Properties

Label 520.2.k.a.441.2
Level $520$
Weight $2$
Character 520.441
Analytic conductor $4.152$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [520,2,Mod(441,520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("520.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 441.2
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 520.441
Dual form 520.2.k.a.441.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67513 q^{3} +1.00000i q^{5} -0.806063i q^{7} -0.193937 q^{9} -3.83146i q^{11} +(3.28726 + 1.48119i) q^{13} -1.67513i q^{15} +1.61213 q^{17} +0.869067i q^{19} +1.35026i q^{21} +5.28726 q^{23} -1.00000 q^{25} +5.35026 q^{27} +8.46898 q^{29} -10.4060i q^{31} +6.41819i q^{33} +0.806063 q^{35} +6.15633i q^{37} +(-5.50659 - 2.48119i) q^{39} -9.66291i q^{41} -0.974607 q^{43} -0.193937i q^{45} -2.41819i q^{47} +6.35026 q^{49} -2.70052 q^{51} +9.66291 q^{53} +3.83146 q^{55} -1.45580i q^{57} +2.48119i q^{59} -13.1187 q^{61} +0.156325i q^{63} +(-1.48119 + 3.28726i) q^{65} +0.156325i q^{67} -8.85685 q^{69} +1.64481i q^{71} -2.93207i q^{73} +1.67513 q^{75} -3.08840 q^{77} -3.53690 q^{79} -8.38058 q^{81} +15.6932i q^{83} +1.61213i q^{85} -14.1866 q^{87} +2.38787i q^{89} +(1.19394 - 2.64974i) q^{91} +17.4314i q^{93} -0.869067 q^{95} -7.08840i q^{97} +0.743059i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} + 8 q^{13} + 8 q^{17} + 20 q^{23} - 6 q^{25} + 12 q^{27} - 12 q^{29} + 4 q^{35} + 8 q^{39} - 36 q^{43} + 18 q^{49} + 24 q^{51} - 4 q^{53} - 8 q^{55} - 36 q^{61} + 2 q^{65} + 8 q^{69} + 20 q^{77}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.67513 −0.967137 −0.483569 0.875306i \(-0.660660\pi\)
−0.483569 + 0.875306i \(0.660660\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.806063i 0.304663i −0.988329 0.152332i \(-0.951322\pi\)
0.988329 0.152332i \(-0.0486782\pi\)
\(8\) 0 0
\(9\) −0.193937 −0.0646455
\(10\) 0 0
\(11\) 3.83146i 1.15523i −0.816310 0.577614i \(-0.803984\pi\)
0.816310 0.577614i \(-0.196016\pi\)
\(12\) 0 0
\(13\) 3.28726 + 1.48119i 0.911721 + 0.410809i
\(14\) 0 0
\(15\) 1.67513i 0.432517i
\(16\) 0 0
\(17\) 1.61213 0.390998 0.195499 0.980704i \(-0.437367\pi\)
0.195499 + 0.980704i \(0.437367\pi\)
\(18\) 0 0
\(19\) 0.869067i 0.199378i 0.995019 + 0.0996889i \(0.0317847\pi\)
−0.995019 + 0.0996889i \(0.968215\pi\)
\(20\) 0 0
\(21\) 1.35026i 0.294651i
\(22\) 0 0
\(23\) 5.28726 1.10247 0.551235 0.834350i \(-0.314157\pi\)
0.551235 + 0.834350i \(0.314157\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.35026 1.02966
\(28\) 0 0
\(29\) 8.46898 1.57265 0.786325 0.617814i \(-0.211981\pi\)
0.786325 + 0.617814i \(0.211981\pi\)
\(30\) 0 0
\(31\) 10.4060i 1.86897i −0.356006 0.934484i \(-0.615862\pi\)
0.356006 0.934484i \(-0.384138\pi\)
\(32\) 0 0
\(33\) 6.41819i 1.11726i
\(34\) 0 0
\(35\) 0.806063 0.136250
\(36\) 0 0
\(37\) 6.15633i 1.01209i 0.862506 + 0.506047i \(0.168894\pi\)
−0.862506 + 0.506047i \(0.831106\pi\)
\(38\) 0 0
\(39\) −5.50659 2.48119i −0.881760 0.397309i
\(40\) 0 0
\(41\) 9.66291i 1.50909i −0.656246 0.754547i \(-0.727857\pi\)
0.656246 0.754547i \(-0.272143\pi\)
\(42\) 0 0
\(43\) −0.974607 −0.148626 −0.0743131 0.997235i \(-0.523676\pi\)
−0.0743131 + 0.997235i \(0.523676\pi\)
\(44\) 0 0
\(45\) 0.193937i 0.0289104i
\(46\) 0 0
\(47\) 2.41819i 0.352729i −0.984325 0.176365i \(-0.943566\pi\)
0.984325 0.176365i \(-0.0564338\pi\)
\(48\) 0 0
\(49\) 6.35026 0.907180
\(50\) 0 0
\(51\) −2.70052 −0.378149
\(52\) 0 0
\(53\) 9.66291 1.32730 0.663652 0.748042i \(-0.269006\pi\)
0.663652 + 0.748042i \(0.269006\pi\)
\(54\) 0 0
\(55\) 3.83146 0.516633
\(56\) 0 0
\(57\) 1.45580i 0.192826i
\(58\) 0 0
\(59\) 2.48119i 0.323024i 0.986871 + 0.161512i \(0.0516370\pi\)
−0.986871 + 0.161512i \(0.948363\pi\)
\(60\) 0 0
\(61\) −13.1187 −1.67968 −0.839840 0.542835i \(-0.817351\pi\)
−0.839840 + 0.542835i \(0.817351\pi\)
\(62\) 0 0
\(63\) 0.156325i 0.0196951i
\(64\) 0 0
\(65\) −1.48119 + 3.28726i −0.183720 + 0.407734i
\(66\) 0 0
\(67\) 0.156325i 0.0190982i 0.999954 + 0.00954908i \(0.00303961\pi\)
−0.999954 + 0.00954908i \(0.996960\pi\)
\(68\) 0 0
\(69\) −8.85685 −1.06624
\(70\) 0 0
\(71\) 1.64481i 0.195203i 0.995226 + 0.0976017i \(0.0311171\pi\)
−0.995226 + 0.0976017i \(0.968883\pi\)
\(72\) 0 0
\(73\) 2.93207i 0.343173i −0.985169 0.171587i \(-0.945111\pi\)
0.985169 0.171587i \(-0.0548893\pi\)
\(74\) 0 0
\(75\) 1.67513 0.193427
\(76\) 0 0
\(77\) −3.08840 −0.351955
\(78\) 0 0
\(79\) −3.53690 −0.397933 −0.198966 0.980006i \(-0.563758\pi\)
−0.198966 + 0.980006i \(0.563758\pi\)
\(80\) 0 0
\(81\) −8.38058 −0.931175
\(82\) 0 0
\(83\) 15.6932i 1.72256i 0.508134 + 0.861278i \(0.330335\pi\)
−0.508134 + 0.861278i \(0.669665\pi\)
\(84\) 0 0
\(85\) 1.61213i 0.174860i
\(86\) 0 0
\(87\) −14.1866 −1.52097
\(88\) 0 0
\(89\) 2.38787i 0.253114i 0.991959 + 0.126557i \(0.0403927\pi\)
−0.991959 + 0.126557i \(0.959607\pi\)
\(90\) 0 0
\(91\) 1.19394 2.64974i 0.125159 0.277768i
\(92\) 0 0
\(93\) 17.4314i 1.80755i
\(94\) 0 0
\(95\) −0.869067 −0.0891644
\(96\) 0 0
\(97\) 7.08840i 0.719718i −0.933007 0.359859i \(-0.882825\pi\)
0.933007 0.359859i \(-0.117175\pi\)
\(98\) 0 0
\(99\) 0.743059i 0.0746803i
\(100\) 0 0
\(101\) 3.42548 0.340848 0.170424 0.985371i \(-0.445486\pi\)
0.170424 + 0.985371i \(0.445486\pi\)
\(102\) 0 0
\(103\) −13.3380 −1.31424 −0.657118 0.753788i \(-0.728225\pi\)
−0.657118 + 0.753788i \(0.728225\pi\)
\(104\) 0 0
\(105\) −1.35026 −0.131772
\(106\) 0 0
\(107\) −5.93700 −0.573951 −0.286976 0.957938i \(-0.592650\pi\)
−0.286976 + 0.957938i \(0.592650\pi\)
\(108\) 0 0
\(109\) 0.387873i 0.0371515i −0.999827 0.0185758i \(-0.994087\pi\)
0.999827 0.0185758i \(-0.00591319\pi\)
\(110\) 0 0
\(111\) 10.3127i 0.978833i
\(112\) 0 0
\(113\) −8.77575 −0.825553 −0.412776 0.910832i \(-0.635441\pi\)
−0.412776 + 0.910832i \(0.635441\pi\)
\(114\) 0 0
\(115\) 5.28726i 0.493039i
\(116\) 0 0
\(117\) −0.637519 0.287258i −0.0589387 0.0265570i
\(118\) 0 0
\(119\) 1.29948i 0.119123i
\(120\) 0 0
\(121\) −3.68006 −0.334550
\(122\) 0 0
\(123\) 16.1866i 1.45950i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 5.48849 0.487025 0.243512 0.969898i \(-0.421700\pi\)
0.243512 + 0.969898i \(0.421700\pi\)
\(128\) 0 0
\(129\) 1.63259 0.143742
\(130\) 0 0
\(131\) 12.3127 1.07576 0.537881 0.843021i \(-0.319225\pi\)
0.537881 + 0.843021i \(0.319225\pi\)
\(132\) 0 0
\(133\) 0.700523 0.0607431
\(134\) 0 0
\(135\) 5.35026i 0.460477i
\(136\) 0 0
\(137\) 3.79877i 0.324551i −0.986746 0.162275i \(-0.948117\pi\)
0.986746 0.162275i \(-0.0518833\pi\)
\(138\) 0 0
\(139\) −13.0884 −1.11014 −0.555072 0.831803i \(-0.687309\pi\)
−0.555072 + 0.831803i \(0.687309\pi\)
\(140\) 0 0
\(141\) 4.05079i 0.341138i
\(142\) 0 0
\(143\) 5.67513 12.5950i 0.474578 1.05325i
\(144\) 0 0
\(145\) 8.46898i 0.703310i
\(146\) 0 0
\(147\) −10.6375 −0.877368
\(148\) 0 0
\(149\) 18.3127i 1.50023i −0.661307 0.750115i \(-0.729998\pi\)
0.661307 0.750115i \(-0.270002\pi\)
\(150\) 0 0
\(151\) 5.64481i 0.459368i 0.973265 + 0.229684i \(0.0737693\pi\)
−0.973265 + 0.229684i \(0.926231\pi\)
\(152\) 0 0
\(153\) −0.312650 −0.0252763
\(154\) 0 0
\(155\) 10.4060 0.835828
\(156\) 0 0
\(157\) 7.35026 0.586615 0.293307 0.956018i \(-0.405244\pi\)
0.293307 + 0.956018i \(0.405244\pi\)
\(158\) 0 0
\(159\) −16.1866 −1.28368
\(160\) 0 0
\(161\) 4.26187i 0.335882i
\(162\) 0 0
\(163\) 9.43136i 0.738721i 0.929286 + 0.369361i \(0.120423\pi\)
−0.929286 + 0.369361i \(0.879577\pi\)
\(164\) 0 0
\(165\) −6.41819 −0.499655
\(166\) 0 0
\(167\) 14.8568i 1.14966i −0.818274 0.574829i \(-0.805069\pi\)
0.818274 0.574829i \(-0.194931\pi\)
\(168\) 0 0
\(169\) 8.61213 + 9.73813i 0.662471 + 0.749087i
\(170\) 0 0
\(171\) 0.168544i 0.0128889i
\(172\) 0 0
\(173\) 11.2750 0.857225 0.428613 0.903488i \(-0.359003\pi\)
0.428613 + 0.903488i \(0.359003\pi\)
\(174\) 0 0
\(175\) 0.806063i 0.0609327i
\(176\) 0 0
\(177\) 4.15633i 0.312409i
\(178\) 0 0
\(179\) 23.1998 1.73404 0.867018 0.498277i \(-0.166034\pi\)
0.867018 + 0.498277i \(0.166034\pi\)
\(180\) 0 0
\(181\) −22.3938 −1.66451 −0.832257 0.554390i \(-0.812952\pi\)
−0.832257 + 0.554390i \(0.812952\pi\)
\(182\) 0 0
\(183\) 21.9756 1.62448
\(184\) 0 0
\(185\) −6.15633 −0.452622
\(186\) 0 0
\(187\) 6.17679i 0.451692i
\(188\) 0 0
\(189\) 4.31265i 0.313699i
\(190\) 0 0
\(191\) −1.55149 −0.112262 −0.0561310 0.998423i \(-0.517876\pi\)
−0.0561310 + 0.998423i \(0.517876\pi\)
\(192\) 0 0
\(193\) 4.57452i 0.329281i 0.986354 + 0.164640i \(0.0526464\pi\)
−0.986354 + 0.164640i \(0.947354\pi\)
\(194\) 0 0
\(195\) 2.48119 5.50659i 0.177682 0.394335i
\(196\) 0 0
\(197\) 17.5125i 1.24771i −0.781539 0.623856i \(-0.785565\pi\)
0.781539 0.623856i \(-0.214435\pi\)
\(198\) 0 0
\(199\) −9.79877 −0.694616 −0.347308 0.937751i \(-0.612904\pi\)
−0.347308 + 0.937751i \(0.612904\pi\)
\(200\) 0 0
\(201\) 0.261865i 0.0184705i
\(202\) 0 0
\(203\) 6.82653i 0.479129i
\(204\) 0 0
\(205\) 9.66291 0.674887
\(206\) 0 0
\(207\) −1.02539 −0.0712697
\(208\) 0 0
\(209\) 3.32979 0.230327
\(210\) 0 0
\(211\) 15.1998 1.04640 0.523199 0.852210i \(-0.324738\pi\)
0.523199 + 0.852210i \(0.324738\pi\)
\(212\) 0 0
\(213\) 2.75528i 0.188789i
\(214\) 0 0
\(215\) 0.974607i 0.0664677i
\(216\) 0 0
\(217\) −8.38787 −0.569406
\(218\) 0 0
\(219\) 4.91160i 0.331895i
\(220\) 0 0
\(221\) 5.29948 + 2.38787i 0.356481 + 0.160626i
\(222\) 0 0
\(223\) 16.2823i 1.09035i 0.838324 + 0.545173i \(0.183536\pi\)
−0.838324 + 0.545173i \(0.816464\pi\)
\(224\) 0 0
\(225\) 0.193937 0.0129291
\(226\) 0 0
\(227\) 23.1695i 1.53781i 0.639361 + 0.768907i \(0.279199\pi\)
−0.639361 + 0.768907i \(0.720801\pi\)
\(228\) 0 0
\(229\) 0.126008i 0.00832684i 0.999991 + 0.00416342i \(0.00132526\pi\)
−0.999991 + 0.00416342i \(0.998675\pi\)
\(230\) 0 0
\(231\) 5.17347 0.340389
\(232\) 0 0
\(233\) 8.91160 0.583819 0.291909 0.956446i \(-0.405709\pi\)
0.291909 + 0.956446i \(0.405709\pi\)
\(234\) 0 0
\(235\) 2.41819 0.157745
\(236\) 0 0
\(237\) 5.92478 0.384856
\(238\) 0 0
\(239\) 12.1685i 0.787118i 0.919299 + 0.393559i \(0.128756\pi\)
−0.919299 + 0.393559i \(0.871244\pi\)
\(240\) 0 0
\(241\) 17.9756i 1.15791i 0.815360 + 0.578954i \(0.196539\pi\)
−0.815360 + 0.578954i \(0.803461\pi\)
\(242\) 0 0
\(243\) −2.01222 −0.129084
\(244\) 0 0
\(245\) 6.35026i 0.405703i
\(246\) 0 0
\(247\) −1.28726 + 2.85685i −0.0819062 + 0.181777i
\(248\) 0 0
\(249\) 26.2882i 1.66595i
\(250\) 0 0
\(251\) −2.51388 −0.158675 −0.0793374 0.996848i \(-0.525280\pi\)
−0.0793374 + 0.996848i \(0.525280\pi\)
\(252\) 0 0
\(253\) 20.2579i 1.27360i
\(254\) 0 0
\(255\) 2.70052i 0.169113i
\(256\) 0 0
\(257\) 13.2243 0.824906 0.412453 0.910979i \(-0.364672\pi\)
0.412453 + 0.910979i \(0.364672\pi\)
\(258\) 0 0
\(259\) 4.96239 0.308348
\(260\) 0 0
\(261\) −1.64244 −0.101665
\(262\) 0 0
\(263\) −1.17584 −0.0725053 −0.0362526 0.999343i \(-0.511542\pi\)
−0.0362526 + 0.999343i \(0.511542\pi\)
\(264\) 0 0
\(265\) 9.66291i 0.593588i
\(266\) 0 0
\(267\) 4.00000i 0.244796i
\(268\) 0 0
\(269\) −13.3503 −0.813980 −0.406990 0.913433i \(-0.633422\pi\)
−0.406990 + 0.913433i \(0.633422\pi\)
\(270\) 0 0
\(271\) 32.0689i 1.94805i −0.226449 0.974023i \(-0.572712\pi\)
0.226449 0.974023i \(-0.427288\pi\)
\(272\) 0 0
\(273\) −2.00000 + 4.43866i −0.121046 + 0.268640i
\(274\) 0 0
\(275\) 3.83146i 0.231045i
\(276\) 0 0
\(277\) 2.18664 0.131383 0.0656913 0.997840i \(-0.479075\pi\)
0.0656913 + 0.997840i \(0.479075\pi\)
\(278\) 0 0
\(279\) 2.01810i 0.120820i
\(280\) 0 0
\(281\) 1.87399i 0.111793i −0.998437 0.0558965i \(-0.982198\pi\)
0.998437 0.0558965i \(-0.0178017\pi\)
\(282\) 0 0
\(283\) −0.300432 −0.0178588 −0.00892940 0.999960i \(-0.502842\pi\)
−0.00892940 + 0.999960i \(0.502842\pi\)
\(284\) 0 0
\(285\) 1.45580 0.0862342
\(286\) 0 0
\(287\) −7.78892 −0.459765
\(288\) 0 0
\(289\) −14.4010 −0.847120
\(290\) 0 0
\(291\) 11.8740i 0.696066i
\(292\) 0 0
\(293\) 22.6312i 1.32213i −0.750330 0.661064i \(-0.770105\pi\)
0.750330 0.661064i \(-0.229895\pi\)
\(294\) 0 0
\(295\) −2.48119 −0.144461
\(296\) 0 0
\(297\) 20.4993i 1.18949i
\(298\) 0 0
\(299\) 17.3806 + 7.83146i 1.00514 + 0.452905i
\(300\) 0 0
\(301\) 0.785595i 0.0452810i
\(302\) 0 0
\(303\) −5.73813 −0.329647
\(304\) 0 0
\(305\) 13.1187i 0.751175i
\(306\) 0 0
\(307\) 28.3185i 1.61622i 0.589029 + 0.808112i \(0.299510\pi\)
−0.589029 + 0.808112i \(0.700490\pi\)
\(308\) 0 0
\(309\) 22.3430 1.27105
\(310\) 0 0
\(311\) 33.3766 1.89261 0.946307 0.323270i \(-0.104782\pi\)
0.946307 + 0.323270i \(0.104782\pi\)
\(312\) 0 0
\(313\) −4.62530 −0.261437 −0.130719 0.991419i \(-0.541728\pi\)
−0.130719 + 0.991419i \(0.541728\pi\)
\(314\) 0 0
\(315\) −0.156325 −0.00880793
\(316\) 0 0
\(317\) 31.8700i 1.79000i −0.446067 0.894999i \(-0.647176\pi\)
0.446067 0.894999i \(-0.352824\pi\)
\(318\) 0 0
\(319\) 32.4485i 1.81677i
\(320\) 0 0
\(321\) 9.94525 0.555089
\(322\) 0 0
\(323\) 1.40105i 0.0779563i
\(324\) 0 0
\(325\) −3.28726 1.48119i −0.182344 0.0821619i
\(326\) 0 0
\(327\) 0.649738i 0.0359306i
\(328\) 0 0
\(329\) −1.94921 −0.107464
\(330\) 0 0
\(331\) 22.8691i 1.25700i 0.777811 + 0.628499i \(0.216330\pi\)
−0.777811 + 0.628499i \(0.783670\pi\)
\(332\) 0 0
\(333\) 1.19394i 0.0654273i
\(334\) 0 0
\(335\) −0.156325 −0.00854096
\(336\) 0 0
\(337\) 26.0870 1.42105 0.710524 0.703673i \(-0.248458\pi\)
0.710524 + 0.703673i \(0.248458\pi\)
\(338\) 0 0
\(339\) 14.7005 0.798423
\(340\) 0 0
\(341\) −39.8700 −2.15908
\(342\) 0 0
\(343\) 10.7612i 0.581048i
\(344\) 0 0
\(345\) 8.85685i 0.476837i
\(346\) 0 0
\(347\) −7.93700 −0.426080 −0.213040 0.977043i \(-0.568337\pi\)
−0.213040 + 0.977043i \(0.568337\pi\)
\(348\) 0 0
\(349\) 21.2144i 1.13558i 0.823173 + 0.567791i \(0.192202\pi\)
−0.823173 + 0.567791i \(0.807798\pi\)
\(350\) 0 0
\(351\) 17.5877 + 7.92478i 0.938761 + 0.422993i
\(352\) 0 0
\(353\) 27.2447i 1.45009i 0.688701 + 0.725045i \(0.258181\pi\)
−0.688701 + 0.725045i \(0.741819\pi\)
\(354\) 0 0
\(355\) −1.64481 −0.0872976
\(356\) 0 0
\(357\) 2.17679i 0.115208i
\(358\) 0 0
\(359\) 23.7562i 1.25381i 0.779097 + 0.626903i \(0.215678\pi\)
−0.779097 + 0.626903i \(0.784322\pi\)
\(360\) 0 0
\(361\) 18.2447 0.960249
\(362\) 0 0
\(363\) 6.16457 0.323556
\(364\) 0 0
\(365\) 2.93207 0.153472
\(366\) 0 0
\(367\) −36.2252 −1.89094 −0.945470 0.325708i \(-0.894397\pi\)
−0.945470 + 0.325708i \(0.894397\pi\)
\(368\) 0 0
\(369\) 1.87399i 0.0975561i
\(370\) 0 0
\(371\) 7.78892i 0.404381i
\(372\) 0 0
\(373\) −8.64974 −0.447866 −0.223933 0.974604i \(-0.571890\pi\)
−0.223933 + 0.974604i \(0.571890\pi\)
\(374\) 0 0
\(375\) 1.67513i 0.0865034i
\(376\) 0 0
\(377\) 27.8397 + 12.5442i 1.43382 + 0.646059i
\(378\) 0 0
\(379\) 21.5696i 1.10796i −0.832531 0.553978i \(-0.813109\pi\)
0.832531 0.553978i \(-0.186891\pi\)
\(380\) 0 0
\(381\) −9.19394 −0.471020
\(382\) 0 0
\(383\) 3.00729i 0.153666i 0.997044 + 0.0768328i \(0.0244808\pi\)
−0.997044 + 0.0768328i \(0.975519\pi\)
\(384\) 0 0
\(385\) 3.08840i 0.157399i
\(386\) 0 0
\(387\) 0.189012 0.00960802
\(388\) 0 0
\(389\) 1.37470 0.0697000 0.0348500 0.999393i \(-0.488905\pi\)
0.0348500 + 0.999393i \(0.488905\pi\)
\(390\) 0 0
\(391\) 8.52373 0.431064
\(392\) 0 0
\(393\) −20.6253 −1.04041
\(394\) 0 0
\(395\) 3.53690i 0.177961i
\(396\) 0 0
\(397\) 36.4544i 1.82959i 0.403915 + 0.914797i \(0.367649\pi\)
−0.403915 + 0.914797i \(0.632351\pi\)
\(398\) 0 0
\(399\) −1.17347 −0.0587469
\(400\) 0 0
\(401\) 5.02776i 0.251074i −0.992089 0.125537i \(-0.959935\pi\)
0.992089 0.125537i \(-0.0400655\pi\)
\(402\) 0 0
\(403\) 15.4133 34.2071i 0.767789 1.70398i
\(404\) 0 0
\(405\) 8.38058i 0.416434i
\(406\) 0 0
\(407\) 23.5877 1.16920
\(408\) 0 0
\(409\) 15.1128i 0.747282i −0.927573 0.373641i \(-0.878109\pi\)
0.927573 0.373641i \(-0.121891\pi\)
\(410\) 0 0
\(411\) 6.36344i 0.313885i
\(412\) 0 0
\(413\) 2.00000 0.0984136
\(414\) 0 0
\(415\) −15.6932 −0.770350
\(416\) 0 0
\(417\) 21.9248 1.07366
\(418\) 0 0
\(419\) −0.589104 −0.0287796 −0.0143898 0.999896i \(-0.504581\pi\)
−0.0143898 + 0.999896i \(0.504581\pi\)
\(420\) 0 0
\(421\) 36.4894i 1.77839i −0.457532 0.889193i \(-0.651266\pi\)
0.457532 0.889193i \(-0.348734\pi\)
\(422\) 0 0
\(423\) 0.468976i 0.0228024i
\(424\) 0 0
\(425\) −1.61213 −0.0781996
\(426\) 0 0
\(427\) 10.5745i 0.511737i
\(428\) 0 0
\(429\) −9.50659 + 21.0982i −0.458982 + 1.01863i
\(430\) 0 0
\(431\) 19.8070i 0.954071i −0.878884 0.477035i \(-0.841711\pi\)
0.878884 0.477035i \(-0.158289\pi\)
\(432\) 0 0
\(433\) −20.5501 −0.987574 −0.493787 0.869583i \(-0.664388\pi\)
−0.493787 + 0.869583i \(0.664388\pi\)
\(434\) 0 0
\(435\) 14.1866i 0.680197i
\(436\) 0 0
\(437\) 4.59498i 0.219808i
\(438\) 0 0
\(439\) −16.0362 −0.765366 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(440\) 0 0
\(441\) −1.23155 −0.0586451
\(442\) 0 0
\(443\) −39.2384 −1.86427 −0.932136 0.362109i \(-0.882057\pi\)
−0.932136 + 0.362109i \(0.882057\pi\)
\(444\) 0 0
\(445\) −2.38787 −0.113196
\(446\) 0 0
\(447\) 30.6761i 1.45093i
\(448\) 0 0
\(449\) 35.1246i 1.65763i 0.559521 + 0.828816i \(0.310985\pi\)
−0.559521 + 0.828816i \(0.689015\pi\)
\(450\) 0 0
\(451\) −37.0230 −1.74335
\(452\) 0 0
\(453\) 9.45580i 0.444272i
\(454\) 0 0
\(455\) 2.64974 + 1.19394i 0.124222 + 0.0559726i
\(456\) 0 0
\(457\) 29.3865i 1.37464i 0.726354 + 0.687320i \(0.241213\pi\)
−0.726354 + 0.687320i \(0.758787\pi\)
\(458\) 0 0
\(459\) 8.62530 0.402595
\(460\) 0 0
\(461\) 19.1998i 0.894225i 0.894478 + 0.447112i \(0.147548\pi\)
−0.894478 + 0.447112i \(0.852452\pi\)
\(462\) 0 0
\(463\) 39.5183i 1.83657i −0.395916 0.918287i \(-0.629573\pi\)
0.395916 0.918287i \(-0.370427\pi\)
\(464\) 0 0
\(465\) −17.4314 −0.808360
\(466\) 0 0
\(467\) −16.4119 −0.759450 −0.379725 0.925099i \(-0.623981\pi\)
−0.379725 + 0.925099i \(0.623981\pi\)
\(468\) 0 0
\(469\) 0.126008 0.00581851
\(470\) 0 0
\(471\) −12.3127 −0.567337
\(472\) 0 0
\(473\) 3.73417i 0.171697i
\(474\) 0 0
\(475\) 0.869067i 0.0398755i
\(476\) 0 0
\(477\) −1.87399 −0.0858042
\(478\) 0 0
\(479\) 23.5042i 1.07394i 0.843603 + 0.536968i \(0.180430\pi\)
−0.843603 + 0.536968i \(0.819570\pi\)
\(480\) 0 0
\(481\) −9.11871 + 20.2374i −0.415778 + 0.922747i
\(482\) 0 0
\(483\) 7.13918i 0.324844i
\(484\) 0 0
\(485\) 7.08840 0.321868
\(486\) 0 0
\(487\) 4.49341i 0.203616i 0.994804 + 0.101808i \(0.0324627\pi\)
−0.994804 + 0.101808i \(0.967537\pi\)
\(488\) 0 0
\(489\) 15.7988i 0.714445i
\(490\) 0 0
\(491\) −14.7005 −0.663425 −0.331713 0.943380i \(-0.607626\pi\)
−0.331713 + 0.943380i \(0.607626\pi\)
\(492\) 0 0
\(493\) 13.6531 0.614903
\(494\) 0 0
\(495\) −0.743059 −0.0333980
\(496\) 0 0
\(497\) 1.32582 0.0594713
\(498\) 0 0
\(499\) 9.89683i 0.443043i 0.975155 + 0.221521i \(0.0711023\pi\)
−0.975155 + 0.221521i \(0.928898\pi\)
\(500\) 0 0
\(501\) 24.8872i 1.11188i
\(502\) 0 0
\(503\) −1.26282 −0.0563064 −0.0281532 0.999604i \(-0.508963\pi\)
−0.0281532 + 0.999604i \(0.508963\pi\)
\(504\) 0 0
\(505\) 3.42548i 0.152432i
\(506\) 0 0
\(507\) −14.4264 16.3127i −0.640701 0.724470i
\(508\) 0 0
\(509\) 22.5256i 0.998431i 0.866478 + 0.499216i \(0.166378\pi\)
−0.866478 + 0.499216i \(0.833622\pi\)
\(510\) 0 0
\(511\) −2.36344 −0.104552
\(512\) 0 0
\(513\) 4.64974i 0.205291i
\(514\) 0 0
\(515\) 13.3380i 0.587744i
\(516\) 0 0
\(517\) −9.26519 −0.407483
\(518\) 0 0
\(519\) −18.8872 −0.829055
\(520\) 0 0
\(521\) −18.8568 −0.826134 −0.413067 0.910701i \(-0.635542\pi\)
−0.413067 + 0.910701i \(0.635542\pi\)
\(522\) 0 0
\(523\) −32.5985 −1.42543 −0.712716 0.701452i \(-0.752535\pi\)
−0.712716 + 0.701452i \(0.752535\pi\)
\(524\) 0 0
\(525\) 1.35026i 0.0589303i
\(526\) 0 0
\(527\) 16.7757i 0.730763i
\(528\) 0 0
\(529\) 4.95509 0.215439
\(530\) 0 0
\(531\) 0.481194i 0.0208821i
\(532\) 0 0
\(533\) 14.3127 31.7645i 0.619950 1.37587i
\(534\) 0 0
\(535\) 5.93700i 0.256679i
\(536\) 0 0
\(537\) −38.8627 −1.67705
\(538\) 0 0
\(539\) 24.3307i 1.04800i
\(540\) 0 0
\(541\) 32.0362i 1.37734i 0.725073 + 0.688672i \(0.241806\pi\)
−0.725073 + 0.688672i \(0.758194\pi\)
\(542\) 0 0
\(543\) 37.5125 1.60981
\(544\) 0 0
\(545\) 0.387873 0.0166147
\(546\) 0 0
\(547\) −5.41327 −0.231455 −0.115727 0.993281i \(-0.536920\pi\)
−0.115727 + 0.993281i \(0.536920\pi\)
\(548\) 0 0
\(549\) 2.54420 0.108584
\(550\) 0 0
\(551\) 7.36011i 0.313551i
\(552\) 0 0
\(553\) 2.85097i 0.121236i
\(554\) 0 0
\(555\) 10.3127 0.437748
\(556\) 0 0
\(557\) 24.7064i 1.04684i 0.852074 + 0.523422i \(0.175345\pi\)
−0.852074 + 0.523422i \(0.824655\pi\)
\(558\) 0 0
\(559\) −3.20379 1.44358i −0.135506 0.0610571i
\(560\) 0 0
\(561\) 10.3469i 0.436848i
\(562\) 0 0
\(563\) −33.1974 −1.39911 −0.699553 0.714581i \(-0.746617\pi\)
−0.699553 + 0.714581i \(0.746617\pi\)
\(564\) 0 0
\(565\) 8.77575i 0.369198i
\(566\) 0 0
\(567\) 6.75528i 0.283695i
\(568\) 0 0
\(569\) −34.3693 −1.44084 −0.720418 0.693540i \(-0.756050\pi\)
−0.720418 + 0.693540i \(0.756050\pi\)
\(570\) 0 0
\(571\) 24.3127 1.01745 0.508726 0.860928i \(-0.330116\pi\)
0.508726 + 0.860928i \(0.330116\pi\)
\(572\) 0 0
\(573\) 2.59895 0.108573
\(574\) 0 0
\(575\) −5.28726 −0.220494
\(576\) 0 0
\(577\) 26.6312i 1.10867i 0.832293 + 0.554335i \(0.187027\pi\)
−0.832293 + 0.554335i \(0.812973\pi\)
\(578\) 0 0
\(579\) 7.66291i 0.318460i
\(580\) 0 0
\(581\) 12.6497 0.524800
\(582\) 0 0
\(583\) 37.0230i 1.53334i
\(584\) 0 0
\(585\) 0.287258 0.637519i 0.0118766 0.0263582i
\(586\) 0 0
\(587\) 18.8813i 0.779314i −0.920960 0.389657i \(-0.872594\pi\)
0.920960 0.389657i \(-0.127406\pi\)
\(588\) 0 0
\(589\) 9.04349 0.372631
\(590\) 0 0
\(591\) 29.3357i 1.20671i
\(592\) 0 0
\(593\) 36.4894i 1.49844i −0.662320 0.749221i \(-0.730428\pi\)
0.662320 0.749221i \(-0.269572\pi\)
\(594\) 0 0
\(595\) 1.29948 0.0532733
\(596\) 0 0
\(597\) 16.4142 0.671789
\(598\) 0 0
\(599\) −23.3503 −0.954066 −0.477033 0.878885i \(-0.658288\pi\)
−0.477033 + 0.878885i \(0.658288\pi\)
\(600\) 0 0
\(601\) 18.3733 0.749462 0.374731 0.927134i \(-0.377735\pi\)
0.374731 + 0.927134i \(0.377735\pi\)
\(602\) 0 0
\(603\) 0.0303172i 0.00123461i
\(604\) 0 0
\(605\) 3.68006i 0.149616i
\(606\) 0 0
\(607\) 4.48707 0.182125 0.0910624 0.995845i \(-0.470974\pi\)
0.0910624 + 0.995845i \(0.470974\pi\)
\(608\) 0 0
\(609\) 11.4353i 0.463383i
\(610\) 0 0
\(611\) 3.58181 7.94921i 0.144905 0.321591i
\(612\) 0 0
\(613\) 38.3536i 1.54909i 0.632521 + 0.774543i \(0.282020\pi\)
−0.632521 + 0.774543i \(0.717980\pi\)
\(614\) 0 0
\(615\) −16.1866 −0.652708
\(616\) 0 0
\(617\) 17.1998i 0.692439i −0.938154 0.346219i \(-0.887465\pi\)
0.938154 0.346219i \(-0.112535\pi\)
\(618\) 0 0
\(619\) 16.5926i 0.666913i −0.942765 0.333457i \(-0.891785\pi\)
0.942765 0.333457i \(-0.108215\pi\)
\(620\) 0 0
\(621\) 28.2882 1.13517
\(622\) 0 0
\(623\) 1.92478 0.0771146
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −5.57784 −0.222757
\(628\) 0 0
\(629\) 9.92478i 0.395727i
\(630\) 0 0
\(631\) 7.39280i 0.294303i −0.989114 0.147151i \(-0.952990\pi\)
0.989114 0.147151i \(-0.0470104\pi\)
\(632\) 0 0
\(633\) −25.4617 −1.01201
\(634\) 0 0
\(635\) 5.48849i 0.217804i
\(636\) 0 0
\(637\) 20.8749 + 9.40597i 0.827096 + 0.372678i
\(638\) 0 0
\(639\) 0.318990i 0.0126190i
\(640\) 0 0
\(641\) 25.9511 1.02501 0.512504 0.858685i \(-0.328718\pi\)
0.512504 + 0.858685i \(0.328718\pi\)
\(642\) 0 0
\(643\) 12.6439i 0.498625i 0.968423 + 0.249313i \(0.0802046\pi\)
−0.968423 + 0.249313i \(0.919795\pi\)
\(644\) 0 0
\(645\) 1.63259i 0.0642834i
\(646\) 0 0
\(647\) 22.7391 0.893966 0.446983 0.894542i \(-0.352498\pi\)
0.446983 + 0.894542i \(0.352498\pi\)
\(648\) 0 0
\(649\) 9.50659 0.373166
\(650\) 0 0
\(651\) 14.0508 0.550694
\(652\) 0 0
\(653\) −16.4387 −0.643294 −0.321647 0.946860i \(-0.604237\pi\)
−0.321647 + 0.946860i \(0.604237\pi\)
\(654\) 0 0
\(655\) 12.3127i 0.481095i
\(656\) 0 0
\(657\) 0.568636i 0.0221846i
\(658\) 0 0
\(659\) 37.4372 1.45835 0.729174 0.684328i \(-0.239904\pi\)
0.729174 + 0.684328i \(0.239904\pi\)
\(660\) 0 0
\(661\) 18.6253i 0.724440i 0.932093 + 0.362220i \(0.117981\pi\)
−0.932093 + 0.362220i \(0.882019\pi\)
\(662\) 0 0
\(663\) −8.87732 4.00000i −0.344766 0.155347i
\(664\) 0 0
\(665\) 0.700523i 0.0271651i
\(666\) 0 0
\(667\) 44.7777 1.73380
\(668\) 0 0
\(669\) 27.2750i 1.05451i
\(670\) 0 0
\(671\) 50.2638i 1.94041i
\(672\) 0 0
\(673\) 24.4749 0.943436 0.471718 0.881749i \(-0.343634\pi\)
0.471718 + 0.881749i \(0.343634\pi\)
\(674\) 0 0
\(675\) −5.35026 −0.205932
\(676\) 0 0
\(677\) −25.9756 −0.998322 −0.499161 0.866509i \(-0.666358\pi\)
−0.499161 + 0.866509i \(0.666358\pi\)
\(678\) 0 0
\(679\) −5.71370 −0.219272
\(680\) 0 0
\(681\) 38.8119i 1.48728i
\(682\) 0 0
\(683\) 2.08110i 0.0796312i −0.999207 0.0398156i \(-0.987323\pi\)
0.999207 0.0398156i \(-0.0126770\pi\)
\(684\) 0 0
\(685\) 3.79877 0.145144
\(686\) 0 0
\(687\) 0.211080i 0.00805320i
\(688\) 0 0
\(689\) 31.7645 + 14.3127i 1.21013 + 0.545269i
\(690\) 0 0
\(691\) 27.6204i 1.05073i −0.850877 0.525364i \(-0.823929\pi\)
0.850877 0.525364i \(-0.176071\pi\)
\(692\) 0 0
\(693\) 0.598953 0.0227523
\(694\) 0 0
\(695\) 13.0884i 0.496471i
\(696\) 0 0
\(697\) 15.5778i 0.590053i
\(698\) 0 0
\(699\) −14.9281 −0.564633
\(700\) 0 0
\(701\) 17.8251 0.673245 0.336623 0.941640i \(-0.390715\pi\)
0.336623 + 0.941640i \(0.390715\pi\)
\(702\) 0 0
\(703\) −5.35026 −0.201789
\(704\) 0 0
\(705\) −4.05079 −0.152561
\(706\) 0 0
\(707\) 2.76116i 0.103844i
\(708\) 0 0
\(709\) 30.9887i 1.16381i −0.813258 0.581903i \(-0.802308\pi\)
0.813258 0.581903i \(-0.197692\pi\)
\(710\) 0 0
\(711\) 0.685935 0.0257246
\(712\) 0 0
\(713\) 55.0191i 2.06048i
\(714\) 0 0
\(715\) 12.5950 + 5.67513i 0.471026 + 0.212238i
\(716\) 0 0
\(717\) 20.3839i 0.761251i
\(718\) 0 0
\(719\) 24.3127 0.906709 0.453354 0.891330i \(-0.350227\pi\)
0.453354 + 0.891330i \(0.350227\pi\)
\(720\) 0 0
\(721\) 10.7513i 0.400400i
\(722\) 0 0
\(723\) 30.1114i 1.11986i
\(724\) 0 0
\(725\) −8.46898 −0.314530
\(726\) 0 0
\(727\) 25.6361 0.950791 0.475395 0.879772i \(-0.342305\pi\)
0.475395 + 0.879772i \(0.342305\pi\)
\(728\) 0 0
\(729\) 28.5125 1.05602
\(730\) 0 0
\(731\) −1.57119 −0.0581126
\(732\) 0 0
\(733\) 30.1866i 1.11497i −0.830187 0.557485i \(-0.811767\pi\)
0.830187 0.557485i \(-0.188233\pi\)
\(734\) 0 0
\(735\) 10.6375i 0.392371i
\(736\) 0 0
\(737\) 0.598953 0.0220627
\(738\) 0 0
\(739\) 20.7576i 0.763582i 0.924249 + 0.381791i \(0.124693\pi\)
−0.924249 + 0.381791i \(0.875307\pi\)
\(740\) 0 0
\(741\) 2.15633 4.78560i 0.0792146 0.175803i
\(742\) 0 0
\(743\) 14.2315i 0.522105i 0.965325 + 0.261052i \(0.0840695\pi\)
−0.965325 + 0.261052i \(0.915930\pi\)
\(744\) 0 0
\(745\) 18.3127 0.670924
\(746\) 0 0
\(747\) 3.04349i 0.111356i
\(748\) 0 0
\(749\) 4.78560i 0.174862i
\(750\) 0 0
\(751\) 4.81194 0.175590 0.0877951 0.996139i \(-0.472018\pi\)
0.0877951 + 0.996139i \(0.472018\pi\)
\(752\) 0 0
\(753\) 4.21108 0.153460
\(754\) 0 0
\(755\) −5.64481 −0.205436
\(756\) 0 0
\(757\) 22.7513 0.826910 0.413455 0.910524i \(-0.364322\pi\)
0.413455 + 0.910524i \(0.364322\pi\)
\(758\) 0 0
\(759\) 33.9346i 1.23175i
\(760\) 0 0
\(761\) 30.3879i 1.10156i 0.834651 + 0.550780i \(0.185670\pi\)
−0.834651 + 0.550780i \(0.814330\pi\)
\(762\) 0 0
\(763\) −0.312650 −0.0113187
\(764\) 0 0
\(765\) 0.312650i 0.0113039i
\(766\) 0 0
\(767\) −3.67513 + 8.15633i −0.132701 + 0.294508i
\(768\) 0 0
\(769\) 45.3112i 1.63396i −0.576662 0.816982i \(-0.695645\pi\)
0.576662 0.816982i \(-0.304355\pi\)
\(770\) 0 0
\(771\) −22.1524 −0.797798
\(772\) 0 0
\(773\) 14.6194i 0.525824i 0.964820 + 0.262912i \(0.0846829\pi\)
−0.964820 + 0.262912i \(0.915317\pi\)
\(774\) 0 0
\(775\) 10.4060i 0.373794i
\(776\) 0 0
\(777\) −8.31265 −0.298215
\(778\) 0 0
\(779\) 8.39772 0.300880
\(780\) 0 0
\(781\) 6.30203 0.225504
\(782\) 0 0
\(783\) 45.3112 1.61929
\(784\) 0 0
\(785\) 7.35026i 0.262342i
\(786\) 0 0
\(787\) 7.06793i 0.251944i 0.992034 + 0.125972i \(0.0402050\pi\)
−0.992034 + 0.125972i \(0.959795\pi\)
\(788\) 0 0
\(789\) 1.96968 0.0701226
\(790\) 0 0
\(791\) 7.07381i 0.251516i
\(792\) 0 0
\(793\) −43.1246 19.4314i −1.53140 0.690028i
\(794\) 0 0
\(795\) 16.1866i 0.574081i
\(796\) 0 0
\(797\) −46.8383 −1.65910 −0.829549 0.558434i \(-0.811402\pi\)
−0.829549 + 0.558434i \(0.811402\pi\)
\(798\) 0 0
\(799\) 3.89843i 0.137917i
\(800\) 0 0
\(801\) 0.463096i 0.0163627i
\(802\) 0 0
\(803\) −11.2341 −0.396443
\(804\) 0 0
\(805\) 4.26187 0.150211
\(806\) 0 0
\(807\) 22.3634 0.787230
\(808\) 0 0
\(809\) −31.4412 −1.10541 −0.552707 0.833376i \(-0.686405\pi\)
−0.552707 + 0.833376i \(0.686405\pi\)
\(810\) 0 0
\(811\) 13.0703i 0.458960i −0.973313 0.229480i \(-0.926297\pi\)
0.973313 0.229480i \(-0.0737026\pi\)
\(812\) 0 0
\(813\) 53.7196i 1.88403i
\(814\) 0 0
\(815\) −9.43136 −0.330366
\(816\) 0 0
\(817\) 0.847000i 0.0296328i
\(818\) 0 0
\(819\) −0.231548 + 0.513881i −0.00809094 + 0.0179565i
\(820\) 0 0
\(821\) 16.8919i 0.589532i 0.955570 + 0.294766i \(0.0952416\pi\)
−0.955570 + 0.294766i \(0.904758\pi\)
\(822\) 0 0
\(823\) 29.1222 1.01514 0.507568 0.861611i \(-0.330544\pi\)
0.507568 + 0.861611i \(0.330544\pi\)
\(824\) 0 0
\(825\) 6.41819i 0.223453i
\(826\) 0 0
\(827\) 32.0665i 1.11506i −0.830156 0.557531i \(-0.811749\pi\)
0.830156 0.557531i \(-0.188251\pi\)
\(828\) 0 0
\(829\) −19.3561 −0.672267 −0.336133 0.941814i \(-0.609119\pi\)
−0.336133 + 0.941814i \(0.609119\pi\)
\(830\) 0 0
\(831\) −3.66291 −0.127065
\(832\) 0 0
\(833\) 10.2374 0.354706
\(834\) 0 0
\(835\) 14.8568 0.514142
\(836\) 0 0
\(837\) 55.6747i 1.92440i
\(838\) 0 0
\(839\) 12.4450i 0.429649i −0.976653 0.214825i \(-0.931082\pi\)
0.976653 0.214825i \(-0.0689180\pi\)
\(840\) 0 0
\(841\) 42.7235 1.47323
\(842\) 0 0
\(843\) 3.13918i 0.108119i
\(844\) 0 0
\(845\) −9.73813 + 8.61213i −0.335002 + 0.296266i
\(846\) 0 0
\(847\) 2.96636i 0.101925i
\(848\) 0 0
\(849\) 0.503262 0.0172719
\(850\) 0 0
\(851\) 32.5501i 1.11580i
\(852\) 0 0
\(853\) 31.3054i 1.07187i −0.844258 0.535937i \(-0.819958\pi\)
0.844258 0.535937i \(-0.180042\pi\)
\(854\) 0 0
\(855\) 0.168544 0.00576408
\(856\) 0 0
\(857\) −45.8613 −1.56659 −0.783296 0.621649i \(-0.786463\pi\)
−0.783296 + 0.621649i \(0.786463\pi\)
\(858\) 0 0
\(859\) 34.2981 1.17023 0.585117 0.810949i \(-0.301048\pi\)
0.585117 + 0.810949i \(0.301048\pi\)
\(860\) 0 0
\(861\) 13.0475 0.444656
\(862\) 0 0
\(863\) 40.5052i 1.37881i 0.724375 + 0.689406i \(0.242128\pi\)
−0.724375 + 0.689406i \(0.757872\pi\)
\(864\) 0 0
\(865\) 11.2750i 0.383363i
\(866\) 0 0
\(867\) 24.1236 0.819282
\(868\) 0 0
\(869\) 13.5515i 0.459703i
\(870\) 0 0
\(871\) −0.231548 + 0.513881i −0.00784570 + 0.0174122i
\(872\) 0 0
\(873\) 1.37470i 0.0465265i
\(874\) 0 0
\(875\) −0.806063 −0.0272499
\(876\) 0 0
\(877\) 31.1002i 1.05018i 0.851047 + 0.525089i \(0.175968\pi\)
−0.851047 + 0.525089i \(0.824032\pi\)
\(878\) 0 0
\(879\) 37.9102i 1.27868i
\(880\) 0 0
\(881\) 15.8192 0.532964 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(882\) 0 0
\(883\) −41.6408 −1.40133 −0.700663 0.713492i \(-0.747112\pi\)
−0.700663 + 0.713492i \(0.747112\pi\)
\(884\) 0 0
\(885\) 4.15633 0.139713
\(886\) 0 0
\(887\) 5.08603 0.170772 0.0853860 0.996348i \(-0.472788\pi\)
0.0853860 + 0.996348i \(0.472788\pi\)
\(888\) 0 0
\(889\) 4.42407i 0.148379i
\(890\) 0 0
\(891\) 32.1098i 1.07572i
\(892\) 0 0
\(893\) 2.10157 0.0703264
\(894\) 0 0
\(895\) 23.1998i 0.775484i
\(896\) 0 0
\(897\) −29.1147 13.1187i −0.972113 0.438021i
\(898\) 0 0
\(899\) 88.1279i 2.93923i
\(900\) 0 0
\(901\) 15.5778 0.518973
\(902\) 0 0
\(903\) 1.31598i 0.0437929i
\(904\) 0 0
\(905\) 22.3938i 0.744394i
\(906\) 0 0
\(907\) 16.2858 0.540763 0.270381 0.962753i \(-0.412850\pi\)
0.270381 + 0.962753i \(0.412850\pi\)
\(908\) 0 0
\(909\) −0.664327 −0.0220343
\(910\) 0 0
\(911\) −26.5745 −0.880453 −0.440226 0.897887i \(-0.645102\pi\)
−0.440226 + 0.897887i \(0.645102\pi\)
\(912\) 0 0
\(913\) 60.1279 1.98994
\(914\) 0 0
\(915\) 21.9756i 0.726490i
\(916\) 0 0
\(917\) 9.92478i 0.327745i
\(918\) 0 0
\(919\) −46.1232 −1.52146 −0.760732 0.649067i \(-0.775160\pi\)
−0.760732 + 0.649067i \(0.775160\pi\)
\(920\) 0 0
\(921\) 47.4372i 1.56311i
\(922\) 0 0
\(923\) −2.43629 + 5.40693i −0.0801914 + 0.177971i
\(924\) 0 0
\(925\) 6.15633i 0.202419i
\(926\) 0 0
\(927\) 2.58673 0.0849595
\(928\) 0 0
\(929\) 7.78701i 0.255484i −0.991807 0.127742i \(-0.959227\pi\)
0.991807 0.127742i \(-0.0407729\pi\)
\(930\) 0 0
\(931\) 5.51881i 0.180872i
\(932\) 0 0
\(933\) −55.9102 −1.83042
\(934\) 0 0
\(935\) 6.17679 0.202003
\(936\) 0 0
\(937\) −15.3601 −0.501793 −0.250896 0.968014i \(-0.580725\pi\)
−0.250896 + 0.968014i \(0.580725\pi\)
\(938\) 0 0
\(939\) 7.74798 0.252846
\(940\) 0 0
\(941\) 0.771007i 0.0251341i 0.999921 + 0.0125671i \(0.00400032\pi\)
−0.999921 + 0.0125671i \(0.996000\pi\)
\(942\) 0 0
\(943\) 51.0903i 1.66373i
\(944\) 0 0
\(945\) 4.31265 0.140291
\(946\) 0 0
\(947\) 15.7948i 0.513262i −0.966509 0.256631i \(-0.917387\pi\)
0.966509 0.256631i \(-0.0826125\pi\)
\(948\) 0 0
\(949\) 4.34297 9.63847i 0.140979 0.312878i
\(950\) 0 0
\(951\) 53.3865i 1.73117i
\(952\) 0 0
\(953\) 36.2374 1.17385 0.586923 0.809643i \(-0.300339\pi\)
0.586923 + 0.809643i \(0.300339\pi\)
\(954\) 0 0
\(955\) 1.55149i 0.0502051i
\(956\) 0 0
\(957\) 54.3555i 1.75706i
\(958\) 0 0
\(959\) −3.06205 −0.0988787
\(960\) 0 0
\(961\) −77.2842 −2.49304
\(962\) 0 0
\(963\) 1.15140 0.0371034
\(964\) 0 0
\(965\) −4.57452 −0.147259
\(966\) 0 0
\(967\) 20.8832i 0.671558i −0.941941 0.335779i \(-0.891000\pi\)
0.941941 0.335779i \(-0.109000\pi\)
\(968\) 0 0
\(969\) 2.34694i 0.0753945i
\(970\) 0 0
\(971\) −45.0757 −1.44655 −0.723274 0.690561i \(-0.757364\pi\)
−0.723274 + 0.690561i \(0.757364\pi\)
\(972\) 0 0
\(973\) 10.5501i 0.338220i
\(974\) 0 0
\(975\) 5.50659 + 2.48119i 0.176352 + 0.0794618i
\(976\) 0 0
\(977\) 19.8094i 0.633758i 0.948466 + 0.316879i \(0.102635\pi\)
−0.948466 + 0.316879i \(0.897365\pi\)
\(978\) 0 0
\(979\) 9.14903 0.292404
\(980\) 0 0
\(981\) 0.0752228i 0.00240168i
\(982\) 0 0
\(983\) 57.6542i 1.83888i 0.393226 + 0.919442i \(0.371359\pi\)
−0.393226 + 0.919442i \(0.628641\pi\)
\(984\) 0 0
\(985\) 17.5125 0.557994
\(986\) 0 0
\(987\) 3.26519 0.103932
\(988\) 0 0
\(989\) −5.15300 −0.163856
\(990\) 0 0
\(991\) 50.4650 1.60307 0.801537 0.597945i \(-0.204016\pi\)
0.801537 + 0.597945i \(0.204016\pi\)
\(992\) 0 0
\(993\) 38.3087i 1.21569i
\(994\) 0 0
\(995\) 9.79877i 0.310642i
\(996\) 0 0
\(997\) −1.45183 −0.0459800 −0.0229900 0.999736i \(-0.507319\pi\)
−0.0229900 + 0.999736i \(0.507319\pi\)
\(998\) 0 0
\(999\) 32.9380i 1.04211i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.k.a.441.2 yes 6
3.2 odd 2 4680.2.g.j.2521.2 6
4.3 odd 2 1040.2.k.b.961.6 6
5.2 odd 4 2600.2.f.d.649.5 6
5.3 odd 4 2600.2.f.c.649.2 6
5.4 even 2 2600.2.k.b.2001.6 6
13.5 odd 4 6760.2.a.v.1.1 3
13.8 odd 4 6760.2.a.u.1.1 3
13.12 even 2 inner 520.2.k.a.441.1 6
39.38 odd 2 4680.2.g.j.2521.5 6
52.51 odd 2 1040.2.k.b.961.5 6
65.12 odd 4 2600.2.f.c.649.5 6
65.38 odd 4 2600.2.f.d.649.2 6
65.64 even 2 2600.2.k.b.2001.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.k.a.441.1 6 13.12 even 2 inner
520.2.k.a.441.2 yes 6 1.1 even 1 trivial
1040.2.k.b.961.5 6 52.51 odd 2
1040.2.k.b.961.6 6 4.3 odd 2
2600.2.f.c.649.2 6 5.3 odd 4
2600.2.f.c.649.5 6 65.12 odd 4
2600.2.f.d.649.2 6 65.38 odd 4
2600.2.f.d.649.5 6 5.2 odd 4
2600.2.k.b.2001.5 6 65.64 even 2
2600.2.k.b.2001.6 6 5.4 even 2
4680.2.g.j.2521.2 6 3.2 odd 2
4680.2.g.j.2521.5 6 39.38 odd 2
6760.2.a.u.1.1 3 13.8 odd 4
6760.2.a.v.1.1 3 13.5 odd 4