Properties

Label 2600.2.f
Level $2600$
Weight $2$
Character orbit 2600.f
Rep. character $\chi_{2600}(649,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $8$
Sturm bound $840$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(840\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 444 64 380
Cusp forms 396 64 332
Eisenstein series 48 0 48

Trace form

\( 64 q - 68 q^{9} + 4 q^{29} + 40 q^{39} + 48 q^{49} + 84 q^{51} + 52 q^{61} + 32 q^{69} + 8 q^{79} + 48 q^{81} - 52 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2600.2.f.a 2600.f 65.d $4$ $20.761$ \(\Q(i, \sqrt{17})\) None 104.2.f.a \(0\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-3+\beta _{3})q^{7}+(-2+\beta _{3})q^{9}+\cdots\)
2600.2.f.b 2600.f 65.d $4$ $20.761$ \(\Q(i, \sqrt{17})\) None 104.2.f.a \(0\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(3-\beta _{3})q^{7}+(-2+\beta _{3})q^{9}+\cdots\)
2600.2.f.c 2600.f 65.d $6$ $20.761$ 6.0.350464.1 None 520.2.k.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(-1+\beta _{1}+\beta _{3})q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
2600.2.f.d 2600.f 65.d $6$ $20.761$ 6.0.350464.1 None 520.2.k.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(1-\beta _{1}-\beta _{3})q^{7}+(\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\)
2600.2.f.e 2600.f 65.d $8$ $20.761$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 520.2.k.b \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(-1+\beta _{1}+\beta _{2})q^{7}+(-2+\cdots)q^{9}+\cdots\)
2600.2.f.f 2600.f 65.d $8$ $20.761$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 520.2.k.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(1-\beta _{1}-\beta _{2})q^{7}+(-2-\beta _{7})q^{9}+\cdots\)
2600.2.f.g 2600.f 65.d $14$ $20.761$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 2600.2.k.d \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+\beta _{5}q^{7}+(-1+\beta _{2})q^{9}+(-\beta _{8}+\cdots)q^{11}+\cdots\)
2600.2.f.h 2600.f 65.d $14$ $20.761$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 2600.2.k.d \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}-\beta _{5}q^{7}+(-1+\beta _{2})q^{9}+(\beta _{8}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)