750126i \(-0.729993\pi\)
0.750126 + 0.661295i \(0.229993\pi\)
\(824\) 0 0
\(825\) −29.9691 + 2.11179i −1.04339 + 0.0735230i
\(826\) 0 0
\(827\) 7.98441i 0.277645i 0.990317 + 0.138823i \(0.0443318\pi\)
−0.990317 + 0.138823i \(0.955668\pi\)
\(828\) 0 0
\(829\) −32.6036 −1.13237 −0.566186 0.824278i \(-0.691581\pi\)
−0.566186 + 0.824278i \(0.691581\pi\)
\(830\) 0 0
\(831\) 10.3796i 0.360064i
\(832\) 0 0
\(833\) 27.4681 + 27.4681i 0.951713 + 0.951713i
\(834\) 0 0
\(835\) 0.642088 + 18.2468i 0.0222204 + 0.631456i
\(836\) 0 0
\(837\) −48.1816 −1.66540
\(838\) 0 0
\(839\) −17.7214 17.7214i −0.611810 0.611810i 0.331607 0.943418i \(-0.392409\pi\)
−0.943418 + 0.331607i \(0.892409\pi\)
\(840\) 0 0
\(841\) 6.12842 0.211325
\(842\) 0 0
\(843\) −85.3116 −2.93829
\(844\) 0 0
\(845\) 23.1276 + 17.6101i 0.795613 + 0.605806i
\(846\) 0 0
\(847\) −4.31959 −0.148423
\(848\) 0 0
\(849\) 79.2452 2.71969
\(850\) 0 0
\(851\) 3.03989 + 3.03989i 0.104206 + 0.104206i
\(852\) 0 0
\(853\) −40.3100 −1.38019 −0.690095 0.723719i \(-0.742431\pi\)
−0.690095 + 0.723719i \(0.742431\pi\)
\(854\) 0 0
\(855\) −41.4325 38.6156i −1.41696 1.32063i
\(856\) 0 0
\(857\) 10.2248 + 10.2248i 0.349274 + 0.349274i 0.859839 0.510565i \(-0.170564\pi\)
−0.510565 + 0.859839i \(0.670564\pi\)
\(858\) 0 0
\(859\) 30.9345i 1.05547i 0.849409 + 0.527735i \(0.176959\pi\)
−0.849409 + 0.527735i \(0.823041\pi\)
\(860\) 0 0
\(861\) −6.94411 −0.236655
\(862\) 0 0
\(863\) 4.54648i 0.154764i −0.997002 0.0773820i \(-0.975344\pi\)
0.997002 0.0773820i \(-0.0246561\pi\)
\(864\) 0 0
\(865\) −1.96438 + 2.10767i −0.0667910 + 0.0716630i
\(866\) 0 0
\(867\) 36.8596 36.8596i 1.25182 1.25182i
\(868\) 0 0
\(869\) −22.7647 22.7647i −0.772240 0.772240i
\(870\) 0 0
\(871\) −5.37596 + 15.0550i −0.182157 + 0.510118i
\(872\) 0 0
\(873\) 76.7647i 2.59809i
\(874\) 0 0
\(875\) −0.736180 6.95053i −0.0248874 0.234971i
\(876\) 0 0
\(877\) 52.1926 1.76242 0.881210 0.472725i \(-0.156730\pi\)
0.881210 + 0.472725i \(0.156730\pi\)
\(878\) 0 0
\(879\) −55.5530 55.5530i −1.87376 1.87376i
\(880\) 0 0
\(881\) 13.1925i 0.444466i −0.974994 0.222233i \(-0.928665\pi\)
0.974994 0.222233i \(-0.0713346\pi\)
\(882\) 0 0
\(883\) 8.85507 8.85507i 0.297997 0.297997i −0.542232 0.840229i \(-0.682421\pi\)
0.840229 + 0.542232i \(0.182421\pi\)
\(884\) 0 0
\(885\) 2.53196 + 71.9530i 0.0851109 + 2.41867i
\(886\) 0 0
\(887\) −8.82709 + 8.82709i −0.296385 + 0.296385i −0.839596 0.543211i \(-0.817208\pi\)
0.543211 + 0.839596i \(0.317208\pi\)
\(888\) 0 0
\(889\) −8.12628 + 8.12628i −0.272547 + 0.272547i
\(890\) 0 0
\(891\) −10.6840 + 10.6840i −0.357928 + 0.357928i
\(892\) 0 0
\(893\) 21.3238 + 21.3238i 0.713574 + 0.713574i
\(894\) 0 0
\(895\) 45.4134 1.59805i 1.51800 0.0534171i
\(896\) 0 0
\(897\) −5.37596 + 15.0550i −0.179498 + 0.502670i
\(898\) 0 0
\(899\) −19.4010 + 19.4010i −0.647061 + 0.647061i
\(900\) 0 0
\(901\) 63.7495i 2.12380i
\(902\) 0 0
\(903\) 14.5821i 0.485261i
\(904\) 0 0
\(905\) −1.64690 46.8013i −0.0547447 1.55573i
\(906\) 0 0
\(907\) 21.0591 + 21.0591i 0.699256 + 0.699256i 0.964250 0.264994i \(-0.0853699\pi\)
−0.264994 + 0.964250i \(0.585370\pi\)
\(908\) 0 0
\(909\) −2.13306 −0.0707491
\(910\) 0 0
\(911\) 13.2480 0.438925 0.219463 0.975621i \(-0.429570\pi\)
0.219463 + 0.975621i \(0.429570\pi\)
\(912\) 0 0
\(913\) −14.7632 14.7632i −0.488590 0.488590i
\(914\) 0 0
\(915\) 50.4438 + 47.0144i 1.66762 + 1.55425i
\(916\) 0 0
\(917\) 0.0291080i 0.000961230i
\(918\) 0 0
\(919\) 49.3292i 1.62722i −0.581412 0.813610i \(-0.697499\pi\)
0.581412 0.813610i \(-0.302501\pi\)
\(920\) 0 0
\(921\) −34.6696 + 34.6696i −1.14240 + 1.14240i
\(922\) 0 0
\(923\) 32.1471 15.2295i 1.05814 0.501284i
\(924\) 0 0
\(925\) −1.01245 14.3681i −0.0332893 0.472420i
\(926\) 0 0
\(927\) 25.4171 + 25.4171i 0.834807 + 0.834807i
\(928\) 0 0
\(929\) 8.16689 8.16689i 0.267947 0.267947i −0.560325 0.828273i \(-0.689324\pi\)
0.828273 + 0.560325i \(0.189324\pi\)
\(930\) 0 0
\(931\) 20.3154 20.3154i 0.665810 0.665810i
\(932\) 0 0
\(933\) 2.50279 2.50279i 0.0819378 0.0819378i
\(934\) 0 0
\(935\) −26.5638 + 0.934757i −0.868730 + 0.0305698i
\(936\) 0 0
\(937\) −29.6443 + 29.6443i −0.968438 + 0.968438i −0.999517 0.0310793i \(-0.990106\pi\)
0.0310793 + 0.999517i \(0.490106\pi\)
\(938\) 0 0
\(939\) 100.637i 3.28417i
\(940\) 0 0
\(941\) 25.5489 + 25.5489i 0.832871 + 0.832871i 0.987909 0.155038i \(-0.0495499\pi\)
−0.155038 + 0.987909i \(0.549550\pi\)
\(942\) 0 0
\(943\) 5.57954 0.181695
\(944\) 0 0
\(945\) −8.58808 8.00421i −0.279370 0.260377i
\(946\) 0 0
\(947\) 37.4564i 1.21717i 0.793489 + 0.608585i \(0.208262\pi\)
−0.793489 + 0.608585i \(0.791738\pi\)
\(948\) 0 0
\(949\) −13.8337 + 38.7401i −0.449060 + 1.25756i
\(950\) 0 0
\(951\) 11.8668 + 11.8668i 0.384807 + 0.384807i
\(952\) 0 0
\(953\) −1.64519 + 1.64519i −0.0532930 + 0.0532930i −0.733251 0.679958i \(-0.761998\pi\)
0.679958 + 0.733251i \(0.261998\pi\)
\(954\) 0 0
\(955\) −31.6874 + 1.11505i −1.02538 + 0.0360822i
\(956\) 0 0
\(957\) 28.7361i 0.928906i
\(958\) 0 0
\(959\) −1.86823 −0.0603283
\(960\) 0 0
\(961\) 1.91419i 0.0617482i
\(962\) 0 0
\(963\) 48.0177 + 48.0177i 1.54735 + 1.54735i
\(964\) 0 0
\(965\) −11.1426 + 0.392099i −0.358694 + 0.0126221i
\(966\) 0 0
\(967\) 15.1821 0.488223 0.244111 0.969747i \(-0.421504\pi\)
0.244111 + 0.969747i \(0.421504\pi\)
\(968\) 0 0
\(969\) −53.6752 53.6752i −1.72430 1.72430i
\(970\) 0 0
\(971\) −45.4645 −1.45902 −0.729512 0.683968i \(-0.760253\pi\)
−0.729512 + 0.683968i \(0.760253\pi\)
\(972\) 0 0
\(973\) −11.5014 −0.368719
\(974\) 0 0
\(975\) 46.6718 26.2763i 1.49469 0.841515i
\(976\) 0 0
\(977\) −3.47995 −0.111334 −0.0556668 0.998449i \(-0.517728\pi\)
−0.0556668 + 0.998449i \(0.517728\pi\)
\(978\) 0 0
\(979\) 10.8390 0.346416
\(980\) 0 0
\(981\) 61.5263 + 61.5263i 1.96438 + 1.96438i
\(982\) 0 0
\(983\) −30.8871 −0.985145 −0.492572 0.870271i \(-0.663943\pi\)
−0.492572 + 0.870271i \(0.663943\pi\)
\(984\) 0 0
\(985\) 33.4106 1.17569i 1.06455 0.0374605i
\(986\) 0 0
\(987\) 9.11084 + 9.11084i 0.290001 + 0.290001i
\(988\) 0 0
\(989\) 11.7166i 0.372566i
\(990\) 0 0
\(991\) 16.6535 0.529014 0.264507 0.964384i \(-0.414791\pi\)
0.264507 + 0.964384i \(0.414791\pi\)
\(992\) 0 0
\(993\) 50.7182i 1.60949i
\(994\) 0 0
\(995\) −30.5606 + 1.07540i −0.968836 + 0.0340924i
\(996\) 0 0
\(997\) 28.4391 28.4391i 0.900675 0.900675i −0.0948197 0.995494i \(-0.530227\pi\)
0.995494 + 0.0948197i \(0.0302275\pi\)
\(998\) 0 0
\(999\) −17.1072 17.1072i −0.541248 0.541248i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.bg.o.593.1 12
4.3 odd 2 520.2.w.e.73.6 yes 12
5.2 odd 4 1040.2.cd.o.177.1 12
13.5 odd 4 1040.2.cd.o.993.1 12
20.7 even 4 520.2.bh.e.177.6 yes 12
52.31 even 4 520.2.bh.e.473.6 yes 12
65.57 even 4 inner 1040.2.bg.o.577.1 12
260.187 odd 4 520.2.w.e.57.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.w.e.57.6 12 260.187 odd 4
520.2.w.e.73.6 yes 12 4.3 odd 2
520.2.bh.e.177.6 yes 12 20.7 even 4
520.2.bh.e.473.6 yes 12 52.31 even 4
1040.2.bg.o.577.1 12 65.57 even 4 inner
1040.2.bg.o.593.1 12 1.1 even 1 trivial
1040.2.cd.o.177.1 12 5.2 odd 4
1040.2.cd.o.993.1 12 13.5 odd 4