Properties

Label 2600.2.f.c.649.5
Level $2600$
Weight $2$
Character 2600.649
Analytic conductor $20.761$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2600,2,Mod(649,2600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2600.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 2600.649
Dual form 2600.2.f.c.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67513i q^{3} -0.806063 q^{7} +0.193937 q^{9} +3.83146i q^{11} +(-1.48119 - 3.28726i) q^{13} +1.61213i q^{17} +0.869067i q^{19} -1.35026i q^{21} -5.28726i q^{23} +5.35026i q^{27} -8.46898 q^{29} +10.4060i q^{31} -6.41819 q^{33} +6.15633 q^{37} +(5.50659 - 2.48119i) q^{39} +9.66291i q^{41} +0.974607i q^{43} -2.41819 q^{47} -6.35026 q^{49} -2.70052 q^{51} -9.66291i q^{53} -1.45580 q^{57} +2.48119i q^{59} -13.1187 q^{61} -0.156325 q^{63} +0.156325 q^{67} +8.85685 q^{69} -1.64481i q^{71} +2.93207 q^{73} -3.08840i q^{77} +3.53690 q^{79} -8.38058 q^{81} -15.6932 q^{83} -14.1866i q^{87} +2.38787i q^{89} +(1.19394 + 2.64974i) q^{91} -17.4314 q^{93} -7.08840 q^{97} +0.743059i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{7} + 2 q^{9} + 2 q^{13} + 12 q^{29} - 36 q^{33} + 16 q^{37} - 8 q^{39} - 12 q^{47} - 18 q^{49} + 24 q^{51} - 28 q^{57} - 36 q^{61} + 20 q^{63} - 20 q^{67} - 8 q^{69} - 24 q^{79} - 26 q^{81} - 28 q^{83}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67513i 0.967137i 0.875306 + 0.483569i \(0.160660\pi\)
−0.875306 + 0.483569i \(0.839340\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.806063 −0.304663 −0.152332 0.988329i \(-0.548678\pi\)
−0.152332 + 0.988329i \(0.548678\pi\)
\(8\) 0 0
\(9\) 0.193937 0.0646455
\(10\) 0 0
\(11\) 3.83146i 1.15523i 0.816310 + 0.577614i \(0.196016\pi\)
−0.816310 + 0.577614i \(0.803984\pi\)
\(12\) 0 0
\(13\) −1.48119 3.28726i −0.410809 0.911721i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.61213i 0.390998i 0.980704 + 0.195499i \(0.0626327\pi\)
−0.980704 + 0.195499i \(0.937367\pi\)
\(18\) 0 0
\(19\) 0.869067i 0.199378i 0.995019 + 0.0996889i \(0.0317847\pi\)
−0.995019 + 0.0996889i \(0.968215\pi\)
\(20\) 0 0
\(21\) 1.35026i 0.294651i
\(22\) 0 0
\(23\) 5.28726i 1.10247i −0.834350 0.551235i \(-0.814157\pi\)
0.834350 0.551235i \(-0.185843\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.35026i 1.02966i
\(28\) 0 0
\(29\) −8.46898 −1.57265 −0.786325 0.617814i \(-0.788019\pi\)
−0.786325 + 0.617814i \(0.788019\pi\)
\(30\) 0 0
\(31\) 10.4060i 1.86897i 0.356006 + 0.934484i \(0.384138\pi\)
−0.356006 + 0.934484i \(0.615862\pi\)
\(32\) 0 0
\(33\) −6.41819 −1.11726
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.15633 1.01209 0.506047 0.862506i \(-0.331106\pi\)
0.506047 + 0.862506i \(0.331106\pi\)
\(38\) 0 0
\(39\) 5.50659 2.48119i 0.881760 0.397309i
\(40\) 0 0
\(41\) 9.66291i 1.50909i 0.656246 + 0.754547i \(0.272143\pi\)
−0.656246 + 0.754547i \(0.727857\pi\)
\(42\) 0 0
\(43\) 0.974607i 0.148626i 0.997235 + 0.0743131i \(0.0236764\pi\)
−0.997235 + 0.0743131i \(0.976324\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.41819 −0.352729 −0.176365 0.984325i \(-0.556434\pi\)
−0.176365 + 0.984325i \(0.556434\pi\)
\(48\) 0 0
\(49\) −6.35026 −0.907180
\(50\) 0 0
\(51\) −2.70052 −0.378149
\(52\) 0 0
\(53\) 9.66291i 1.32730i −0.748042 0.663652i \(-0.769006\pi\)
0.748042 0.663652i \(-0.230994\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.45580 −0.192826
\(58\) 0 0
\(59\) 2.48119i 0.323024i 0.986871 + 0.161512i \(0.0516370\pi\)
−0.986871 + 0.161512i \(0.948363\pi\)
\(60\) 0 0
\(61\) −13.1187 −1.67968 −0.839840 0.542835i \(-0.817351\pi\)
−0.839840 + 0.542835i \(0.817351\pi\)
\(62\) 0 0
\(63\) −0.156325 −0.0196951
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.156325 0.0190982 0.00954908 0.999954i \(-0.496960\pi\)
0.00954908 + 0.999954i \(0.496960\pi\)
\(68\) 0 0
\(69\) 8.85685 1.06624
\(70\) 0 0
\(71\) 1.64481i 0.195203i −0.995226 0.0976017i \(-0.968883\pi\)
0.995226 0.0976017i \(-0.0311171\pi\)
\(72\) 0 0
\(73\) 2.93207 0.343173 0.171587 0.985169i \(-0.445111\pi\)
0.171587 + 0.985169i \(0.445111\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.08840i 0.351955i
\(78\) 0 0
\(79\) 3.53690 0.397933 0.198966 0.980006i \(-0.436242\pi\)
0.198966 + 0.980006i \(0.436242\pi\)
\(80\) 0 0
\(81\) −8.38058 −0.931175
\(82\) 0 0
\(83\) −15.6932 −1.72256 −0.861278 0.508134i \(-0.830335\pi\)
−0.861278 + 0.508134i \(0.830335\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 14.1866i 1.52097i
\(88\) 0 0
\(89\) 2.38787i 0.253114i 0.991959 + 0.126557i \(0.0403927\pi\)
−0.991959 + 0.126557i \(0.959607\pi\)
\(90\) 0 0
\(91\) 1.19394 + 2.64974i 0.125159 + 0.277768i
\(92\) 0 0
\(93\) −17.4314 −1.80755
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.08840 −0.719718 −0.359859 0.933007i \(-0.617175\pi\)
−0.359859 + 0.933007i \(0.617175\pi\)
\(98\) 0 0
\(99\) 0.743059i 0.0746803i
\(100\) 0 0
\(101\) 3.42548 0.340848 0.170424 0.985371i \(-0.445486\pi\)
0.170424 + 0.985371i \(0.445486\pi\)
\(102\) 0 0
\(103\) 13.3380i 1.31424i 0.753788 + 0.657118i \(0.228225\pi\)
−0.753788 + 0.657118i \(0.771775\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.93700i 0.573951i −0.957938 0.286976i \(-0.907350\pi\)
0.957938 0.286976i \(-0.0926498\pi\)
\(108\) 0 0
\(109\) 0.387873i 0.0371515i −0.999827 0.0185758i \(-0.994087\pi\)
0.999827 0.0185758i \(-0.00591319\pi\)
\(110\) 0 0
\(111\) 10.3127i 0.978833i
\(112\) 0 0
\(113\) 8.77575i 0.825553i 0.910832 + 0.412776i \(0.135441\pi\)
−0.910832 + 0.412776i \(0.864559\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.287258 0.637519i −0.0265570 0.0589387i
\(118\) 0 0
\(119\) 1.29948i 0.119123i
\(120\) 0 0
\(121\) −3.68006 −0.334550
\(122\) 0 0
\(123\) −16.1866 −1.45950
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.48849i 0.487025i 0.969898 + 0.243512i \(0.0782996\pi\)
−0.969898 + 0.243512i \(0.921700\pi\)
\(128\) 0 0
\(129\) −1.63259 −0.143742
\(130\) 0 0
\(131\) 12.3127 1.07576 0.537881 0.843021i \(-0.319225\pi\)
0.537881 + 0.843021i \(0.319225\pi\)
\(132\) 0 0
\(133\) 0.700523i 0.0607431i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.79877 −0.324551 −0.162275 0.986746i \(-0.551883\pi\)
−0.162275 + 0.986746i \(0.551883\pi\)
\(138\) 0 0
\(139\) 13.0884 1.11014 0.555072 0.831803i \(-0.312691\pi\)
0.555072 + 0.831803i \(0.312691\pi\)
\(140\) 0 0
\(141\) 4.05079i 0.341138i
\(142\) 0 0
\(143\) 12.5950 5.67513i 1.05325 0.474578i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 10.6375i 0.877368i
\(148\) 0 0
\(149\) 18.3127i 1.50023i −0.661307 0.750115i \(-0.729998\pi\)
0.661307 0.750115i \(-0.270002\pi\)
\(150\) 0 0
\(151\) 5.64481i 0.459368i −0.973265 0.229684i \(-0.926231\pi\)
0.973265 0.229684i \(-0.0737693\pi\)
\(152\) 0 0
\(153\) 0.312650i 0.0252763i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.35026i 0.586615i 0.956018 + 0.293307i \(0.0947559\pi\)
−0.956018 + 0.293307i \(0.905244\pi\)
\(158\) 0 0
\(159\) 16.1866 1.28368
\(160\) 0 0
\(161\) 4.26187i 0.335882i
\(162\) 0 0
\(163\) −9.43136 −0.738721 −0.369361 0.929286i \(-0.620423\pi\)
−0.369361 + 0.929286i \(0.620423\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.8568 −1.14966 −0.574829 0.818274i \(-0.694931\pi\)
−0.574829 + 0.818274i \(0.694931\pi\)
\(168\) 0 0
\(169\) −8.61213 + 9.73813i −0.662471 + 0.749087i
\(170\) 0 0
\(171\) 0.168544i 0.0128889i
\(172\) 0 0
\(173\) 11.2750i 0.857225i −0.903488 0.428613i \(-0.859003\pi\)
0.903488 0.428613i \(-0.140997\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.15633 −0.312409
\(178\) 0 0
\(179\) −23.1998 −1.73404 −0.867018 0.498277i \(-0.833966\pi\)
−0.867018 + 0.498277i \(0.833966\pi\)
\(180\) 0 0
\(181\) −22.3938 −1.66451 −0.832257 0.554390i \(-0.812952\pi\)
−0.832257 + 0.554390i \(0.812952\pi\)
\(182\) 0 0
\(183\) 21.9756i 1.62448i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.17679 −0.451692
\(188\) 0 0
\(189\) 4.31265i 0.313699i
\(190\) 0 0
\(191\) −1.55149 −0.112262 −0.0561310 0.998423i \(-0.517876\pi\)
−0.0561310 + 0.998423i \(0.517876\pi\)
\(192\) 0 0
\(193\) −4.57452 −0.329281 −0.164640 0.986354i \(-0.552646\pi\)
−0.164640 + 0.986354i \(0.552646\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.5125 −1.24771 −0.623856 0.781539i \(-0.714435\pi\)
−0.623856 + 0.781539i \(0.714435\pi\)
\(198\) 0 0
\(199\) 9.79877 0.694616 0.347308 0.937751i \(-0.387096\pi\)
0.347308 + 0.937751i \(0.387096\pi\)
\(200\) 0 0
\(201\) 0.261865i 0.0184705i
\(202\) 0 0
\(203\) 6.82653 0.479129
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.02539i 0.0712697i
\(208\) 0 0
\(209\) −3.32979 −0.230327
\(210\) 0 0
\(211\) 15.1998 1.04640 0.523199 0.852210i \(-0.324738\pi\)
0.523199 + 0.852210i \(0.324738\pi\)
\(212\) 0 0
\(213\) 2.75528 0.188789
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.38787i 0.569406i
\(218\) 0 0
\(219\) 4.91160i 0.331895i
\(220\) 0 0
\(221\) 5.29948 2.38787i 0.356481 0.160626i
\(222\) 0 0
\(223\) −16.2823 −1.09035 −0.545173 0.838324i \(-0.683536\pi\)
−0.545173 + 0.838324i \(0.683536\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.1695 1.53781 0.768907 0.639361i \(-0.220801\pi\)
0.768907 + 0.639361i \(0.220801\pi\)
\(228\) 0 0
\(229\) 0.126008i 0.00832684i 0.999991 + 0.00416342i \(0.00132526\pi\)
−0.999991 + 0.00416342i \(0.998675\pi\)
\(230\) 0 0
\(231\) 5.17347 0.340389
\(232\) 0 0
\(233\) 8.91160i 0.583819i −0.956446 0.291909i \(-0.905709\pi\)
0.956446 0.291909i \(-0.0942905\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.92478i 0.384856i
\(238\) 0 0
\(239\) 12.1685i 0.787118i 0.919299 + 0.393559i \(0.128756\pi\)
−0.919299 + 0.393559i \(0.871244\pi\)
\(240\) 0 0
\(241\) 17.9756i 1.15791i −0.815360 0.578954i \(-0.803461\pi\)
0.815360 0.578954i \(-0.196539\pi\)
\(242\) 0 0
\(243\) 2.01222i 0.129084i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.85685 1.28726i 0.181777 0.0819062i
\(248\) 0 0
\(249\) 26.2882i 1.66595i
\(250\) 0 0
\(251\) −2.51388 −0.158675 −0.0793374 0.996848i \(-0.525280\pi\)
−0.0793374 + 0.996848i \(0.525280\pi\)
\(252\) 0 0
\(253\) 20.2579 1.27360
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.2243i 0.824906i 0.910979 + 0.412453i \(0.135328\pi\)
−0.910979 + 0.412453i \(0.864672\pi\)
\(258\) 0 0
\(259\) −4.96239 −0.308348
\(260\) 0 0
\(261\) −1.64244 −0.101665
\(262\) 0 0
\(263\) 1.17584i 0.0725053i 0.999343 + 0.0362526i \(0.0115421\pi\)
−0.999343 + 0.0362526i \(0.988458\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.00000 −0.244796
\(268\) 0 0
\(269\) 13.3503 0.813980 0.406990 0.913433i \(-0.366578\pi\)
0.406990 + 0.913433i \(0.366578\pi\)
\(270\) 0 0
\(271\) 32.0689i 1.94805i 0.226449 + 0.974023i \(0.427288\pi\)
−0.226449 + 0.974023i \(0.572712\pi\)
\(272\) 0 0
\(273\) −4.43866 + 2.00000i −0.268640 + 0.121046i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.18664i 0.131383i 0.997840 + 0.0656913i \(0.0209253\pi\)
−0.997840 + 0.0656913i \(0.979075\pi\)
\(278\) 0 0
\(279\) 2.01810i 0.120820i
\(280\) 0 0
\(281\) 1.87399i 0.111793i 0.998437 + 0.0558965i \(0.0178017\pi\)
−0.998437 + 0.0558965i \(0.982198\pi\)
\(282\) 0 0
\(283\) 0.300432i 0.0178588i 0.999960 + 0.00892940i \(0.00284235\pi\)
−0.999960 + 0.00892940i \(0.997158\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.78892i 0.459765i
\(288\) 0 0
\(289\) 14.4010 0.847120
\(290\) 0 0
\(291\) 11.8740i 0.696066i
\(292\) 0 0
\(293\) 22.6312 1.32213 0.661064 0.750330i \(-0.270105\pi\)
0.661064 + 0.750330i \(0.270105\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −20.4993 −1.18949
\(298\) 0 0
\(299\) −17.3806 + 7.83146i −1.00514 + 0.452905i
\(300\) 0 0
\(301\) 0.785595i 0.0452810i
\(302\) 0 0
\(303\) 5.73813i 0.329647i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.3185 1.61622 0.808112 0.589029i \(-0.200490\pi\)
0.808112 + 0.589029i \(0.200490\pi\)
\(308\) 0 0
\(309\) −22.3430 −1.27105
\(310\) 0 0
\(311\) 33.3766 1.89261 0.946307 0.323270i \(-0.104782\pi\)
0.946307 + 0.323270i \(0.104782\pi\)
\(312\) 0 0
\(313\) 4.62530i 0.261437i 0.991419 + 0.130719i \(0.0417285\pi\)
−0.991419 + 0.130719i \(0.958272\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.8700 −1.79000 −0.894999 0.446067i \(-0.852824\pi\)
−0.894999 + 0.446067i \(0.852824\pi\)
\(318\) 0 0
\(319\) 32.4485i 1.81677i
\(320\) 0 0
\(321\) 9.94525 0.555089
\(322\) 0 0
\(323\) −1.40105 −0.0779563
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.649738 0.0359306
\(328\) 0 0
\(329\) 1.94921 0.107464
\(330\) 0 0
\(331\) 22.8691i 1.25700i −0.777811 0.628499i \(-0.783670\pi\)
0.777811 0.628499i \(-0.216330\pi\)
\(332\) 0 0
\(333\) 1.19394 0.0654273
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.0870i 1.42105i 0.703673 + 0.710524i \(0.251542\pi\)
−0.703673 + 0.710524i \(0.748458\pi\)
\(338\) 0 0
\(339\) −14.7005 −0.798423
\(340\) 0 0
\(341\) −39.8700 −2.15908
\(342\) 0 0
\(343\) 10.7612 0.581048
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.93700i 0.426080i −0.977043 0.213040i \(-0.931663\pi\)
0.977043 0.213040i \(-0.0683365\pi\)
\(348\) 0 0
\(349\) 21.2144i 1.13558i 0.823173 + 0.567791i \(0.192202\pi\)
−0.823173 + 0.567791i \(0.807798\pi\)
\(350\) 0 0
\(351\) 17.5877 7.92478i 0.938761 0.422993i
\(352\) 0 0
\(353\) −27.2447 −1.45009 −0.725045 0.688701i \(-0.758181\pi\)
−0.725045 + 0.688701i \(0.758181\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.17679 0.115208
\(358\) 0 0
\(359\) 23.7562i 1.25381i 0.779097 + 0.626903i \(0.215678\pi\)
−0.779097 + 0.626903i \(0.784322\pi\)
\(360\) 0 0
\(361\) 18.2447 0.960249
\(362\) 0 0
\(363\) 6.16457i 0.323556i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 36.2252i 1.89094i −0.325708 0.945470i \(-0.605603\pi\)
0.325708 0.945470i \(-0.394397\pi\)
\(368\) 0 0
\(369\) 1.87399i 0.0975561i
\(370\) 0 0
\(371\) 7.78892i 0.404381i
\(372\) 0 0
\(373\) 8.64974i 0.447866i 0.974604 + 0.223933i \(0.0718898\pi\)
−0.974604 + 0.223933i \(0.928110\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.5442 + 27.8397i 0.646059 + 1.43382i
\(378\) 0 0
\(379\) 21.5696i 1.10796i −0.832531 0.553978i \(-0.813109\pi\)
0.832531 0.553978i \(-0.186891\pi\)
\(380\) 0 0
\(381\) −9.19394 −0.471020
\(382\) 0 0
\(383\) −3.00729 −0.153666 −0.0768328 0.997044i \(-0.524481\pi\)
−0.0768328 + 0.997044i \(0.524481\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.189012i 0.00960802i
\(388\) 0 0
\(389\) −1.37470 −0.0697000 −0.0348500 0.999393i \(-0.511095\pi\)
−0.0348500 + 0.999393i \(0.511095\pi\)
\(390\) 0 0
\(391\) 8.52373 0.431064
\(392\) 0 0
\(393\) 20.6253i 1.04041i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 36.4544 1.82959 0.914797 0.403915i \(-0.132351\pi\)
0.914797 + 0.403915i \(0.132351\pi\)
\(398\) 0 0
\(399\) 1.17347 0.0587469
\(400\) 0 0
\(401\) 5.02776i 0.251074i 0.992089 + 0.125537i \(0.0400655\pi\)
−0.992089 + 0.125537i \(0.959935\pi\)
\(402\) 0 0
\(403\) 34.2071 15.4133i 1.70398 0.767789i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.5877i 1.16920i
\(408\) 0 0
\(409\) 15.1128i 0.747282i −0.927573 0.373641i \(-0.878109\pi\)
0.927573 0.373641i \(-0.121891\pi\)
\(410\) 0 0
\(411\) 6.36344i 0.313885i
\(412\) 0 0
\(413\) 2.00000i 0.0984136i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 21.9248i 1.07366i
\(418\) 0 0
\(419\) 0.589104 0.0287796 0.0143898 0.999896i \(-0.495419\pi\)
0.0143898 + 0.999896i \(0.495419\pi\)
\(420\) 0 0
\(421\) 36.4894i 1.77839i 0.457532 + 0.889193i \(0.348734\pi\)
−0.457532 + 0.889193i \(0.651266\pi\)
\(422\) 0 0
\(423\) −0.468976 −0.0228024
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.5745 0.511737
\(428\) 0 0
\(429\) 9.50659 + 21.0982i 0.458982 + 1.01863i
\(430\) 0 0
\(431\) 19.8070i 0.954071i 0.878884 + 0.477035i \(0.158289\pi\)
−0.878884 + 0.477035i \(0.841711\pi\)
\(432\) 0 0
\(433\) 20.5501i 0.987574i 0.869583 + 0.493787i \(0.164388\pi\)
−0.869583 + 0.493787i \(0.835612\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.59498 0.219808
\(438\) 0 0
\(439\) 16.0362 0.765366 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(440\) 0 0
\(441\) −1.23155 −0.0586451
\(442\) 0 0
\(443\) 39.2384i 1.86427i 0.362109 + 0.932136i \(0.382057\pi\)
−0.362109 + 0.932136i \(0.617943\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 30.6761 1.45093
\(448\) 0 0
\(449\) 35.1246i 1.65763i 0.559521 + 0.828816i \(0.310985\pi\)
−0.559521 + 0.828816i \(0.689015\pi\)
\(450\) 0 0
\(451\) −37.0230 −1.74335
\(452\) 0 0
\(453\) 9.45580 0.444272
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.3865 1.37464 0.687320 0.726354i \(-0.258787\pi\)
0.687320 + 0.726354i \(0.258787\pi\)
\(458\) 0 0
\(459\) −8.62530 −0.402595
\(460\) 0 0
\(461\) 19.1998i 0.894225i −0.894478 0.447112i \(-0.852452\pi\)
0.894478 0.447112i \(-0.147548\pi\)
\(462\) 0 0
\(463\) 39.5183 1.83657 0.918287 0.395916i \(-0.129573\pi\)
0.918287 + 0.395916i \(0.129573\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.4119i 0.759450i −0.925099 0.379725i \(-0.876019\pi\)
0.925099 0.379725i \(-0.123981\pi\)
\(468\) 0 0
\(469\) −0.126008 −0.00581851
\(470\) 0 0
\(471\) −12.3127 −0.567337
\(472\) 0 0
\(473\) −3.73417 −0.171697
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.87399i 0.0858042i
\(478\) 0 0
\(479\) 23.5042i 1.07394i 0.843603 + 0.536968i \(0.180430\pi\)
−0.843603 + 0.536968i \(0.819570\pi\)
\(480\) 0 0
\(481\) −9.11871 20.2374i −0.415778 0.922747i
\(482\) 0 0
\(483\) −7.13918 −0.324844
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.49341 0.203616 0.101808 0.994804i \(-0.467537\pi\)
0.101808 + 0.994804i \(0.467537\pi\)
\(488\) 0 0
\(489\) 15.7988i 0.714445i
\(490\) 0 0
\(491\) −14.7005 −0.663425 −0.331713 0.943380i \(-0.607626\pi\)
−0.331713 + 0.943380i \(0.607626\pi\)
\(492\) 0 0
\(493\) 13.6531i 0.614903i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.32582i 0.0594713i
\(498\) 0 0
\(499\) 9.89683i 0.443043i 0.975155 + 0.221521i \(0.0711023\pi\)
−0.975155 + 0.221521i \(0.928898\pi\)
\(500\) 0 0
\(501\) 24.8872i 1.11188i
\(502\) 0 0
\(503\) 1.26282i 0.0563064i 0.999604 + 0.0281532i \(0.00896262\pi\)
−0.999604 + 0.0281532i \(0.991037\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −16.3127 14.4264i −0.724470 0.640701i
\(508\) 0 0
\(509\) 22.5256i 0.998431i 0.866478 + 0.499216i \(0.166378\pi\)
−0.866478 + 0.499216i \(0.833622\pi\)
\(510\) 0 0
\(511\) −2.36344 −0.104552
\(512\) 0 0
\(513\) −4.64974 −0.205291
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.26519i 0.407483i
\(518\) 0 0
\(519\) 18.8872 0.829055
\(520\) 0 0
\(521\) −18.8568 −0.826134 −0.413067 0.910701i \(-0.635542\pi\)
−0.413067 + 0.910701i \(0.635542\pi\)
\(522\) 0 0
\(523\) 32.5985i 1.42543i 0.701452 + 0.712716i \(0.252535\pi\)
−0.701452 + 0.712716i \(0.747465\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.7757 −0.730763
\(528\) 0 0
\(529\) −4.95509 −0.215439
\(530\) 0 0
\(531\) 0.481194i 0.0208821i
\(532\) 0 0
\(533\) 31.7645 14.3127i 1.37587 0.619950i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 38.8627i 1.67705i
\(538\) 0 0
\(539\) 24.3307i 1.04800i
\(540\) 0 0
\(541\) 32.0362i 1.37734i −0.725073 0.688672i \(-0.758194\pi\)
0.725073 0.688672i \(-0.241806\pi\)
\(542\) 0 0
\(543\) 37.5125i 1.60981i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.41327i 0.231455i −0.993281 0.115727i \(-0.963080\pi\)
0.993281 0.115727i \(-0.0369199\pi\)
\(548\) 0 0
\(549\) −2.54420 −0.108584
\(550\) 0 0
\(551\) 7.36011i 0.313551i
\(552\) 0 0
\(553\) −2.85097 −0.121236
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.7064 1.04684 0.523422 0.852074i \(-0.324655\pi\)
0.523422 + 0.852074i \(0.324655\pi\)
\(558\) 0 0
\(559\) 3.20379 1.44358i 0.135506 0.0610571i
\(560\) 0 0
\(561\) 10.3469i 0.436848i
\(562\) 0 0
\(563\) 33.1974i 1.39911i 0.714581 + 0.699553i \(0.246617\pi\)
−0.714581 + 0.699553i \(0.753383\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.75528 0.283695
\(568\) 0 0
\(569\) 34.3693 1.44084 0.720418 0.693540i \(-0.243950\pi\)
0.720418 + 0.693540i \(0.243950\pi\)
\(570\) 0 0
\(571\) 24.3127 1.01745 0.508726 0.860928i \(-0.330116\pi\)
0.508726 + 0.860928i \(0.330116\pi\)
\(572\) 0 0
\(573\) 2.59895i 0.108573i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 26.6312 1.10867 0.554335 0.832293i \(-0.312973\pi\)
0.554335 + 0.832293i \(0.312973\pi\)
\(578\) 0 0
\(579\) 7.66291i 0.318460i
\(580\) 0 0
\(581\) 12.6497 0.524800
\(582\) 0 0
\(583\) 37.0230 1.53334
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.8813 −0.779314 −0.389657 0.920960i \(-0.627406\pi\)
−0.389657 + 0.920960i \(0.627406\pi\)
\(588\) 0 0
\(589\) −9.04349 −0.372631
\(590\) 0 0
\(591\) 29.3357i 1.20671i
\(592\) 0 0
\(593\) 36.4894 1.49844 0.749221 0.662320i \(-0.230428\pi\)
0.749221 + 0.662320i \(0.230428\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.4142i 0.671789i
\(598\) 0 0
\(599\) 23.3503 0.954066 0.477033 0.878885i \(-0.341712\pi\)
0.477033 + 0.878885i \(0.341712\pi\)
\(600\) 0 0
\(601\) 18.3733 0.749462 0.374731 0.927134i \(-0.377735\pi\)
0.374731 + 0.927134i \(0.377735\pi\)
\(602\) 0 0
\(603\) 0.0303172 0.00123461
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.48707i 0.182125i 0.995845 + 0.0910624i \(0.0290263\pi\)
−0.995845 + 0.0910624i \(0.970974\pi\)
\(608\) 0 0
\(609\) 11.4353i 0.463383i
\(610\) 0 0
\(611\) 3.58181 + 7.94921i 0.144905 + 0.321591i
\(612\) 0 0
\(613\) −38.3536 −1.54909 −0.774543 0.632521i \(-0.782020\pi\)
−0.774543 + 0.632521i \(0.782020\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.1998 −0.692439 −0.346219 0.938154i \(-0.612535\pi\)
−0.346219 + 0.938154i \(0.612535\pi\)
\(618\) 0 0
\(619\) 16.5926i 0.666913i −0.942765 0.333457i \(-0.891785\pi\)
0.942765 0.333457i \(-0.108215\pi\)
\(620\) 0 0
\(621\) 28.2882 1.13517
\(622\) 0 0
\(623\) 1.92478i 0.0771146i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.57784i 0.222757i
\(628\) 0 0
\(629\) 9.92478i 0.395727i
\(630\) 0 0
\(631\) 7.39280i 0.294303i 0.989114 + 0.147151i \(0.0470104\pi\)
−0.989114 + 0.147151i \(0.952990\pi\)
\(632\) 0 0
\(633\) 25.4617i 1.01201i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.40597 + 20.8749i 0.372678 + 0.827096i
\(638\) 0 0
\(639\) 0.318990i 0.0126190i
\(640\) 0 0
\(641\) 25.9511 1.02501 0.512504 0.858685i \(-0.328718\pi\)
0.512504 + 0.858685i \(0.328718\pi\)
\(642\) 0 0
\(643\) −12.6439 −0.498625 −0.249313 0.968423i \(-0.580205\pi\)
−0.249313 + 0.968423i \(0.580205\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.7391i 0.893966i 0.894542 + 0.446983i \(0.147502\pi\)
−0.894542 + 0.446983i \(0.852498\pi\)
\(648\) 0 0
\(649\) −9.50659 −0.373166
\(650\) 0 0
\(651\) 14.0508 0.550694
\(652\) 0 0
\(653\) 16.4387i 0.643294i 0.946860 + 0.321647i \(0.104237\pi\)
−0.946860 + 0.321647i \(0.895763\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.568636 0.0221846
\(658\) 0 0
\(659\) −37.4372 −1.45835 −0.729174 0.684328i \(-0.760096\pi\)
−0.729174 + 0.684328i \(0.760096\pi\)
\(660\) 0 0
\(661\) 18.6253i 0.724440i −0.932093 0.362220i \(-0.882019\pi\)
0.932093 0.362220i \(-0.117981\pi\)
\(662\) 0 0
\(663\) 4.00000 + 8.87732i 0.155347 + 0.344766i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 44.7777i 1.73380i
\(668\) 0 0
\(669\) 27.2750i 1.05451i
\(670\) 0 0
\(671\) 50.2638i 1.94041i
\(672\) 0 0
\(673\) 24.4749i 0.943436i −0.881749 0.471718i \(-0.843634\pi\)
0.881749 0.471718i \(-0.156366\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.9756i 0.998322i −0.866509 0.499161i \(-0.833642\pi\)
0.866509 0.499161i \(-0.166358\pi\)
\(678\) 0 0
\(679\) 5.71370 0.219272
\(680\) 0 0
\(681\) 38.8119i 1.48728i
\(682\) 0 0
\(683\) 2.08110 0.0796312 0.0398156 0.999207i \(-0.487323\pi\)
0.0398156 + 0.999207i \(0.487323\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.211080 −0.00805320
\(688\) 0 0
\(689\) −31.7645 + 14.3127i −1.21013 + 0.545269i
\(690\) 0 0
\(691\) 27.6204i 1.05073i 0.850877 + 0.525364i \(0.176071\pi\)
−0.850877 + 0.525364i \(0.823929\pi\)
\(692\) 0 0
\(693\) 0.598953i 0.0227523i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −15.5778 −0.590053
\(698\) 0 0
\(699\) 14.9281 0.564633
\(700\) 0 0
\(701\) 17.8251 0.673245 0.336623 0.941640i \(-0.390715\pi\)
0.336623 + 0.941640i \(0.390715\pi\)
\(702\) 0 0
\(703\) 5.35026i 0.201789i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.76116 −0.103844
\(708\) 0 0
\(709\) 30.9887i 1.16381i −0.813258 0.581903i \(-0.802308\pi\)
0.813258 0.581903i \(-0.197692\pi\)
\(710\) 0 0
\(711\) 0.685935 0.0257246
\(712\) 0 0
\(713\) 55.0191 2.06048
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.3839 −0.761251
\(718\) 0 0
\(719\) −24.3127 −0.906709 −0.453354 0.891330i \(-0.649773\pi\)
−0.453354 + 0.891330i \(0.649773\pi\)
\(720\) 0 0
\(721\) 10.7513i 0.400400i
\(722\) 0 0
\(723\) 30.1114 1.11986
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 25.6361i 0.950791i 0.879772 + 0.475395i \(0.157695\pi\)
−0.879772 + 0.475395i \(0.842305\pi\)
\(728\) 0 0
\(729\) −28.5125 −1.05602
\(730\) 0 0
\(731\) −1.57119 −0.0581126
\(732\) 0 0
\(733\) 30.1866 1.11497 0.557485 0.830187i \(-0.311767\pi\)
0.557485 + 0.830187i \(0.311767\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.598953i 0.0220627i
\(738\) 0 0
\(739\) 20.7576i 0.763582i 0.924249 + 0.381791i \(0.124693\pi\)
−0.924249 + 0.381791i \(0.875307\pi\)
\(740\) 0 0
\(741\) 2.15633 + 4.78560i 0.0792146 + 0.175803i
\(742\) 0 0
\(743\) −14.2315 −0.522105 −0.261052 0.965325i \(-0.584070\pi\)
−0.261052 + 0.965325i \(0.584070\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.04349 −0.111356
\(748\) 0 0
\(749\) 4.78560i 0.174862i
\(750\) 0 0
\(751\) 4.81194 0.175590 0.0877951 0.996139i \(-0.472018\pi\)
0.0877951 + 0.996139i \(0.472018\pi\)
\(752\) 0 0
\(753\) 4.21108i 0.153460i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.7513i 0.826910i 0.910524 + 0.413455i \(0.135678\pi\)
−0.910524 + 0.413455i \(0.864322\pi\)
\(758\) 0 0
\(759\) 33.9346i 1.23175i
\(760\) 0 0
\(761\) 30.3879i 1.10156i −0.834651 0.550780i \(-0.814330\pi\)
0.834651 0.550780i \(-0.185670\pi\)
\(762\) 0 0
\(763\) 0.312650i 0.0113187i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.15633 3.67513i 0.294508 0.132701i
\(768\) 0 0
\(769\) 45.3112i 1.63396i −0.576662 0.816982i \(-0.695645\pi\)
0.576662 0.816982i \(-0.304355\pi\)
\(770\) 0 0
\(771\) −22.1524 −0.797798
\(772\) 0 0
\(773\) −14.6194 −0.525824 −0.262912 0.964820i \(-0.584683\pi\)
−0.262912 + 0.964820i \(0.584683\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.31265i 0.298215i
\(778\) 0 0
\(779\) −8.39772 −0.300880
\(780\) 0 0
\(781\) 6.30203 0.225504
\(782\) 0 0
\(783\) 45.3112i 1.61929i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 7.06793 0.251944 0.125972 0.992034i \(-0.459795\pi\)
0.125972 + 0.992034i \(0.459795\pi\)
\(788\) 0 0
\(789\) −1.96968 −0.0701226
\(790\) 0 0
\(791\) 7.07381i 0.251516i
\(792\) 0 0
\(793\) 19.4314 + 43.1246i 0.690028 + 1.53140i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.8383i 1.65910i −0.558434 0.829549i \(-0.688598\pi\)
0.558434 0.829549i \(-0.311402\pi\)
\(798\) 0 0
\(799\) 3.89843i 0.137917i
\(800\) 0 0
\(801\) 0.463096i 0.0163627i
\(802\) 0 0
\(803\) 11.2341i 0.396443i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.3634i 0.787230i
\(808\) 0 0
\(809\) 31.4412 1.10541 0.552707 0.833376i \(-0.313595\pi\)
0.552707 + 0.833376i \(0.313595\pi\)
\(810\) 0 0
\(811\) 13.0703i 0.458960i 0.973313 + 0.229480i \(0.0737026\pi\)
−0.973313 + 0.229480i \(0.926297\pi\)
\(812\) 0 0
\(813\) −53.7196 −1.88403
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.847000 −0.0296328
\(818\) 0 0
\(819\) 0.231548 + 0.513881i 0.00809094 + 0.0179565i
\(820\) 0 0
\(821\) 16.8919i 0.589532i −0.955570 0.294766i \(-0.904758\pi\)
0.955570 0.294766i \(-0.0952416\pi\)
\(822\) 0 0
\(823\) 29.1222i 1.01514i −0.861611 0.507568i \(-0.830544\pi\)
0.861611 0.507568i \(-0.169456\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.0665 −1.11506 −0.557531 0.830156i \(-0.688251\pi\)
−0.557531 + 0.830156i \(0.688251\pi\)
\(828\) 0 0
\(829\) 19.3561 0.672267 0.336133 0.941814i \(-0.390881\pi\)
0.336133 + 0.941814i \(0.390881\pi\)
\(830\) 0 0
\(831\) −3.66291 −0.127065
\(832\) 0 0
\(833\) 10.2374i 0.354706i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −55.6747 −1.92440
\(838\) 0 0
\(839\) 12.4450i 0.429649i −0.976653 0.214825i \(-0.931082\pi\)
0.976653 0.214825i \(-0.0689180\pi\)
\(840\) 0 0
\(841\) 42.7235 1.47323
\(842\) 0 0
\(843\) −3.13918 −0.108119
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.96636 0.101925
\(848\) 0 0
\(849\) −0.503262 −0.0172719
\(850\) 0 0
\(851\) 32.5501i 1.11580i
\(852\) 0 0
\(853\) 31.3054 1.07187 0.535937 0.844258i \(-0.319958\pi\)
0.535937 + 0.844258i \(0.319958\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.8613i 1.56659i −0.621649 0.783296i \(-0.713537\pi\)
0.621649 0.783296i \(-0.286463\pi\)
\(858\) 0 0
\(859\) −34.2981 −1.17023 −0.585117 0.810949i \(-0.698952\pi\)
−0.585117 + 0.810949i \(0.698952\pi\)
\(860\) 0 0
\(861\) 13.0475 0.444656
\(862\) 0 0
\(863\) −40.5052 −1.37881 −0.689406 0.724375i \(-0.742128\pi\)
−0.689406 + 0.724375i \(0.742128\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.1236i 0.819282i
\(868\) 0 0
\(869\) 13.5515i 0.459703i
\(870\) 0 0
\(871\) −0.231548 0.513881i −0.00784570 0.0174122i
\(872\) 0 0
\(873\) −1.37470 −0.0465265
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31.1002 1.05018 0.525089 0.851047i \(-0.324032\pi\)
0.525089 + 0.851047i \(0.324032\pi\)
\(878\) 0 0
\(879\) 37.9102i 1.27868i
\(880\) 0 0
\(881\) 15.8192 0.532964 0.266482 0.963840i \(-0.414139\pi\)
0.266482 + 0.963840i \(0.414139\pi\)
\(882\) 0 0
\(883\) 41.6408i 1.40133i 0.713492 + 0.700663i \(0.247112\pi\)
−0.713492 + 0.700663i \(0.752888\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.08603i 0.170772i 0.996348 + 0.0853860i \(0.0272124\pi\)
−0.996348 + 0.0853860i \(0.972788\pi\)
\(888\) 0 0
\(889\) 4.42407i 0.148379i
\(890\) 0 0
\(891\) 32.1098i 1.07572i
\(892\) 0 0
\(893\) 2.10157i 0.0703264i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −13.1187 29.1147i −0.438021 0.972113i
\(898\) 0 0
\(899\) 88.1279i 2.93923i
\(900\) 0 0
\(901\) 15.5778 0.518973
\(902\) 0 0
\(903\) 1.31598 0.0437929
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.2858i 0.540763i 0.962753 + 0.270381i \(0.0871498\pi\)
−0.962753 + 0.270381i \(0.912850\pi\)
\(908\) 0 0
\(909\) 0.664327 0.0220343
\(910\) 0 0
\(911\) −26.5745 −0.880453 −0.440226 0.897887i \(-0.645102\pi\)
−0.440226 + 0.897887i \(0.645102\pi\)
\(912\) 0 0
\(913\) 60.1279i 1.98994i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.92478 −0.327745
\(918\) 0 0
\(919\) 46.1232 1.52146 0.760732 0.649067i \(-0.224840\pi\)
0.760732 + 0.649067i \(0.224840\pi\)
\(920\) 0 0
\(921\) 47.4372i 1.56311i
\(922\) 0 0
\(923\) −5.40693 + 2.43629i −0.177971 + 0.0801914i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.58673i 0.0849595i
\(928\) 0 0
\(929\) 7.78701i 0.255484i −0.991807 0.127742i \(-0.959227\pi\)
0.991807 0.127742i \(-0.0407729\pi\)
\(930\) 0 0
\(931\) 5.51881i 0.180872i
\(932\) 0 0
\(933\) 55.9102i 1.83042i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.3601i 0.501793i −0.968014 0.250896i \(-0.919275\pi\)
0.968014 0.250896i \(-0.0807254\pi\)
\(938\) 0 0
\(939\) −7.74798 −0.252846
\(940\) 0 0
\(941\) 0.771007i 0.0251341i −0.999921 0.0125671i \(-0.996000\pi\)
0.999921 0.0125671i \(-0.00400032\pi\)
\(942\) 0 0
\(943\) 51.0903 1.66373
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.7948 −0.513262 −0.256631 0.966509i \(-0.582613\pi\)
−0.256631 + 0.966509i \(0.582613\pi\)
\(948\) 0 0
\(949\) −4.34297 9.63847i −0.140979 0.312878i
\(950\) 0 0
\(951\) 53.3865i 1.73117i
\(952\) 0 0
\(953\) 36.2374i 1.17385i −0.809643 0.586923i \(-0.800339\pi\)
0.809643 0.586923i \(-0.199661\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 54.3555 1.75706
\(958\) 0 0
\(959\) 3.06205 0.0988787
\(960\) 0 0
\(961\) −77.2842 −2.49304
\(962\) 0 0
\(963\) 1.15140i 0.0371034i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −20.8832 −0.671558 −0.335779 0.941941i \(-0.609000\pi\)
−0.335779 + 0.941941i \(0.609000\pi\)
\(968\) 0 0
\(969\) 2.34694i 0.0753945i
\(970\) 0 0
\(971\) −45.0757 −1.44655 −0.723274 0.690561i \(-0.757364\pi\)
−0.723274 + 0.690561i \(0.757364\pi\)
\(972\) 0 0
\(973\) −10.5501 −0.338220
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.8094 0.633758 0.316879 0.948466i \(-0.397365\pi\)
0.316879 + 0.948466i \(0.397365\pi\)
\(978\) 0 0
\(979\) −9.14903 −0.292404
\(980\) 0 0
\(981\) 0.0752228i 0.00240168i
\(982\) 0 0
\(983\) −57.6542 −1.83888 −0.919442 0.393226i \(-0.871359\pi\)
−0.919442 + 0.393226i \(0.871359\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.26519i 0.103932i
\(988\) 0 0
\(989\) 5.15300 0.163856
\(990\) 0 0
\(991\) 50.4650 1.60307 0.801537 0.597945i \(-0.204016\pi\)
0.801537 + 0.597945i \(0.204016\pi\)
\(992\) 0 0
\(993\) 38.3087 1.21569
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.45183i 0.0459800i −0.999736 0.0229900i \(-0.992681\pi\)
0.999736 0.0229900i \(-0.00731859\pi\)
\(998\) 0 0
\(999\) 32.9380i 1.04211i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.f.c.649.5 6
5.2 odd 4 2600.2.k.b.2001.5 6
5.3 odd 4 520.2.k.a.441.1 6
5.4 even 2 2600.2.f.d.649.2 6
13.12 even 2 2600.2.f.d.649.5 6
15.8 even 4 4680.2.g.j.2521.5 6
20.3 even 4 1040.2.k.b.961.5 6
65.8 even 4 6760.2.a.v.1.1 3
65.12 odd 4 2600.2.k.b.2001.6 6
65.18 even 4 6760.2.a.u.1.1 3
65.38 odd 4 520.2.k.a.441.2 yes 6
65.64 even 2 inner 2600.2.f.c.649.2 6
195.38 even 4 4680.2.g.j.2521.2 6
260.103 even 4 1040.2.k.b.961.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.k.a.441.1 6 5.3 odd 4
520.2.k.a.441.2 yes 6 65.38 odd 4
1040.2.k.b.961.5 6 20.3 even 4
1040.2.k.b.961.6 6 260.103 even 4
2600.2.f.c.649.2 6 65.64 even 2 inner
2600.2.f.c.649.5 6 1.1 even 1 trivial
2600.2.f.d.649.2 6 5.4 even 2
2600.2.f.d.649.5 6 13.12 even 2
2600.2.k.b.2001.5 6 5.2 odd 4
2600.2.k.b.2001.6 6 65.12 odd 4
4680.2.g.j.2521.2 6 195.38 even 4
4680.2.g.j.2521.5 6 15.8 even 4
6760.2.a.u.1.1 3 65.18 even 4
6760.2.a.v.1.1 3 65.8 even 4