Properties

Label 513.2.y.a.271.1
Level $513$
Weight $2$
Character 513.271
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,9,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 271.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 513.271
Dual form 513.2.y.a.460.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37939 + 0.866025i) q^{2} +(3.37939 - 2.83564i) q^{4} +(1.03209 + 0.866025i) q^{5} +(2.43969 + 4.22567i) q^{7} +(-3.05303 + 5.28801i) q^{8} +(-3.20574 - 1.16679i) q^{10} +(-2.09240 + 3.62414i) q^{11} +(-0.460637 - 2.61240i) q^{13} +(-9.46451 - 7.94166i) q^{14} +(1.15270 - 6.53731i) q^{16} +(6.12449 - 2.22913i) q^{17} +(-2.52094 + 3.55596i) q^{19} +5.94356 q^{20} +(1.84002 - 10.4353i) q^{22} +(-1.93969 + 1.62760i) q^{23} +(-0.553033 - 3.13641i) q^{25} +(3.35844 + 5.81699i) q^{26} +(20.2271 + 7.36208i) q^{28} +(2.76604 + 1.00676i) q^{29} +(3.16637 + 5.48432i) q^{31} +(0.798133 + 4.52644i) q^{32} +(-12.6420 + 10.6079i) q^{34} +(-1.14156 + 6.47410i) q^{35} -5.24123 q^{37} +(2.91875 - 10.6442i) q^{38} +(-7.73055 + 2.81369i) q^{40} +(1.27584 - 7.23567i) q^{41} +(-2.51501 - 2.11035i) q^{43} +(3.20574 + 18.1806i) q^{44} +(3.20574 - 5.55250i) q^{46} +(-1.41875 - 0.516382i) q^{47} +(-8.40420 + 14.5565i) q^{49} +(4.03209 + 6.98378i) q^{50} +(-8.96451 - 7.52211i) q^{52} +(-3.05303 + 2.56180i) q^{53} +(-5.29813 + 1.92836i) q^{55} -29.7939 q^{56} -7.45336 q^{58} +(-3.35844 + 1.22237i) q^{59} +(2.28699 - 1.91901i) q^{61} +(-12.2836 - 10.3072i) q^{62} +(0.819078 + 1.41868i) q^{64} +(1.78699 - 3.09516i) q^{65} +(1.37939 + 0.502055i) q^{67} +(14.3760 - 24.8999i) q^{68} +(-2.89053 - 16.3930i) q^{70} +(0.343426 + 0.288169i) q^{71} +(-1.54916 + 8.78574i) q^{73} +(12.4709 - 4.53904i) q^{74} +(1.56418 + 19.1654i) q^{76} -20.4192 q^{77} +(-1.74170 + 9.87765i) q^{79} +(6.85117 - 5.74881i) q^{80} +(3.23055 + 18.3214i) q^{82} +(2.29813 + 3.98048i) q^{83} +(8.25150 + 3.00330i) q^{85} +(7.81180 + 2.84326i) q^{86} +(-12.7763 - 22.1292i) q^{88} +(3.24035 + 18.3770i) q^{89} +(9.91534 - 8.31996i) q^{91} +(-1.93969 + 11.0005i) q^{92} +3.82295 q^{94} +(-5.68139 + 1.48686i) q^{95} +(13.6284 - 4.96032i) q^{97} +(7.39053 - 41.9138i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} - 3 q^{5} + 9 q^{7} - 6 q^{8} - 9 q^{10} - 9 q^{11} + 6 q^{13} - 24 q^{14} + 9 q^{16} + 24 q^{17} - 12 q^{19} + 6 q^{20} - 9 q^{22} - 6 q^{23} + 9 q^{25} + 12 q^{26} + 42 q^{28}+ \cdots + 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37939 + 0.866025i −1.68248 + 0.612372i −0.993646 0.112548i \(-0.964099\pi\)
−0.688833 + 0.724920i \(0.741877\pi\)
\(3\) 0 0
\(4\) 3.37939 2.83564i 1.68969 1.41782i
\(5\) 1.03209 + 0.866025i 0.461564 + 0.387298i 0.843706 0.536805i \(-0.180369\pi\)
−0.382142 + 0.924104i \(0.624813\pi\)
\(6\) 0 0
\(7\) 2.43969 + 4.22567i 0.922117 + 1.59715i 0.796133 + 0.605121i \(0.206875\pi\)
0.125984 + 0.992032i \(0.459791\pi\)
\(8\) −3.05303 + 5.28801i −1.07941 + 1.86959i
\(9\) 0 0
\(10\) −3.20574 1.16679i −1.01374 0.368972i
\(11\) −2.09240 + 3.62414i −0.630881 + 1.09272i 0.356491 + 0.934299i \(0.383973\pi\)
−0.987372 + 0.158419i \(0.949360\pi\)
\(12\) 0 0
\(13\) −0.460637 2.61240i −0.127758 0.724550i −0.979632 0.200803i \(-0.935645\pi\)
0.851874 0.523747i \(-0.175466\pi\)
\(14\) −9.46451 7.94166i −2.52950 2.12250i
\(15\) 0 0
\(16\) 1.15270 6.53731i 0.288176 1.63433i
\(17\) 6.12449 2.22913i 1.48541 0.540644i 0.533170 0.846008i \(-0.321001\pi\)
0.952236 + 0.305364i \(0.0987783\pi\)
\(18\) 0 0
\(19\) −2.52094 + 3.55596i −0.578344 + 0.815793i
\(20\) 5.94356 1.32902
\(21\) 0 0
\(22\) 1.84002 10.4353i 0.392294 2.22481i
\(23\) −1.93969 + 1.62760i −0.404454 + 0.339377i −0.822212 0.569181i \(-0.807260\pi\)
0.417758 + 0.908558i \(0.362816\pi\)
\(24\) 0 0
\(25\) −0.553033 3.13641i −0.110607 0.627282i
\(26\) 3.35844 + 5.81699i 0.658644 + 1.14081i
\(27\) 0 0
\(28\) 20.2271 + 7.36208i 3.82257 + 1.39130i
\(29\) 2.76604 + 1.00676i 0.513642 + 0.186950i 0.585820 0.810442i \(-0.300773\pi\)
−0.0721780 + 0.997392i \(0.522995\pi\)
\(30\) 0 0
\(31\) 3.16637 + 5.48432i 0.568698 + 0.985013i 0.996695 + 0.0812332i \(0.0258859\pi\)
−0.427998 + 0.903780i \(0.640781\pi\)
\(32\) 0.798133 + 4.52644i 0.141091 + 0.800169i
\(33\) 0 0
\(34\) −12.6420 + 10.6079i −2.16809 + 1.81924i
\(35\) −1.14156 + 6.47410i −0.192959 + 1.09432i
\(36\) 0 0
\(37\) −5.24123 −0.861653 −0.430826 0.902435i \(-0.641778\pi\)
−0.430826 + 0.902435i \(0.641778\pi\)
\(38\) 2.91875 10.6442i 0.473483 1.72672i
\(39\) 0 0
\(40\) −7.73055 + 2.81369i −1.22231 + 0.444884i
\(41\) 1.27584 7.23567i 0.199253 1.13002i −0.706976 0.707237i \(-0.749941\pi\)
0.906230 0.422785i \(-0.138948\pi\)
\(42\) 0 0
\(43\) −2.51501 2.11035i −0.383536 0.321825i 0.430553 0.902565i \(-0.358319\pi\)
−0.814089 + 0.580740i \(0.802763\pi\)
\(44\) 3.20574 + 18.1806i 0.483283 + 2.74083i
\(45\) 0 0
\(46\) 3.20574 5.55250i 0.472660 0.818671i
\(47\) −1.41875 0.516382i −0.206946 0.0753221i 0.236467 0.971639i \(-0.424010\pi\)
−0.443413 + 0.896317i \(0.646233\pi\)
\(48\) 0 0
\(49\) −8.40420 + 14.5565i −1.20060 + 2.07950i
\(50\) 4.03209 + 6.98378i 0.570223 + 0.987656i
\(51\) 0 0
\(52\) −8.96451 7.52211i −1.24315 1.04313i
\(53\) −3.05303 + 2.56180i −0.419366 + 0.351890i −0.827922 0.560843i \(-0.810477\pi\)
0.408556 + 0.912733i \(0.366033\pi\)
\(54\) 0 0
\(55\) −5.29813 + 1.92836i −0.714400 + 0.260020i
\(56\) −29.7939 −3.98137
\(57\) 0 0
\(58\) −7.45336 −0.978675
\(59\) −3.35844 + 1.22237i −0.437232 + 0.159139i −0.551251 0.834339i \(-0.685850\pi\)
0.114020 + 0.993478i \(0.463627\pi\)
\(60\) 0 0
\(61\) 2.28699 1.91901i 0.292819 0.245704i −0.484529 0.874775i \(-0.661009\pi\)
0.777348 + 0.629071i \(0.216565\pi\)
\(62\) −12.2836 10.3072i −1.56002 1.30901i
\(63\) 0 0
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) 1.78699 3.09516i 0.221649 0.383907i
\(66\) 0 0
\(67\) 1.37939 + 0.502055i 0.168519 + 0.0613358i 0.424902 0.905239i \(-0.360309\pi\)
−0.256383 + 0.966575i \(0.582531\pi\)
\(68\) 14.3760 24.8999i 1.74334 3.01956i
\(69\) 0 0
\(70\) −2.89053 16.3930i −0.345484 1.95934i
\(71\) 0.343426 + 0.288169i 0.0407572 + 0.0341993i 0.662939 0.748674i \(-0.269309\pi\)
−0.622182 + 0.782873i \(0.713753\pi\)
\(72\) 0 0
\(73\) −1.54916 + 8.78574i −0.181316 + 1.02829i 0.749282 + 0.662251i \(0.230399\pi\)
−0.930598 + 0.366042i \(0.880713\pi\)
\(74\) 12.4709 4.53904i 1.44971 0.527652i
\(75\) 0 0
\(76\) 1.56418 + 19.1654i 0.179423 + 2.19843i
\(77\) −20.4192 −2.32699
\(78\) 0 0
\(79\) −1.74170 + 9.87765i −0.195956 + 1.11132i 0.715094 + 0.699028i \(0.246384\pi\)
−0.911051 + 0.412295i \(0.864727\pi\)
\(80\) 6.85117 5.74881i 0.765984 0.642737i
\(81\) 0 0
\(82\) 3.23055 + 18.3214i 0.356755 + 2.02326i
\(83\) 2.29813 + 3.98048i 0.252253 + 0.436915i 0.964146 0.265373i \(-0.0854952\pi\)
−0.711893 + 0.702288i \(0.752162\pi\)
\(84\) 0 0
\(85\) 8.25150 + 3.00330i 0.895000 + 0.325754i
\(86\) 7.81180 + 2.84326i 0.842368 + 0.306597i
\(87\) 0 0
\(88\) −12.7763 22.1292i −1.36196 2.35898i
\(89\) 3.24035 + 18.3770i 0.343477 + 1.94795i 0.317396 + 0.948293i \(0.397191\pi\)
0.0260804 + 0.999660i \(0.491697\pi\)
\(90\) 0 0
\(91\) 9.91534 8.31996i 1.03941 0.872169i
\(92\) −1.93969 + 11.0005i −0.202227 + 1.14689i
\(93\) 0 0
\(94\) 3.82295 0.394307
\(95\) −5.68139 + 1.48686i −0.582898 + 0.152549i
\(96\) 0 0
\(97\) 13.6284 4.96032i 1.38375 0.503644i 0.460437 0.887692i \(-0.347693\pi\)
0.923313 + 0.384049i \(0.125471\pi\)
\(98\) 7.39053 41.9138i 0.746556 4.23393i
\(99\) 0 0
\(100\) −10.7626 9.03093i −1.07626 0.903093i
\(101\) 1.76217 + 9.99379i 0.175343 + 0.994419i 0.937747 + 0.347318i \(0.112908\pi\)
−0.762405 + 0.647101i \(0.775981\pi\)
\(102\) 0 0
\(103\) 2.12449 3.67972i 0.209332 0.362573i −0.742172 0.670209i \(-0.766204\pi\)
0.951504 + 0.307636i \(0.0995378\pi\)
\(104\) 15.2208 + 5.53990i 1.49252 + 0.543232i
\(105\) 0 0
\(106\) 5.04576 8.73951i 0.490087 0.848856i
\(107\) −5.57532 9.65674i −0.538987 0.933552i −0.998959 0.0456191i \(-0.985474\pi\)
0.459972 0.887933i \(-0.347859\pi\)
\(108\) 0 0
\(109\) −7.86618 6.60051i −0.753444 0.632214i 0.182968 0.983119i \(-0.441430\pi\)
−0.936411 + 0.350905i \(0.885874\pi\)
\(110\) 10.9363 9.17664i 1.04273 0.874958i
\(111\) 0 0
\(112\) 30.4368 11.0781i 2.87600 1.04678i
\(113\) 2.85710 0.268773 0.134387 0.990929i \(-0.457094\pi\)
0.134387 + 0.990929i \(0.457094\pi\)
\(114\) 0 0
\(115\) −3.41147 −0.318122
\(116\) 12.2023 4.44129i 1.13296 0.412363i
\(117\) 0 0
\(118\) 6.93242 5.81699i 0.638181 0.535497i
\(119\) 24.3614 + 20.4417i 2.23321 + 1.87388i
\(120\) 0 0
\(121\) −3.25624 5.63998i −0.296022 0.512726i
\(122\) −3.77972 + 6.54666i −0.342199 + 0.592707i
\(123\) 0 0
\(124\) 26.2520 + 9.55493i 2.35750 + 0.858058i
\(125\) 5.51367 9.54996i 0.493158 0.854174i
\(126\) 0 0
\(127\) −2.92127 16.5674i −0.259221 1.47012i −0.785000 0.619495i \(-0.787337\pi\)
0.525779 0.850621i \(-0.323774\pi\)
\(128\) −10.2194 8.57510i −0.903277 0.757939i
\(129\) 0 0
\(130\) −1.57145 + 8.91215i −0.137825 + 0.781647i
\(131\) 4.30066 1.56531i 0.375750 0.136762i −0.147239 0.989101i \(-0.547039\pi\)
0.522990 + 0.852339i \(0.324817\pi\)
\(132\) 0 0
\(133\) −21.1766 1.97724i −1.83625 0.171448i
\(134\) −3.71688 −0.321090
\(135\) 0 0
\(136\) −6.91060 + 39.1919i −0.592579 + 3.36068i
\(137\) 15.5556 13.0527i 1.32900 1.11516i 0.344691 0.938716i \(-0.387984\pi\)
0.984310 0.176448i \(-0.0564608\pi\)
\(138\) 0 0
\(139\) −2.84642 16.1428i −0.241430 1.36922i −0.828639 0.559783i \(-0.810885\pi\)
0.587209 0.809435i \(-0.300227\pi\)
\(140\) 14.5005 + 25.1155i 1.22551 + 2.12265i
\(141\) 0 0
\(142\) −1.06670 0.388249i −0.0895158 0.0325811i
\(143\) 10.4315 + 3.79677i 0.872329 + 0.317502i
\(144\) 0 0
\(145\) 1.98293 + 3.43453i 0.164673 + 0.285222i
\(146\) −3.92262 22.2463i −0.324638 1.84111i
\(147\) 0 0
\(148\) −17.7121 + 14.8622i −1.45593 + 1.22167i
\(149\) −0.870767 + 4.93837i −0.0713360 + 0.404567i 0.928141 + 0.372229i \(0.121406\pi\)
−0.999477 + 0.0323378i \(0.989705\pi\)
\(150\) 0 0
\(151\) 6.04189 0.491682 0.245841 0.969310i \(-0.420936\pi\)
0.245841 + 0.969310i \(0.420936\pi\)
\(152\) −11.1074 24.1872i −0.900930 1.96184i
\(153\) 0 0
\(154\) 48.5852 17.6836i 3.91511 1.42498i
\(155\) −1.48158 + 8.40247i −0.119004 + 0.674902i
\(156\) 0 0
\(157\) 10.8289 + 9.08651i 0.864239 + 0.725182i 0.962877 0.269941i \(-0.0870042\pi\)
−0.0986383 + 0.995123i \(0.531449\pi\)
\(158\) −4.41013 25.0111i −0.350851 1.98978i
\(159\) 0 0
\(160\) −3.09627 + 5.36289i −0.244781 + 0.423974i
\(161\) −11.6099 4.22567i −0.914991 0.333030i
\(162\) 0 0
\(163\) −0.669778 + 1.16009i −0.0524610 + 0.0908652i −0.891063 0.453879i \(-0.850040\pi\)
0.838602 + 0.544744i \(0.183373\pi\)
\(164\) −16.2062 28.0700i −1.26549 2.19190i
\(165\) 0 0
\(166\) −8.91534 7.48086i −0.691965 0.580628i
\(167\) 2.43763 2.04542i 0.188630 0.158279i −0.543582 0.839356i \(-0.682932\pi\)
0.732212 + 0.681077i \(0.238488\pi\)
\(168\) 0 0
\(169\) 5.60354 2.03952i 0.431042 0.156886i
\(170\) −22.2344 −1.70530
\(171\) 0 0
\(172\) −14.4834 −1.10435
\(173\) −20.5005 + 7.46156i −1.55862 + 0.567292i −0.970420 0.241423i \(-0.922386\pi\)
−0.588202 + 0.808714i \(0.700164\pi\)
\(174\) 0 0
\(175\) 11.9042 9.98881i 0.899873 0.755083i
\(176\) 21.2802 + 17.8562i 1.60405 + 1.34596i
\(177\) 0 0
\(178\) −23.6250 40.9196i −1.77077 3.06705i
\(179\) −4.84002 + 8.38316i −0.361760 + 0.626587i −0.988251 0.152842i \(-0.951157\pi\)
0.626490 + 0.779429i \(0.284491\pi\)
\(180\) 0 0
\(181\) 5.73308 + 2.08667i 0.426136 + 0.155101i 0.546180 0.837668i \(-0.316081\pi\)
−0.120044 + 0.992769i \(0.538304\pi\)
\(182\) −16.3871 + 28.3833i −1.21469 + 2.10391i
\(183\) 0 0
\(184\) −2.68479 15.2262i −0.197926 1.12249i
\(185\) −5.40941 4.53904i −0.397708 0.333717i
\(186\) 0 0
\(187\) −4.73618 + 26.8602i −0.346344 + 1.96421i
\(188\) −6.25877 + 2.27801i −0.456468 + 0.166141i
\(189\) 0 0
\(190\) 12.2306 8.45805i 0.887297 0.613611i
\(191\) 9.04963 0.654808 0.327404 0.944884i \(-0.393826\pi\)
0.327404 + 0.944884i \(0.393826\pi\)
\(192\) 0 0
\(193\) 2.99747 16.9995i 0.215763 1.22365i −0.663815 0.747897i \(-0.731064\pi\)
0.879578 0.475755i \(-0.157825\pi\)
\(194\) −28.1313 + 23.6050i −2.01971 + 1.69474i
\(195\) 0 0
\(196\) 12.8760 + 73.0233i 0.919713 + 5.21595i
\(197\) 4.47519 + 7.75125i 0.318844 + 0.552254i 0.980247 0.197777i \(-0.0633721\pi\)
−0.661403 + 0.750030i \(0.730039\pi\)
\(198\) 0 0
\(199\) −13.9226 5.06742i −0.986948 0.359220i −0.202410 0.979301i \(-0.564878\pi\)
−0.784538 + 0.620081i \(0.787100\pi\)
\(200\) 18.2738 + 6.65111i 1.29215 + 0.470305i
\(201\) 0 0
\(202\) −12.8478 22.2530i −0.903965 1.56571i
\(203\) 2.49407 + 14.1446i 0.175049 + 0.992755i
\(204\) 0 0
\(205\) 7.58306 6.36295i 0.529624 0.444407i
\(206\) −1.86824 + 10.5953i −0.130167 + 0.738211i
\(207\) 0 0
\(208\) −17.6091 −1.22097
\(209\) −7.61246 16.5767i −0.526565 1.14664i
\(210\) 0 0
\(211\) 19.7690 7.19534i 1.36096 0.495348i 0.444607 0.895726i \(-0.353343\pi\)
0.916350 + 0.400378i \(0.131121\pi\)
\(212\) −3.05303 + 17.3146i −0.209683 + 1.18917i
\(213\) 0 0
\(214\) 21.6288 + 18.1487i 1.47852 + 1.24062i
\(215\) −0.768104 4.35613i −0.0523842 0.297086i
\(216\) 0 0
\(217\) −15.4500 + 26.7601i −1.04881 + 1.81659i
\(218\) 24.4329 + 8.89284i 1.65480 + 0.602299i
\(219\) 0 0
\(220\) −12.4363 + 21.5403i −0.838454 + 1.45225i
\(221\) −8.64455 14.9728i −0.581496 1.00718i
\(222\) 0 0
\(223\) 8.75671 + 7.34775i 0.586393 + 0.492042i 0.887039 0.461694i \(-0.152758\pi\)
−0.300647 + 0.953736i \(0.597202\pi\)
\(224\) −17.1800 + 14.4158i −1.14789 + 0.963194i
\(225\) 0 0
\(226\) −6.79813 + 2.47432i −0.452205 + 0.164589i
\(227\) 14.1070 0.936315 0.468157 0.883645i \(-0.344918\pi\)
0.468157 + 0.883645i \(0.344918\pi\)
\(228\) 0 0
\(229\) −10.6108 −0.701182 −0.350591 0.936529i \(-0.614019\pi\)
−0.350591 + 0.936529i \(0.614019\pi\)
\(230\) 8.11721 2.95442i 0.535233 0.194809i
\(231\) 0 0
\(232\) −13.7686 + 11.5532i −0.903951 + 0.758505i
\(233\) −22.0835 18.5303i −1.44674 1.21396i −0.934916 0.354869i \(-0.884526\pi\)
−0.511824 0.859090i \(-0.671030\pi\)
\(234\) 0 0
\(235\) −1.01707 1.76162i −0.0663466 0.114916i
\(236\) −7.88326 + 13.6542i −0.513156 + 0.888813i
\(237\) 0 0
\(238\) −75.6682 27.5410i −4.90484 1.78522i
\(239\) −5.22668 + 9.05288i −0.338086 + 0.585582i −0.984073 0.177767i \(-0.943113\pi\)
0.645987 + 0.763349i \(0.276446\pi\)
\(240\) 0 0
\(241\) −1.29679 7.35446i −0.0835335 0.473742i −0.997663 0.0683207i \(-0.978236\pi\)
0.914130 0.405421i \(-0.132875\pi\)
\(242\) 12.6322 + 10.5997i 0.812030 + 0.681374i
\(243\) 0 0
\(244\) 2.28699 12.9702i 0.146409 0.830329i
\(245\) −21.2802 + 7.74535i −1.35954 + 0.494832i
\(246\) 0 0
\(247\) 10.4508 + 4.94772i 0.664971 + 0.314816i
\(248\) −38.6682 −2.45543
\(249\) 0 0
\(250\) −4.84864 + 27.4980i −0.306655 + 1.73913i
\(251\) 15.0929 12.6644i 0.952653 0.799371i −0.0270893 0.999633i \(-0.508624\pi\)
0.979742 + 0.200262i \(0.0641794\pi\)
\(252\) 0 0
\(253\) −1.84002 10.4353i −0.115681 0.656061i
\(254\) 21.2986 + 36.8903i 1.33639 + 2.31470i
\(255\) 0 0
\(256\) 28.6634 + 10.4326i 1.79146 + 0.652040i
\(257\) −6.41787 2.33591i −0.400336 0.145710i 0.134003 0.990981i \(-0.457217\pi\)
−0.534338 + 0.845271i \(0.679439\pi\)
\(258\) 0 0
\(259\) −12.7870 22.1477i −0.794545 1.37619i
\(260\) −2.73783 15.5270i −0.169793 0.962943i
\(261\) 0 0
\(262\) −8.87733 + 7.44896i −0.548443 + 0.460198i
\(263\) 2.15405 12.2162i 0.132824 0.753284i −0.843526 0.537089i \(-0.819524\pi\)
0.976350 0.216195i \(-0.0693648\pi\)
\(264\) 0 0
\(265\) −5.36959 −0.329851
\(266\) 52.0997 13.6349i 3.19444 0.836009i
\(267\) 0 0
\(268\) 6.08512 2.21480i 0.371708 0.135291i
\(269\) −1.35070 + 7.66020i −0.0823536 + 0.467051i 0.915543 + 0.402221i \(0.131762\pi\)
−0.997896 + 0.0648299i \(0.979350\pi\)
\(270\) 0 0
\(271\) −1.95084 1.63695i −0.118505 0.0994374i 0.581609 0.813468i \(-0.302423\pi\)
−0.700114 + 0.714031i \(0.746868\pi\)
\(272\) −7.51279 42.6072i −0.455530 2.58344i
\(273\) 0 0
\(274\) −25.7087 + 44.5288i −1.55312 + 2.69008i
\(275\) 12.5239 + 4.55834i 0.755222 + 0.274878i
\(276\) 0 0
\(277\) 12.5963 21.8174i 0.756836 1.31088i −0.187620 0.982242i \(-0.560077\pi\)
0.944456 0.328637i \(-0.106589\pi\)
\(278\) 20.7528 + 35.9450i 1.24467 + 2.15584i
\(279\) 0 0
\(280\) −30.7499 25.8022i −1.83766 1.54198i
\(281\) −7.03667 + 5.90447i −0.419773 + 0.352231i −0.828077 0.560615i \(-0.810565\pi\)
0.408304 + 0.912846i \(0.366120\pi\)
\(282\) 0 0
\(283\) 6.83022 2.48600i 0.406015 0.147777i −0.130936 0.991391i \(-0.541798\pi\)
0.536951 + 0.843614i \(0.319576\pi\)
\(284\) 1.97771 0.117356
\(285\) 0 0
\(286\) −28.1088 −1.66211
\(287\) 33.6883 12.2615i 1.98855 0.723775i
\(288\) 0 0
\(289\) 19.5175 16.3772i 1.14809 0.963362i
\(290\) −7.69253 6.45480i −0.451721 0.379039i
\(291\) 0 0
\(292\) 19.6780 + 34.0833i 1.15157 + 1.99457i
\(293\) 10.0039 17.3272i 0.584432 1.01227i −0.410514 0.911854i \(-0.634651\pi\)
0.994946 0.100412i \(-0.0320161\pi\)
\(294\) 0 0
\(295\) −4.52481 1.64690i −0.263445 0.0958861i
\(296\) 16.0016 27.7157i 0.930077 1.61094i
\(297\) 0 0
\(298\) −2.20486 12.5044i −0.127724 0.724359i
\(299\) 5.14543 + 4.31753i 0.297568 + 0.249689i
\(300\) 0 0
\(301\) 2.78177 15.7762i 0.160339 0.909327i
\(302\) −14.3760 + 5.23243i −0.827245 + 0.301092i
\(303\) 0 0
\(304\) 20.3405 + 20.5792i 1.16661 + 1.18030i
\(305\) 4.02229 0.230316
\(306\) 0 0
\(307\) −0.102196 + 0.579585i −0.00583266 + 0.0330787i −0.987585 0.157084i \(-0.949791\pi\)
0.981753 + 0.190163i \(0.0609017\pi\)
\(308\) −69.0044 + 57.9016i −3.93189 + 3.29925i
\(309\) 0 0
\(310\) −3.75150 21.2758i −0.213071 1.20838i
\(311\) −3.59240 6.22221i −0.203706 0.352829i 0.746014 0.665931i \(-0.231965\pi\)
−0.949720 + 0.313101i \(0.898632\pi\)
\(312\) 0 0
\(313\) 11.1903 + 4.07294i 0.632514 + 0.230216i 0.638325 0.769767i \(-0.279628\pi\)
−0.00581126 + 0.999983i \(0.501850\pi\)
\(314\) −33.6352 12.2422i −1.89815 0.690868i
\(315\) 0 0
\(316\) 22.1236 + 38.3192i 1.24455 + 2.15562i
\(317\) 0.651826 + 3.69669i 0.0366102 + 0.207627i 0.997626 0.0688673i \(-0.0219385\pi\)
−0.961016 + 0.276494i \(0.910827\pi\)
\(318\) 0 0
\(319\) −9.43629 + 7.91799i −0.528331 + 0.443322i
\(320\) −0.383256 + 2.17355i −0.0214246 + 0.121505i
\(321\) 0 0
\(322\) 31.2841 1.74339
\(323\) −7.51279 + 27.3979i −0.418023 + 1.52446i
\(324\) 0 0
\(325\) −7.93882 + 2.88949i −0.440366 + 0.160280i
\(326\) 0.588993 3.34034i 0.0326213 0.185005i
\(327\) 0 0
\(328\) 34.3671 + 28.8374i 1.89761 + 1.59228i
\(329\) −1.27925 7.25498i −0.0705272 0.399980i
\(330\) 0 0
\(331\) −4.94222 + 8.56017i −0.271649 + 0.470510i −0.969284 0.245943i \(-0.920902\pi\)
0.697635 + 0.716453i \(0.254236\pi\)
\(332\) 19.0535 + 6.93491i 1.04570 + 0.380602i
\(333\) 0 0
\(334\) −4.02869 + 6.97789i −0.220440 + 0.381813i
\(335\) 0.988856 + 1.71275i 0.0540270 + 0.0935774i
\(336\) 0 0
\(337\) 24.5594 + 20.6078i 1.33784 + 1.12258i 0.982176 + 0.187964i \(0.0601888\pi\)
0.355661 + 0.934615i \(0.384256\pi\)
\(338\) −11.5667 + 9.70562i −0.629146 + 0.527916i
\(339\) 0 0
\(340\) 36.4013 13.2490i 1.97414 0.718527i
\(341\) −26.5012 −1.43512
\(342\) 0 0
\(343\) −47.8590 −2.58414
\(344\) 18.8380 6.85646i 1.01567 0.369675i
\(345\) 0 0
\(346\) 42.3166 35.5079i 2.27495 1.90891i
\(347\) −15.3498 12.8800i −0.824022 0.691436i 0.129889 0.991529i \(-0.458538\pi\)
−0.953910 + 0.300092i \(0.902983\pi\)
\(348\) 0 0
\(349\) −1.63563 2.83299i −0.0875532 0.151647i 0.818923 0.573903i \(-0.194571\pi\)
−0.906476 + 0.422257i \(0.861238\pi\)
\(350\) −19.6741 + 34.0766i −1.05163 + 1.82147i
\(351\) 0 0
\(352\) −18.0744 6.57856i −0.963371 0.350638i
\(353\) 18.6800 32.3548i 0.994238 1.72207i 0.404289 0.914631i \(-0.367519\pi\)
0.589949 0.807440i \(-0.299148\pi\)
\(354\) 0 0
\(355\) 0.104885 + 0.594831i 0.00556671 + 0.0315704i
\(356\) 63.0608 + 52.9143i 3.34222 + 2.80445i
\(357\) 0 0
\(358\) 4.25624 24.1384i 0.224949 1.27575i
\(359\) 11.0522 4.02266i 0.583310 0.212308i −0.0334742 0.999440i \(-0.510657\pi\)
0.616785 + 0.787132i \(0.288435\pi\)
\(360\) 0 0
\(361\) −6.28968 17.9287i −0.331036 0.943618i
\(362\) −15.4483 −0.811945
\(363\) 0 0
\(364\) 9.91534 56.2327i 0.519705 2.94740i
\(365\) −9.20755 + 7.72605i −0.481945 + 0.404400i
\(366\) 0 0
\(367\) 0.413534 + 2.34527i 0.0215863 + 0.122422i 0.993697 0.112102i \(-0.0357582\pi\)
−0.972110 + 0.234523i \(0.924647\pi\)
\(368\) 8.40420 + 14.5565i 0.438099 + 0.758810i
\(369\) 0 0
\(370\) 16.8020 + 6.11543i 0.873495 + 0.317926i
\(371\) −18.2738 6.65111i −0.948728 0.345309i
\(372\) 0 0
\(373\) 8.73530 + 15.1300i 0.452297 + 0.783401i 0.998528 0.0542334i \(-0.0172715\pi\)
−0.546232 + 0.837634i \(0.683938\pi\)
\(374\) −11.9924 68.0124i −0.620113 3.51684i
\(375\) 0 0
\(376\) 7.06212 5.92582i 0.364201 0.305601i
\(377\) 1.35591 7.68977i 0.0698331 0.396043i
\(378\) 0 0
\(379\) 10.2199 0.524960 0.262480 0.964937i \(-0.415460\pi\)
0.262480 + 0.964937i \(0.415460\pi\)
\(380\) −14.9834 + 21.1351i −0.768632 + 1.08421i
\(381\) 0 0
\(382\) −21.5326 + 7.83721i −1.10170 + 0.400987i
\(383\) −4.10994 + 23.3086i −0.210008 + 1.19101i 0.679354 + 0.733811i \(0.262260\pi\)
−0.889362 + 0.457204i \(0.848851\pi\)
\(384\) 0 0
\(385\) −21.0744 17.6836i −1.07405 0.901238i
\(386\) 7.58987 + 43.0443i 0.386314 + 2.19090i
\(387\) 0 0
\(388\) 31.9898 55.4079i 1.62404 2.81291i
\(389\) 13.6775 + 4.97821i 0.693478 + 0.252405i 0.664624 0.747178i \(-0.268592\pi\)
0.0288542 + 0.999584i \(0.490814\pi\)
\(390\) 0 0
\(391\) −8.25150 + 14.2920i −0.417296 + 0.722778i
\(392\) −51.3166 88.8830i −2.59188 4.48927i
\(393\) 0 0
\(394\) −17.3610 14.5676i −0.874633 0.733904i
\(395\) −10.3519 + 8.68626i −0.520860 + 0.437053i
\(396\) 0 0
\(397\) 1.49747 0.545036i 0.0751561 0.0273546i −0.304169 0.952618i \(-0.598379\pi\)
0.379325 + 0.925264i \(0.376156\pi\)
\(398\) 37.5158 1.88050
\(399\) 0 0
\(400\) −21.1411 −1.05706
\(401\) −0.714660 + 0.260115i −0.0356884 + 0.0129895i −0.359803 0.933028i \(-0.617156\pi\)
0.324114 + 0.946018i \(0.394934\pi\)
\(402\) 0 0
\(403\) 12.8687 10.7981i 0.641036 0.537893i
\(404\) 34.2939 + 28.7760i 1.70618 + 1.43166i
\(405\) 0 0
\(406\) −18.1839 31.4955i −0.902453 1.56309i
\(407\) 10.9667 18.9949i 0.543601 0.941544i
\(408\) 0 0
\(409\) −7.38326 2.68729i −0.365078 0.132878i 0.152966 0.988231i \(-0.451118\pi\)
−0.518044 + 0.855354i \(0.673340\pi\)
\(410\) −12.5326 + 21.7070i −0.618939 + 1.07203i
\(411\) 0 0
\(412\) −3.25490 18.4595i −0.160357 0.909432i
\(413\) −13.3589 11.2095i −0.657349 0.551581i
\(414\) 0 0
\(415\) −1.07532 + 6.09845i −0.0527855 + 0.299361i
\(416\) 11.4572 4.17009i 0.561737 0.204456i
\(417\) 0 0
\(418\) 32.4688 + 32.8498i 1.58810 + 1.60674i
\(419\) 6.77930 0.331191 0.165595 0.986194i \(-0.447045\pi\)
0.165595 + 0.986194i \(0.447045\pi\)
\(420\) 0 0
\(421\) −4.10307 + 23.2697i −0.199972 + 1.13410i 0.705187 + 0.709021i \(0.250863\pi\)
−0.905159 + 0.425074i \(0.860248\pi\)
\(422\) −40.8068 + 34.2410i −1.98644 + 1.66682i
\(423\) 0 0
\(424\) −4.22580 23.9657i −0.205223 1.16388i
\(425\) −10.3785 17.9761i −0.503432 0.871969i
\(426\) 0 0
\(427\) 13.6887 + 4.98227i 0.662441 + 0.241109i
\(428\) −46.2242 16.8242i −2.23433 0.813230i
\(429\) 0 0
\(430\) 5.60014 + 9.69972i 0.270063 + 0.467762i
\(431\) 3.15729 + 17.9059i 0.152081 + 0.862496i 0.961406 + 0.275134i \(0.0887223\pi\)
−0.809325 + 0.587362i \(0.800167\pi\)
\(432\) 0 0
\(433\) −6.87211 + 5.76639i −0.330253 + 0.277115i −0.792803 0.609478i \(-0.791379\pi\)
0.462550 + 0.886593i \(0.346935\pi\)
\(434\) 13.5865 77.0527i 0.652171 3.69865i
\(435\) 0 0
\(436\) −45.2995 −2.16945
\(437\) −0.897804 11.0005i −0.0429478 0.526227i
\(438\) 0 0
\(439\) 0.337496 0.122839i 0.0161078 0.00586276i −0.333954 0.942589i \(-0.608383\pi\)
0.350061 + 0.936727i \(0.386161\pi\)
\(440\) 5.97818 33.9039i 0.284998 1.61631i
\(441\) 0 0
\(442\) 33.5355 + 28.1397i 1.59512 + 1.33847i
\(443\) −2.52910 14.3432i −0.120161 0.681467i −0.984065 0.177810i \(-0.943099\pi\)
0.863904 0.503657i \(-0.168012\pi\)
\(444\) 0 0
\(445\) −12.5706 + 21.7729i −0.595902 + 1.03213i
\(446\) −27.1989 9.89960i −1.28791 0.468760i
\(447\) 0 0
\(448\) −3.99660 + 6.92231i −0.188821 + 0.327048i
\(449\) 0.0248149 + 0.0429807i 0.00117109 + 0.00202839i 0.866610 0.498985i \(-0.166294\pi\)
−0.865439 + 0.501014i \(0.832961\pi\)
\(450\) 0 0
\(451\) 23.5535 + 19.7637i 1.10909 + 0.930638i
\(452\) 9.65523 8.10170i 0.454144 0.381072i
\(453\) 0 0
\(454\) −33.5660 + 12.2170i −1.57533 + 0.573373i
\(455\) 17.4388 0.817544
\(456\) 0 0
\(457\) 35.5303 1.66204 0.831019 0.556243i \(-0.187758\pi\)
0.831019 + 0.556243i \(0.187758\pi\)
\(458\) 25.2472 9.18923i 1.17972 0.429385i
\(459\) 0 0
\(460\) −11.5287 + 9.67372i −0.537528 + 0.451039i
\(461\) 8.85188 + 7.42761i 0.412273 + 0.345938i 0.825215 0.564819i \(-0.191054\pi\)
−0.412941 + 0.910758i \(0.635499\pi\)
\(462\) 0 0
\(463\) 6.76739 + 11.7215i 0.314507 + 0.544742i 0.979333 0.202256i \(-0.0648274\pi\)
−0.664825 + 0.746999i \(0.731494\pi\)
\(464\) 9.76991 16.9220i 0.453557 0.785584i
\(465\) 0 0
\(466\) 68.5929 + 24.9658i 3.17751 + 1.15652i
\(467\) −12.4697 + 21.5982i −0.577030 + 0.999445i 0.418788 + 0.908084i \(0.362455\pi\)
−0.995818 + 0.0913611i \(0.970878\pi\)
\(468\) 0 0
\(469\) 1.24376 + 7.05369i 0.0574313 + 0.325709i
\(470\) 3.94562 + 3.31077i 0.181998 + 0.152714i
\(471\) 0 0
\(472\) 3.78952 21.4914i 0.174427 0.989222i
\(473\) 12.9106 4.69907i 0.593630 0.216064i
\(474\) 0 0
\(475\) 12.5471 + 5.94015i 0.575701 + 0.272553i
\(476\) 140.292 6.43027
\(477\) 0 0
\(478\) 4.59627 26.0667i 0.210228 1.19226i
\(479\) 5.19846 4.36203i 0.237524 0.199306i −0.516254 0.856436i \(-0.672674\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(480\) 0 0
\(481\) 2.41431 + 13.6922i 0.110083 + 0.624311i
\(482\) 9.45471 + 16.3760i 0.430650 + 0.745908i
\(483\) 0 0
\(484\) −26.9971 9.82613i −1.22714 0.446642i
\(485\) 18.3614 + 6.68302i 0.833750 + 0.303460i
\(486\) 0 0
\(487\) −16.8097 29.1153i −0.761722 1.31934i −0.941962 0.335719i \(-0.891021\pi\)
0.180240 0.983623i \(-0.442313\pi\)
\(488\) 3.16550 + 17.9524i 0.143295 + 0.812668i
\(489\) 0 0
\(490\) 43.9261 36.8584i 1.98438 1.66509i
\(491\) 4.97612 28.2210i 0.224569 1.27359i −0.638938 0.769258i \(-0.720626\pi\)
0.863507 0.504336i \(-0.168263\pi\)
\(492\) 0 0
\(493\) 19.1848 0.864040
\(494\) −29.1514 2.72183i −1.31158 0.122461i
\(495\) 0 0
\(496\) 39.5026 14.3778i 1.77372 0.645581i
\(497\) −0.379852 + 2.15425i −0.0170387 + 0.0966312i
\(498\) 0 0
\(499\) −32.2859 27.0911i −1.44531 1.21276i −0.935912 0.352233i \(-0.885422\pi\)
−0.509401 0.860529i \(-0.670133\pi\)
\(500\) −8.44743 47.9078i −0.377781 2.14250i
\(501\) 0 0
\(502\) −24.9440 + 43.2043i −1.11331 + 1.92830i
\(503\) 17.9804 + 6.54433i 0.801706 + 0.291797i 0.710193 0.704007i \(-0.248607\pi\)
0.0915130 + 0.995804i \(0.470830\pi\)
\(504\) 0 0
\(505\) −6.83615 + 11.8406i −0.304205 + 0.526898i
\(506\) 13.4153 + 23.2361i 0.596385 + 1.03297i
\(507\) 0 0
\(508\) −56.8512 47.7038i −2.52237 2.11652i
\(509\) 22.2690 18.6859i 0.987058 0.828240i 0.00191863 0.999998i \(-0.499389\pi\)
0.985139 + 0.171758i \(0.0549448\pi\)
\(510\) 0 0
\(511\) −40.9051 + 14.8883i −1.80954 + 0.658617i
\(512\) −50.5553 −2.23425
\(513\) 0 0
\(514\) 17.2935 0.762786
\(515\) 5.37939 1.95794i 0.237044 0.0862770i
\(516\) 0 0
\(517\) 4.84002 4.06126i 0.212864 0.178614i
\(518\) 49.6057 + 41.6241i 2.17955 + 1.82886i
\(519\) 0 0
\(520\) 10.9115 + 18.8992i 0.478500 + 0.828786i
\(521\) −3.48293 + 6.03260i −0.152590 + 0.264293i −0.932179 0.361998i \(-0.882095\pi\)
0.779589 + 0.626291i \(0.215428\pi\)
\(522\) 0 0
\(523\) 15.8148 + 5.75612i 0.691533 + 0.251697i 0.663791 0.747918i \(-0.268946\pi\)
0.0277414 + 0.999615i \(0.491169\pi\)
\(524\) 10.0949 17.4849i 0.440999 0.763832i
\(525\) 0 0
\(526\) 5.45424 + 30.9325i 0.237816 + 1.34872i
\(527\) 31.6177 + 26.5304i 1.37729 + 1.15568i
\(528\) 0 0
\(529\) −2.88057 + 16.3365i −0.125242 + 0.710283i
\(530\) 12.7763 4.65020i 0.554968 0.201992i
\(531\) 0 0
\(532\) −77.1708 + 53.3675i −3.34578 + 2.31377i
\(533\) −19.4902 −0.844214
\(534\) 0 0
\(535\) 2.60876 14.7950i 0.112786 0.639643i
\(536\) −6.86618 + 5.76141i −0.296574 + 0.248855i
\(537\) 0 0
\(538\) −3.42009 19.3963i −0.147451 0.836234i
\(539\) −35.1698 60.9159i −1.51487 2.62384i
\(540\) 0 0
\(541\) 14.1395 + 5.14636i 0.607905 + 0.221259i 0.627586 0.778547i \(-0.284043\pi\)
−0.0196816 + 0.999806i \(0.506265\pi\)
\(542\) 6.05943 + 2.20545i 0.260275 + 0.0947323i
\(543\) 0 0
\(544\) 14.9782 + 25.9430i 0.642184 + 1.11230i
\(545\) −2.40239 13.6246i −0.102907 0.583615i
\(546\) 0 0
\(547\) −27.6313 + 23.1855i −1.18143 + 0.991338i −0.181463 + 0.983398i \(0.558083\pi\)
−0.999968 + 0.00794061i \(0.997472\pi\)
\(548\) 15.5556 88.2200i 0.664501 3.76857i
\(549\) 0 0
\(550\) −33.7469 −1.43897
\(551\) −10.5530 + 7.29796i −0.449574 + 0.310903i
\(552\) 0 0
\(553\) −45.9889 + 16.7386i −1.95565 + 0.711797i
\(554\) −11.0770 + 62.8206i −0.470615 + 2.66899i
\(555\) 0 0
\(556\) −55.3945 46.4815i −2.34925 1.97125i
\(557\) −5.90151 33.4691i −0.250055 1.41813i −0.808454 0.588560i \(-0.799695\pi\)
0.558398 0.829573i \(-0.311416\pi\)
\(558\) 0 0
\(559\) −4.35457 + 7.54234i −0.184179 + 0.319007i
\(560\) 41.0073 + 14.9254i 1.73288 + 0.630715i
\(561\) 0 0
\(562\) 11.6295 20.1429i 0.490562 0.849679i
\(563\) 9.14290 + 15.8360i 0.385327 + 0.667407i 0.991815 0.127687i \(-0.0407552\pi\)
−0.606487 + 0.795093i \(0.707422\pi\)
\(564\) 0 0
\(565\) 2.94878 + 2.47432i 0.124056 + 0.104095i
\(566\) −14.0988 + 11.8303i −0.592616 + 0.497264i
\(567\) 0 0
\(568\) −2.57233 + 0.936251i −0.107933 + 0.0392842i
\(569\) −18.5107 −0.776010 −0.388005 0.921657i \(-0.626836\pi\)
−0.388005 + 0.921657i \(0.626836\pi\)
\(570\) 0 0
\(571\) −1.28136 −0.0536234 −0.0268117 0.999641i \(-0.508535\pi\)
−0.0268117 + 0.999641i \(0.508535\pi\)
\(572\) 46.0185 16.7494i 1.92413 0.700326i
\(573\) 0 0
\(574\) −69.5385 + 58.3498i −2.90248 + 2.43547i
\(575\) 6.17752 + 5.18355i 0.257620 + 0.216169i
\(576\) 0 0
\(577\) −1.08466 1.87868i −0.0451548 0.0782104i 0.842565 0.538595i \(-0.181045\pi\)
−0.887719 + 0.460385i \(0.847711\pi\)
\(578\) −32.2567 + 55.8703i −1.34170 + 2.32390i
\(579\) 0 0
\(580\) 16.4402 + 5.98373i 0.682640 + 0.248461i
\(581\) −11.2135 + 19.4223i −0.465213 + 0.805773i
\(582\) 0 0
\(583\) −2.89615 16.4249i −0.119946 0.680250i
\(584\) −41.7294 35.0151i −1.72678 1.44894i
\(585\) 0 0
\(586\) −8.79726 + 49.8917i −0.363411 + 2.06101i
\(587\) −31.9111 + 11.6147i −1.31711 + 0.479389i −0.902531 0.430624i \(-0.858293\pi\)
−0.414579 + 0.910013i \(0.636071\pi\)
\(588\) 0 0
\(589\) −27.4843 2.56617i −1.13247 0.105737i
\(590\) 12.1925 0.501959
\(591\) 0 0
\(592\) −6.04158 + 34.2635i −0.248308 + 1.40822i
\(593\) 21.8576 18.3407i 0.897583 0.753161i −0.0721338 0.997395i \(-0.522981\pi\)
0.969716 + 0.244234i \(0.0785364\pi\)
\(594\) 0 0
\(595\) 7.44016 + 42.1952i 0.305017 + 1.72984i
\(596\) 11.0608 + 19.1578i 0.453067 + 0.784735i
\(597\) 0 0
\(598\) −15.9820 5.81699i −0.653555 0.237874i
\(599\) −13.7618 5.00887i −0.562290 0.204657i 0.0452084 0.998978i \(-0.485605\pi\)
−0.607499 + 0.794321i \(0.707827\pi\)
\(600\) 0 0
\(601\) −11.8366 20.5016i −0.482826 0.836279i 0.516980 0.855998i \(-0.327056\pi\)
−0.999806 + 0.0197189i \(0.993723\pi\)
\(602\) 7.04370 + 39.9468i 0.287080 + 1.62811i
\(603\) 0 0
\(604\) 20.4179 17.1326i 0.830791 0.697117i
\(605\) 1.52363 8.64095i 0.0619445 0.351305i
\(606\) 0 0
\(607\) 39.9745 1.62252 0.811258 0.584688i \(-0.198783\pi\)
0.811258 + 0.584688i \(0.198783\pi\)
\(608\) −18.1079 8.57277i −0.734371 0.347672i
\(609\) 0 0
\(610\) −9.57057 + 3.48340i −0.387501 + 0.141039i
\(611\) −0.695470 + 3.94421i −0.0281357 + 0.159566i
\(612\) 0 0
\(613\) −15.1518 12.7139i −0.611977 0.513509i 0.283293 0.959033i \(-0.408573\pi\)
−0.895270 + 0.445524i \(0.853017\pi\)
\(614\) −0.258770 1.46756i −0.0104431 0.0592259i
\(615\) 0 0
\(616\) 62.3405 107.977i 2.51177 4.35052i
\(617\) −0.881607 0.320879i −0.0354922 0.0129181i 0.324213 0.945984i \(-0.394901\pi\)
−0.359705 + 0.933066i \(0.617123\pi\)
\(618\) 0 0
\(619\) 0.750152 1.29930i 0.0301512 0.0522234i −0.850556 0.525884i \(-0.823734\pi\)
0.880707 + 0.473661i \(0.157068\pi\)
\(620\) 18.8195 + 32.5964i 0.755811 + 1.30910i
\(621\) 0 0
\(622\) 13.9363 + 11.6939i 0.558794 + 0.468884i
\(623\) −69.7495 + 58.5268i −2.79445 + 2.34483i
\(624\) 0 0
\(625\) −1.00253 + 0.364890i −0.0401010 + 0.0145956i
\(626\) −30.1533 −1.20517
\(627\) 0 0
\(628\) 62.3610 2.48848
\(629\) −32.0998 + 11.6834i −1.27990 + 0.465847i
\(630\) 0 0
\(631\) −25.1989 + 21.1444i −1.00315 + 0.841746i −0.987418 0.158130i \(-0.949453\pi\)
−0.0157353 + 0.999876i \(0.505009\pi\)
\(632\) −46.9156 39.3669i −1.86620 1.56593i
\(633\) 0 0
\(634\) −4.75237 8.23135i −0.188741 0.326909i
\(635\) 11.3327 19.6289i 0.449726 0.778949i
\(636\) 0 0
\(637\) 41.8987 + 15.2499i 1.66009 + 0.604223i
\(638\) 15.5954 27.0120i 0.617427 1.06942i
\(639\) 0 0
\(640\) −3.12108 17.7005i −0.123372 0.699675i
\(641\) 13.4436 + 11.2805i 0.530989 + 0.445553i 0.868443 0.495790i \(-0.165121\pi\)
−0.337454 + 0.941342i \(0.609566\pi\)
\(642\) 0 0
\(643\) 3.59286 20.3761i 0.141689 0.803556i −0.828278 0.560318i \(-0.810679\pi\)
0.969966 0.243239i \(-0.0782099\pi\)
\(644\) −51.2169 + 18.6414i −2.01823 + 0.734576i
\(645\) 0 0
\(646\) −5.85147 71.6965i −0.230223 2.82086i
\(647\) 36.8462 1.44857 0.724286 0.689499i \(-0.242169\pi\)
0.724286 + 0.689499i \(0.242169\pi\)
\(648\) 0 0
\(649\) 2.59714 14.7291i 0.101947 0.578169i
\(650\) 16.3871 13.7504i 0.642756 0.539336i
\(651\) 0 0
\(652\) 1.02616 + 5.81964i 0.0401875 + 0.227915i
\(653\) 11.4278 + 19.7936i 0.447206 + 0.774583i 0.998203 0.0599241i \(-0.0190859\pi\)
−0.550997 + 0.834507i \(0.685753\pi\)
\(654\) 0 0
\(655\) 5.79426 + 2.10894i 0.226401 + 0.0824031i
\(656\) −45.8312 16.6812i −1.78941 0.651291i
\(657\) 0 0
\(658\) 9.32682 + 16.1545i 0.363597 + 0.629769i
\(659\) −1.81299 10.2820i −0.0706239 0.400528i −0.999543 0.0302442i \(-0.990372\pi\)
0.928919 0.370284i \(-0.120740\pi\)
\(660\) 0 0
\(661\) −18.9322 + 15.8860i −0.736376 + 0.617893i −0.931862 0.362814i \(-0.881816\pi\)
0.195486 + 0.980707i \(0.437372\pi\)
\(662\) 4.34611 24.6480i 0.168917 0.957973i
\(663\) 0 0
\(664\) −28.0651 −1.08914
\(665\) −20.1438 20.3802i −0.781144 0.790310i
\(666\) 0 0
\(667\) −7.00387 + 2.54920i −0.271191 + 0.0987054i
\(668\) 2.43763 13.8245i 0.0943149 0.534886i
\(669\) 0 0
\(670\) −3.83615 3.21891i −0.148203 0.124357i
\(671\) 2.16947 + 12.3037i 0.0837516 + 0.474979i
\(672\) 0 0
\(673\) −10.8910 + 18.8638i −0.419817 + 0.727144i −0.995921 0.0902321i \(-0.971239\pi\)
0.576104 + 0.817377i \(0.304572\pi\)
\(674\) −76.2832 27.7648i −2.93832 1.06946i
\(675\) 0 0
\(676\) 13.1532 22.7820i 0.505891 0.876229i
\(677\) −6.36484 11.0242i −0.244621 0.423695i 0.717404 0.696657i \(-0.245330\pi\)
−0.962025 + 0.272962i \(0.911997\pi\)
\(678\) 0 0
\(679\) 54.2097 + 45.4873i 2.08038 + 1.74564i
\(680\) −41.0736 + 34.4648i −1.57510 + 1.32167i
\(681\) 0 0
\(682\) 63.0567 22.9507i 2.41456 0.878829i
\(683\) −0.706452 −0.0270316 −0.0135158 0.999909i \(-0.504302\pi\)
−0.0135158 + 0.999909i \(0.504302\pi\)
\(684\) 0 0
\(685\) 27.3587 1.04532
\(686\) 113.875 41.4471i 4.34776 1.58246i
\(687\) 0 0
\(688\) −16.6951 + 14.0088i −0.636493 + 0.534081i
\(689\) 8.09879 + 6.79569i 0.308539 + 0.258895i
\(690\) 0 0
\(691\) 2.44650 + 4.23746i 0.0930692 + 0.161201i 0.908801 0.417229i \(-0.136999\pi\)
−0.815732 + 0.578430i \(0.803666\pi\)
\(692\) −48.1207 + 83.3474i −1.82927 + 3.16839i
\(693\) 0 0
\(694\) 47.6776 + 17.3532i 1.80982 + 0.658719i
\(695\) 11.0424 19.1259i 0.418860 0.725488i
\(696\) 0 0
\(697\) −8.31537 47.1588i −0.314967 1.78627i
\(698\) 6.34524 + 5.32429i 0.240171 + 0.201527i
\(699\) 0 0
\(700\) 11.9042 67.5121i 0.449936 2.55172i
\(701\) 43.6391 15.8833i 1.64823 0.599905i 0.659777 0.751461i \(-0.270651\pi\)
0.988449 + 0.151556i \(0.0484285\pi\)
\(702\) 0 0
\(703\) 13.2128 18.6376i 0.498332 0.702930i
\(704\) −6.85534 −0.258370
\(705\) 0 0
\(706\) −16.4270 + 93.1619i −0.618237 + 3.50619i
\(707\) −37.9313 + 31.8281i −1.42655 + 1.19702i
\(708\) 0 0
\(709\) 5.14109 + 29.1566i 0.193078 + 1.09500i 0.915130 + 0.403160i \(0.132088\pi\)
−0.722052 + 0.691839i \(0.756801\pi\)
\(710\) −0.764700 1.32450i −0.0286987 0.0497076i
\(711\) 0 0
\(712\) −107.070 38.9704i −4.01263 1.46048i
\(713\) −15.0680 5.48432i −0.564303 0.205389i
\(714\) 0 0
\(715\) 7.47818 + 12.9526i 0.279668 + 0.484399i
\(716\) 7.41534 + 42.0545i 0.277124 + 1.57165i
\(717\) 0 0
\(718\) −22.8136 + 19.1429i −0.851397 + 0.714407i
\(719\) 0.820727 4.65457i 0.0306079 0.173586i −0.965672 0.259766i \(-0.916355\pi\)
0.996280 + 0.0861793i \(0.0274658\pi\)
\(720\) 0 0
\(721\) 20.7324 0.772114
\(722\) 30.4923 + 37.2124i 1.13481 + 1.38490i
\(723\) 0 0
\(724\) 25.2913 9.20529i 0.939945 0.342112i
\(725\) 1.62789 9.23222i 0.0604583 0.342876i
\(726\) 0 0
\(727\) −28.9636 24.3034i −1.07420 0.901362i −0.0787751 0.996892i \(-0.525101\pi\)
−0.995427 + 0.0955303i \(0.969545\pi\)
\(728\) 13.7242 + 77.8336i 0.508651 + 2.88470i
\(729\) 0 0
\(730\) 15.2173 26.3572i 0.563219 0.975524i
\(731\) −20.1074 7.31850i −0.743699 0.270684i
\(732\) 0 0
\(733\) −11.2010 + 19.4007i −0.413718 + 0.716581i −0.995293 0.0969123i \(-0.969103\pi\)
0.581575 + 0.813493i \(0.302437\pi\)
\(734\) −3.01501 5.22216i −0.111286 0.192753i
\(735\) 0 0
\(736\) −8.91534 7.48086i −0.328624 0.275748i
\(737\) −4.70574 + 3.94858i −0.173338 + 0.145448i
\(738\) 0 0
\(739\) −19.4979 + 7.09667i −0.717243 + 0.261055i −0.674755 0.738042i \(-0.735751\pi\)
−0.0424883 + 0.999097i \(0.513529\pi\)
\(740\) −31.1516 −1.14515
\(741\) 0 0
\(742\) 49.2404 1.80767
\(743\) 36.6190 13.3282i 1.34342 0.488965i 0.432533 0.901618i \(-0.357620\pi\)
0.910889 + 0.412653i \(0.135398\pi\)
\(744\) 0 0
\(745\) −5.17546 + 4.34273i −0.189614 + 0.159105i
\(746\) −33.8876 28.4351i −1.24071 1.04108i
\(747\) 0 0
\(748\) 60.1605 + 104.201i 2.19969 + 3.80997i
\(749\) 27.2041 47.1190i 0.994018 1.72169i
\(750\) 0 0
\(751\) 28.9206 + 10.5262i 1.05533 + 0.384107i 0.810670 0.585503i \(-0.199103\pi\)
0.244656 + 0.969610i \(0.421325\pi\)
\(752\) −5.01114 + 8.67956i −0.182738 + 0.316511i
\(753\) 0 0
\(754\) 3.43330 + 19.4712i 0.125033 + 0.709099i
\(755\) 6.23577 + 5.23243i 0.226943 + 0.190428i
\(756\) 0 0
\(757\) −0.136812 + 0.775897i −0.00497250 + 0.0282005i −0.987193 0.159530i \(-0.949002\pi\)
0.982221 + 0.187731i \(0.0601132\pi\)
\(758\) −24.3170 + 8.85067i −0.883234 + 0.321471i
\(759\) 0 0
\(760\) 9.48293 34.5827i 0.343982 1.25445i
\(761\) 19.8384 0.719143 0.359571 0.933118i \(-0.382923\pi\)
0.359571 + 0.933118i \(0.382923\pi\)
\(762\) 0 0
\(763\) 8.70052 49.3431i 0.314980 1.78634i
\(764\) 30.5822 25.6615i 1.10642 0.928401i
\(765\) 0 0
\(766\) −10.4067 59.0195i −0.376010 2.13246i
\(767\) 4.74035 + 8.21053i 0.171164 + 0.296465i
\(768\) 0 0
\(769\) 5.31180 + 1.93334i 0.191549 + 0.0697180i 0.436013 0.899940i \(-0.356390\pi\)
−0.244465 + 0.969658i \(0.578612\pi\)
\(770\) 65.4586 + 23.8250i 2.35897 + 0.858593i
\(771\) 0 0
\(772\) −38.0749 65.9477i −1.37035 2.37351i
\(773\) −5.05216 28.6522i −0.181713 1.03055i −0.930106 0.367292i \(-0.880285\pi\)
0.748392 0.663256i \(-0.230826\pi\)
\(774\) 0 0
\(775\) 15.4500 12.9641i 0.554979 0.465683i
\(776\) −15.3776 + 87.2109i −0.552025 + 3.13069i
\(777\) 0 0
\(778\) −36.8553 −1.32133
\(779\) 22.5134 + 22.7776i 0.806627 + 0.816092i
\(780\) 0 0
\(781\) −1.76295 + 0.641660i −0.0630832 + 0.0229604i
\(782\) 7.25624 41.1522i 0.259483 1.47160i
\(783\) 0 0
\(784\) 85.4728 + 71.7202i 3.05260 + 2.56143i
\(785\) 3.30722 + 18.7562i 0.118040 + 0.669436i
\(786\) 0 0
\(787\) 10.9978 19.0487i 0.392028 0.679013i −0.600689 0.799483i \(-0.705107\pi\)
0.992717 + 0.120470i \(0.0384401\pi\)
\(788\) 37.1031 + 13.5044i 1.32174 + 0.481076i
\(789\) 0 0
\(790\) 17.1086 29.6330i 0.608696 1.05429i
\(791\) 6.97044 + 12.0732i 0.247840 + 0.429272i
\(792\) 0 0
\(793\) −6.06670 5.09057i −0.215435 0.180771i
\(794\) −3.09105 + 2.59370i −0.109697 + 0.0920470i
\(795\) 0 0
\(796\) −61.4193 + 22.3548i −2.17695 + 0.792344i
\(797\) 45.5280 1.61268 0.806342 0.591450i \(-0.201444\pi\)
0.806342 + 0.591450i \(0.201444\pi\)
\(798\) 0 0
\(799\) −9.84018 −0.348121
\(800\) 13.7554 5.00654i 0.486326 0.177008i
\(801\) 0 0
\(802\) 1.47519 1.23783i 0.0520906 0.0437092i
\(803\) −28.5993 23.9976i −1.00925 0.846858i
\(804\) 0 0
\(805\) −8.32295 14.4158i −0.293345 0.508089i
\(806\) −21.2682 + 36.8375i −0.749139 + 1.29755i
\(807\) 0 0
\(808\) −58.2272 21.1930i −2.04843 0.745566i
\(809\) −10.2694 + 17.7872i −0.361055 + 0.625365i −0.988135 0.153590i \(-0.950917\pi\)
0.627080 + 0.778955i \(0.284250\pi\)
\(810\) 0 0
\(811\) 1.67499 + 9.49935i 0.0588169 + 0.333567i 0.999991 0.00435609i \(-0.00138659\pi\)
−0.941174 + 0.337924i \(0.890275\pi\)
\(812\) 48.5374 + 40.7277i 1.70333 + 1.42926i
\(813\) 0 0
\(814\) −9.64398 + 54.6937i −0.338021 + 1.91701i
\(815\) −1.69594 + 0.617271i −0.0594061 + 0.0216220i
\(816\) 0 0
\(817\) 13.8445 3.62322i 0.484359 0.126760i
\(818\) 19.8949 0.695608
\(819\) 0 0
\(820\) 7.58306 43.0057i 0.264812 1.50182i
\(821\) −5.39621 + 4.52796i −0.188329 + 0.158027i −0.732077 0.681221i \(-0.761449\pi\)
0.543748 + 0.839248i \(0.317005\pi\)
\(822\) 0 0
\(823\) −5.46316 30.9831i −0.190434 1.08000i −0.918773 0.394787i \(-0.870818\pi\)
0.728339 0.685217i \(-0.240293\pi\)
\(824\) 12.9722 + 22.4686i 0.451910 + 0.782731i
\(825\) 0 0
\(826\) 41.4937 + 15.1025i 1.44375 + 0.525482i
\(827\) −34.7790 12.6585i −1.20938 0.440180i −0.342894 0.939374i \(-0.611407\pi\)
−0.866490 + 0.499194i \(0.833629\pi\)
\(828\) 0 0
\(829\) −12.2653 21.2442i −0.425992 0.737841i 0.570520 0.821284i \(-0.306742\pi\)
−0.996513 + 0.0834430i \(0.973408\pi\)
\(830\) −2.72281 15.4418i −0.0945102 0.535994i
\(831\) 0 0
\(832\) 3.32888 2.79326i 0.115408 0.0968389i
\(833\) −19.0231 + 107.885i −0.659110 + 3.73800i
\(834\) 0 0
\(835\) 4.28724 0.148366
\(836\) −72.7311 34.4329i −2.51546 1.19089i
\(837\) 0 0
\(838\) −16.1306 + 5.87105i −0.557222 + 0.202812i
\(839\) 3.14527 17.8377i 0.108587 0.615826i −0.881140 0.472855i \(-0.843223\pi\)
0.989727 0.142971i \(-0.0456655\pi\)
\(840\) 0 0
\(841\) −15.5778 13.0714i −0.537167 0.450737i
\(842\) −10.3893 58.9209i −0.358041 2.03055i
\(843\) 0 0
\(844\) 46.4038 80.3737i 1.59728 2.76658i
\(845\) 7.54963 + 2.74784i 0.259715 + 0.0945286i
\(846\) 0 0
\(847\) 15.8885 27.5196i 0.545934 0.945586i
\(848\) 13.2280 + 22.9116i 0.454252 + 0.786788i
\(849\) 0 0
\(850\) 40.2622 + 33.7840i 1.38098 + 1.15878i
\(851\) 10.1664 8.53060i 0.348499 0.292425i
\(852\) 0 0
\(853\) −52.3478 + 19.0530i −1.79236 + 0.652364i −0.793303 + 0.608826i \(0.791641\pi\)
−0.999052 + 0.0435374i \(0.986137\pi\)
\(854\) −36.8854 −1.26219
\(855\) 0 0
\(856\) 68.0866 2.32715
\(857\) −47.8141 + 17.4029i −1.63330 + 0.594472i −0.985849 0.167637i \(-0.946386\pi\)
−0.647449 + 0.762109i \(0.724164\pi\)
\(858\) 0 0
\(859\) 8.35844 7.01356i 0.285186 0.239300i −0.488960 0.872306i \(-0.662624\pi\)
0.774147 + 0.633006i \(0.218179\pi\)
\(860\) −14.9481 12.5430i −0.509728 0.427712i
\(861\) 0 0
\(862\) −23.0194 39.8707i −0.784042 1.35800i
\(863\) −9.88120 + 17.1147i −0.336360 + 0.582592i −0.983745 0.179571i \(-0.942529\pi\)
0.647385 + 0.762163i \(0.275862\pi\)
\(864\) 0 0
\(865\) −27.6202 10.0529i −0.939115 0.341810i
\(866\) 11.3576 19.6719i 0.385946 0.668478i
\(867\) 0 0
\(868\) 23.6707 + 134.243i 0.803436 + 4.55651i
\(869\) −32.1536 26.9801i −1.09074 0.915237i
\(870\) 0 0
\(871\) 0.676174 3.83478i 0.0229113 0.129936i
\(872\) 58.9193 21.4449i 1.99526 0.726215i
\(873\) 0 0
\(874\) 11.6630 + 25.3970i 0.394506 + 0.859067i
\(875\) 53.8066 1.81900
\(876\) 0 0
\(877\) 0.686137 3.89127i 0.0231692 0.131399i −0.971029 0.238961i \(-0.923193\pi\)
0.994198 + 0.107562i \(0.0343044\pi\)
\(878\) −0.696652 + 0.584561i −0.0235109 + 0.0197280i
\(879\) 0 0
\(880\) 6.49912 + 36.8584i 0.219085 + 1.24249i
\(881\) 14.5505 + 25.2022i 0.490219 + 0.849084i 0.999937 0.0112575i \(-0.00358345\pi\)
−0.509718 + 0.860342i \(0.670250\pi\)
\(882\) 0 0
\(883\) 0.668900 + 0.243460i 0.0225103 + 0.00819308i 0.353251 0.935529i \(-0.385076\pi\)
−0.330740 + 0.943722i \(0.607298\pi\)
\(884\) −71.6708 26.0860i −2.41055 0.877368i
\(885\) 0 0
\(886\) 18.4393 + 31.9378i 0.619480 + 1.07297i
\(887\) −7.75578 43.9852i −0.260414 1.47688i −0.781785 0.623548i \(-0.785690\pi\)
0.521371 0.853330i \(-0.325421\pi\)
\(888\) 0 0
\(889\) 62.8813 52.7636i 2.10897 1.76964i
\(890\) 11.0544 62.6925i 0.370544 2.10146i
\(891\) 0 0
\(892\) 50.4279 1.68845
\(893\) 5.41282 3.74324i 0.181133 0.125263i
\(894\) 0 0
\(895\) −12.2554 + 4.46059i −0.409652 + 0.149101i
\(896\) 11.3033 64.1045i 0.377618 2.14158i
\(897\) 0 0
\(898\) −0.0962667 0.0807773i −0.00321246 0.00269557i
\(899\) 3.23695 + 18.3576i 0.107958 + 0.612262i
\(900\) 0 0
\(901\) −12.9877 + 22.4953i −0.432682 + 0.749427i
\(902\) −73.1587 26.6276i −2.43592 0.886602i
\(903\) 0 0
\(904\) −8.72281 + 15.1084i −0.290116 + 0.502496i
\(905\) 4.10994 + 7.11862i 0.136619 + 0.236631i
\(906\) 0 0
\(907\) 25.4124 + 21.3235i 0.843805 + 0.708037i 0.958416 0.285374i \(-0.0921178\pi\)
−0.114611 + 0.993410i \(0.536562\pi\)
\(908\) 47.6730 40.0024i 1.58208 1.32753i
\(909\) 0 0
\(910\) −41.4937 + 15.1025i −1.37550 + 0.500642i
\(911\) 22.7392 0.753382 0.376691 0.926339i \(-0.377062\pi\)
0.376691 + 0.926339i \(0.377062\pi\)
\(912\) 0 0
\(913\) −19.2344 −0.636566
\(914\) −84.5404 + 30.7702i −2.79635 + 1.01779i
\(915\) 0 0
\(916\) −35.8580 + 30.0885i −1.18478 + 0.994151i
\(917\) 17.1068 + 14.3543i 0.564916 + 0.474021i
\(918\) 0 0
\(919\) 9.62449 + 16.6701i 0.317482 + 0.549896i 0.979962 0.199184i \(-0.0638292\pi\)
−0.662480 + 0.749080i \(0.730496\pi\)
\(920\) 10.4153 18.0399i 0.343384 0.594758i
\(921\) 0 0
\(922\) −27.4945 10.0072i −0.905484 0.329569i
\(923\) 0.594618 1.02991i 0.0195721 0.0338998i
\(924\) 0 0
\(925\) 2.89858 + 16.4386i 0.0953046 + 0.540499i
\(926\) −26.2533 22.0291i −0.862737 0.723922i
\(927\) 0 0
\(928\) −2.34936 + 13.3239i −0.0771214 + 0.437377i
\(929\) 20.0141 7.28455i 0.656643 0.238998i 0.00785641 0.999969i \(-0.497499\pi\)
0.648786 + 0.760971i \(0.275277\pi\)
\(930\) 0 0
\(931\) −30.5758 66.5811i −1.00208 2.18211i
\(932\) −127.174 −4.16572
\(933\) 0 0
\(934\) 10.9657 62.1895i 0.358808 2.03490i
\(935\) −28.1498 + 23.6205i −0.920596 + 0.772472i
\(936\) 0 0
\(937\) −7.99566 45.3457i −0.261207 1.48138i −0.779623 0.626249i \(-0.784589\pi\)
0.518416 0.855129i \(-0.326522\pi\)
\(938\) −9.06805 15.7063i −0.296082 0.512830i
\(939\) 0 0
\(940\) −8.43242 3.06915i −0.275035 0.100105i
\(941\) −12.5578 4.57066i −0.409372 0.148999i 0.129122 0.991629i \(-0.458784\pi\)
−0.538494 + 0.842630i \(0.681006\pi\)
\(942\) 0 0
\(943\) 9.30200 + 16.1115i 0.302915 + 0.524664i
\(944\) 4.11974 + 23.3642i 0.134086 + 0.760440i
\(945\) 0 0
\(946\) −26.6498 + 22.3618i −0.866459 + 0.727045i
\(947\) −9.31743 + 52.8418i −0.302776 + 1.71713i 0.331018 + 0.943624i \(0.392608\pi\)
−0.633794 + 0.773502i \(0.718503\pi\)
\(948\) 0 0
\(949\) 23.6655 0.768215
\(950\) −34.9987 3.26779i −1.13551 0.106021i
\(951\) 0 0
\(952\) −182.472 + 66.4144i −5.91395 + 2.15250i
\(953\) 2.07960 11.7940i 0.0673650 0.382046i −0.932421 0.361373i \(-0.882308\pi\)
0.999786 0.0206726i \(-0.00658077\pi\)
\(954\) 0 0
\(955\) 9.34002 + 7.83721i 0.302236 + 0.253606i
\(956\) 8.00774 + 45.4142i 0.258989 + 1.46880i
\(957\) 0 0
\(958\) −8.59152 + 14.8809i −0.277579 + 0.480782i
\(959\) 93.1071 + 33.8882i 3.00658 + 1.09431i
\(960\) 0 0
\(961\) −4.55185 + 7.88404i −0.146834 + 0.254324i
\(962\) −17.6024 30.4882i −0.567523 0.982978i
\(963\) 0 0
\(964\) −25.2369 21.1763i −0.812827 0.682043i
\(965\) 17.8157 14.9491i 0.573507 0.481229i
\(966\) 0 0
\(967\) 39.3435 14.3199i 1.26520 0.460496i 0.379690 0.925114i \(-0.376031\pi\)
0.885511 + 0.464618i \(0.153808\pi\)
\(968\) 39.7657 1.27812
\(969\) 0 0
\(970\) −49.4766 −1.58860
\(971\) −13.0471 + 4.74876i −0.418701 + 0.152395i −0.542775 0.839878i \(-0.682626\pi\)
0.124074 + 0.992273i \(0.460404\pi\)
\(972\) 0 0
\(973\) 61.2700 51.4116i 1.96423 1.64818i
\(974\) 65.2115 + 54.7189i 2.08951 + 1.75331i
\(975\) 0 0
\(976\) −9.90895 17.1628i −0.317178 0.549368i
\(977\) −19.0753 + 33.0394i −0.610274 + 1.05702i 0.380920 + 0.924608i \(0.375607\pi\)
−0.991194 + 0.132417i \(0.957726\pi\)
\(978\) 0 0
\(979\) −73.3807 26.7084i −2.34526 0.853604i
\(980\) −49.9509 + 86.5175i −1.59562 + 2.76370i
\(981\) 0 0
\(982\) 12.6000 + 71.4580i 0.402081 + 2.28032i
\(983\) 15.5405 + 13.0401i 0.495666 + 0.415913i 0.856052 0.516890i \(-0.172910\pi\)
−0.360385 + 0.932803i \(0.617355\pi\)
\(984\) 0 0
\(985\) −2.09399 + 11.8756i −0.0667200 + 0.378388i
\(986\) −45.6480 + 16.6145i −1.45373 + 0.529114i
\(987\) 0 0
\(988\) 49.3474 12.9146i 1.56995 0.410868i
\(989\) 8.31315 0.264343
\(990\) 0 0
\(991\) −4.28817 + 24.3194i −0.136218 + 0.772532i 0.837785 + 0.546000i \(0.183850\pi\)
−0.974004 + 0.226532i \(0.927261\pi\)
\(992\) −22.2973 + 18.7096i −0.707939 + 0.594031i
\(993\) 0 0
\(994\) −0.961819 5.45475i −0.0305071 0.173014i
\(995\) −9.98087 17.2874i −0.316415 0.548046i
\(996\) 0 0
\(997\) −27.3704 9.96200i −0.866828 0.315500i −0.129946 0.991521i \(-0.541480\pi\)
−0.736882 + 0.676022i \(0.763703\pi\)
\(998\) 100.282 + 36.4997i 3.17437 + 1.15538i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.a.271.1 6
3.2 odd 2 513.2.y.c.271.1 yes 6
19.2 odd 18 9747.2.a.v.1.1 3
19.4 even 9 inner 513.2.y.a.460.1 yes 6
19.17 even 9 9747.2.a.bd.1.3 3
57.2 even 18 9747.2.a.bb.1.3 3
57.17 odd 18 9747.2.a.u.1.1 3
57.23 odd 18 513.2.y.c.460.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.271.1 6 1.1 even 1 trivial
513.2.y.a.460.1 yes 6 19.4 even 9 inner
513.2.y.c.271.1 yes 6 3.2 odd 2
513.2.y.c.460.1 yes 6 57.23 odd 18
9747.2.a.u.1.1 3 57.17 odd 18
9747.2.a.v.1.1 3 19.2 odd 18
9747.2.a.bb.1.3 3 57.2 even 18
9747.2.a.bd.1.3 3 19.17 even 9