Properties

Label 513.2.y.c.460.1
Level $513$
Weight $2$
Character 513.460
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 460.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 513.460
Dual form 513.2.y.c.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.37939 + 0.866025i) q^{2} +(3.37939 + 2.83564i) q^{4} +(-1.03209 + 0.866025i) q^{5} +(2.43969 - 4.22567i) q^{7} +(3.05303 + 5.28801i) q^{8} +(-3.20574 + 1.16679i) q^{10} +(2.09240 + 3.62414i) q^{11} +(-0.460637 + 2.61240i) q^{13} +(9.46451 - 7.94166i) q^{14} +(1.15270 + 6.53731i) q^{16} +(-6.12449 - 2.22913i) q^{17} +(-2.52094 - 3.55596i) q^{19} -5.94356 q^{20} +(1.84002 + 10.4353i) q^{22} +(1.93969 + 1.62760i) q^{23} +(-0.553033 + 3.13641i) q^{25} +(-3.35844 + 5.81699i) q^{26} +(20.2271 - 7.36208i) q^{28} +(-2.76604 + 1.00676i) q^{29} +(3.16637 - 5.48432i) q^{31} +(-0.798133 + 4.52644i) q^{32} +(-12.6420 - 10.6079i) q^{34} +(1.14156 + 6.47410i) q^{35} -5.24123 q^{37} +(-2.91875 - 10.6442i) q^{38} +(-7.73055 - 2.81369i) q^{40} +(-1.27584 - 7.23567i) q^{41} +(-2.51501 + 2.11035i) q^{43} +(-3.20574 + 18.1806i) q^{44} +(3.20574 + 5.55250i) q^{46} +(1.41875 - 0.516382i) q^{47} +(-8.40420 - 14.5565i) q^{49} +(-4.03209 + 6.98378i) q^{50} +(-8.96451 + 7.52211i) q^{52} +(3.05303 + 2.56180i) q^{53} +(-5.29813 - 1.92836i) q^{55} +29.7939 q^{56} -7.45336 q^{58} +(3.35844 + 1.22237i) q^{59} +(2.28699 + 1.91901i) q^{61} +(12.2836 - 10.3072i) q^{62} +(0.819078 - 1.41868i) q^{64} +(-1.78699 - 3.09516i) q^{65} +(1.37939 - 0.502055i) q^{67} +(-14.3760 - 24.8999i) q^{68} +(-2.89053 + 16.3930i) q^{70} +(-0.343426 + 0.288169i) q^{71} +(-1.54916 - 8.78574i) q^{73} +(-12.4709 - 4.53904i) q^{74} +(1.56418 - 19.1654i) q^{76} +20.4192 q^{77} +(-1.74170 - 9.87765i) q^{79} +(-6.85117 - 5.74881i) q^{80} +(3.23055 - 18.3214i) q^{82} +(-2.29813 + 3.98048i) q^{83} +(8.25150 - 3.00330i) q^{85} +(-7.81180 + 2.84326i) q^{86} +(-12.7763 + 22.1292i) q^{88} +(-3.24035 + 18.3770i) q^{89} +(9.91534 + 8.31996i) q^{91} +(1.93969 + 11.0005i) q^{92} +3.82295 q^{94} +(5.68139 + 1.48686i) q^{95} +(13.6284 + 4.96032i) q^{97} +(-7.39053 - 41.9138i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 3 q^{5} + 9 q^{7} + 6 q^{8} - 9 q^{10} + 9 q^{11} + 6 q^{13} + 24 q^{14} + 9 q^{16} - 24 q^{17} - 12 q^{19} - 6 q^{20} - 9 q^{22} + 6 q^{23} + 9 q^{25} - 12 q^{26} + 42 q^{28}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37939 + 0.866025i 1.68248 + 0.612372i 0.993646 0.112548i \(-0.0359011\pi\)
0.688833 + 0.724920i \(0.258123\pi\)
\(3\) 0 0
\(4\) 3.37939 + 2.83564i 1.68969 + 1.41782i
\(5\) −1.03209 + 0.866025i −0.461564 + 0.387298i −0.843706 0.536805i \(-0.819631\pi\)
0.382142 + 0.924104i \(0.375187\pi\)
\(6\) 0 0
\(7\) 2.43969 4.22567i 0.922117 1.59715i 0.125984 0.992032i \(-0.459791\pi\)
0.796133 0.605121i \(-0.206875\pi\)
\(8\) 3.05303 + 5.28801i 1.07941 + 1.86959i
\(9\) 0 0
\(10\) −3.20574 + 1.16679i −1.01374 + 0.368972i
\(11\) 2.09240 + 3.62414i 0.630881 + 1.09272i 0.987372 + 0.158419i \(0.0506398\pi\)
−0.356491 + 0.934299i \(0.616027\pi\)
\(12\) 0 0
\(13\) −0.460637 + 2.61240i −0.127758 + 0.724550i 0.851874 + 0.523747i \(0.175466\pi\)
−0.979632 + 0.200803i \(0.935645\pi\)
\(14\) 9.46451 7.94166i 2.52950 2.12250i
\(15\) 0 0
\(16\) 1.15270 + 6.53731i 0.288176 + 1.63433i
\(17\) −6.12449 2.22913i −1.48541 0.540644i −0.533170 0.846008i \(-0.678999\pi\)
−0.952236 + 0.305364i \(0.901222\pi\)
\(18\) 0 0
\(19\) −2.52094 3.55596i −0.578344 0.815793i
\(20\) −5.94356 −1.32902
\(21\) 0 0
\(22\) 1.84002 + 10.4353i 0.392294 + 2.22481i
\(23\) 1.93969 + 1.62760i 0.404454 + 0.339377i 0.822212 0.569181i \(-0.192740\pi\)
−0.417758 + 0.908558i \(0.637184\pi\)
\(24\) 0 0
\(25\) −0.553033 + 3.13641i −0.110607 + 0.627282i
\(26\) −3.35844 + 5.81699i −0.658644 + 1.14081i
\(27\) 0 0
\(28\) 20.2271 7.36208i 3.82257 1.39130i
\(29\) −2.76604 + 1.00676i −0.513642 + 0.186950i −0.585820 0.810442i \(-0.699227\pi\)
0.0721780 + 0.997392i \(0.477005\pi\)
\(30\) 0 0
\(31\) 3.16637 5.48432i 0.568698 0.985013i −0.427998 0.903780i \(-0.640781\pi\)
0.996695 0.0812332i \(-0.0258859\pi\)
\(32\) −0.798133 + 4.52644i −0.141091 + 0.800169i
\(33\) 0 0
\(34\) −12.6420 10.6079i −2.16809 1.81924i
\(35\) 1.14156 + 6.47410i 0.192959 + 1.09432i
\(36\) 0 0
\(37\) −5.24123 −0.861653 −0.430826 0.902435i \(-0.641778\pi\)
−0.430826 + 0.902435i \(0.641778\pi\)
\(38\) −2.91875 10.6442i −0.473483 1.72672i
\(39\) 0 0
\(40\) −7.73055 2.81369i −1.22231 0.444884i
\(41\) −1.27584 7.23567i −0.199253 1.13002i −0.906230 0.422785i \(-0.861052\pi\)
0.706976 0.707237i \(-0.250059\pi\)
\(42\) 0 0
\(43\) −2.51501 + 2.11035i −0.383536 + 0.321825i −0.814089 0.580740i \(-0.802763\pi\)
0.430553 + 0.902565i \(0.358319\pi\)
\(44\) −3.20574 + 18.1806i −0.483283 + 2.74083i
\(45\) 0 0
\(46\) 3.20574 + 5.55250i 0.472660 + 0.818671i
\(47\) 1.41875 0.516382i 0.206946 0.0753221i −0.236467 0.971639i \(-0.575990\pi\)
0.443413 + 0.896317i \(0.353767\pi\)
\(48\) 0 0
\(49\) −8.40420 14.5565i −1.20060 2.07950i
\(50\) −4.03209 + 6.98378i −0.570223 + 0.987656i
\(51\) 0 0
\(52\) −8.96451 + 7.52211i −1.24315 + 1.04313i
\(53\) 3.05303 + 2.56180i 0.419366 + 0.351890i 0.827922 0.560843i \(-0.189523\pi\)
−0.408556 + 0.912733i \(0.633967\pi\)
\(54\) 0 0
\(55\) −5.29813 1.92836i −0.714400 0.260020i
\(56\) 29.7939 3.98137
\(57\) 0 0
\(58\) −7.45336 −0.978675
\(59\) 3.35844 + 1.22237i 0.437232 + 0.159139i 0.551251 0.834339i \(-0.314150\pi\)
−0.114020 + 0.993478i \(0.536373\pi\)
\(60\) 0 0
\(61\) 2.28699 + 1.91901i 0.292819 + 0.245704i 0.777348 0.629071i \(-0.216565\pi\)
−0.484529 + 0.874775i \(0.661009\pi\)
\(62\) 12.2836 10.3072i 1.56002 1.30901i
\(63\) 0 0
\(64\) 0.819078 1.41868i 0.102385 0.177336i
\(65\) −1.78699 3.09516i −0.221649 0.383907i
\(66\) 0 0
\(67\) 1.37939 0.502055i 0.168519 0.0613358i −0.256383 0.966575i \(-0.582531\pi\)
0.424902 + 0.905239i \(0.360309\pi\)
\(68\) −14.3760 24.8999i −1.74334 3.01956i
\(69\) 0 0
\(70\) −2.89053 + 16.3930i −0.345484 + 1.95934i
\(71\) −0.343426 + 0.288169i −0.0407572 + 0.0341993i −0.662939 0.748674i \(-0.730691\pi\)
0.622182 + 0.782873i \(0.286247\pi\)
\(72\) 0 0
\(73\) −1.54916 8.78574i −0.181316 1.02829i −0.930598 0.366042i \(-0.880713\pi\)
0.749282 0.662251i \(-0.230399\pi\)
\(74\) −12.4709 4.53904i −1.44971 0.527652i
\(75\) 0 0
\(76\) 1.56418 19.1654i 0.179423 2.19843i
\(77\) 20.4192 2.32699
\(78\) 0 0
\(79\) −1.74170 9.87765i −0.195956 1.11132i −0.911051 0.412295i \(-0.864727\pi\)
0.715094 0.699028i \(-0.246384\pi\)
\(80\) −6.85117 5.74881i −0.765984 0.642737i
\(81\) 0 0
\(82\) 3.23055 18.3214i 0.356755 2.02326i
\(83\) −2.29813 + 3.98048i −0.252253 + 0.436915i −0.964146 0.265373i \(-0.914505\pi\)
0.711893 + 0.702288i \(0.247838\pi\)
\(84\) 0 0
\(85\) 8.25150 3.00330i 0.895000 0.325754i
\(86\) −7.81180 + 2.84326i −0.842368 + 0.306597i
\(87\) 0 0
\(88\) −12.7763 + 22.1292i −1.36196 + 2.35898i
\(89\) −3.24035 + 18.3770i −0.343477 + 1.94795i −0.0260804 + 0.999660i \(0.508303\pi\)
−0.317396 + 0.948293i \(0.602809\pi\)
\(90\) 0 0
\(91\) 9.91534 + 8.31996i 1.03941 + 0.872169i
\(92\) 1.93969 + 11.0005i 0.202227 + 1.14689i
\(93\) 0 0
\(94\) 3.82295 0.394307
\(95\) 5.68139 + 1.48686i 0.582898 + 0.152549i
\(96\) 0 0
\(97\) 13.6284 + 4.96032i 1.38375 + 0.503644i 0.923313 0.384049i \(-0.125471\pi\)
0.460437 + 0.887692i \(0.347693\pi\)
\(98\) −7.39053 41.9138i −0.746556 4.23393i
\(99\) 0 0
\(100\) −10.7626 + 9.03093i −1.07626 + 0.903093i
\(101\) −1.76217 + 9.99379i −0.175343 + 0.994419i 0.762405 + 0.647101i \(0.224019\pi\)
−0.937747 + 0.347318i \(0.887092\pi\)
\(102\) 0 0
\(103\) 2.12449 + 3.67972i 0.209332 + 0.362573i 0.951504 0.307636i \(-0.0995378\pi\)
−0.742172 + 0.670209i \(0.766204\pi\)
\(104\) −15.2208 + 5.53990i −1.49252 + 0.543232i
\(105\) 0 0
\(106\) 5.04576 + 8.73951i 0.490087 + 0.848856i
\(107\) 5.57532 9.65674i 0.538987 0.933552i −0.459972 0.887933i \(-0.652141\pi\)
0.998959 0.0456191i \(-0.0145260\pi\)
\(108\) 0 0
\(109\) −7.86618 + 6.60051i −0.753444 + 0.632214i −0.936411 0.350905i \(-0.885874\pi\)
0.182968 + 0.983119i \(0.441430\pi\)
\(110\) −10.9363 9.17664i −1.04273 0.874958i
\(111\) 0 0
\(112\) 30.4368 + 11.0781i 2.87600 + 1.04678i
\(113\) −2.85710 −0.268773 −0.134387 0.990929i \(-0.542906\pi\)
−0.134387 + 0.990929i \(0.542906\pi\)
\(114\) 0 0
\(115\) −3.41147 −0.318122
\(116\) −12.2023 4.44129i −1.13296 0.412363i
\(117\) 0 0
\(118\) 6.93242 + 5.81699i 0.638181 + 0.535497i
\(119\) −24.3614 + 20.4417i −2.23321 + 1.87388i
\(120\) 0 0
\(121\) −3.25624 + 5.63998i −0.296022 + 0.512726i
\(122\) 3.77972 + 6.54666i 0.342199 + 0.592707i
\(123\) 0 0
\(124\) 26.2520 9.55493i 2.35750 0.858058i
\(125\) −5.51367 9.54996i −0.493158 0.854174i
\(126\) 0 0
\(127\) −2.92127 + 16.5674i −0.259221 + 1.47012i 0.525779 + 0.850621i \(0.323774\pi\)
−0.785000 + 0.619495i \(0.787337\pi\)
\(128\) 10.2194 8.57510i 0.903277 0.757939i
\(129\) 0 0
\(130\) −1.57145 8.91215i −0.137825 0.781647i
\(131\) −4.30066 1.56531i −0.375750 0.136762i 0.147239 0.989101i \(-0.452961\pi\)
−0.522990 + 0.852339i \(0.675183\pi\)
\(132\) 0 0
\(133\) −21.1766 + 1.97724i −1.83625 + 0.171448i
\(134\) 3.71688 0.321090
\(135\) 0 0
\(136\) −6.91060 39.1919i −0.592579 3.36068i
\(137\) −15.5556 13.0527i −1.32900 1.11516i −0.984310 0.176448i \(-0.943539\pi\)
−0.344691 0.938716i \(-0.612016\pi\)
\(138\) 0 0
\(139\) −2.84642 + 16.1428i −0.241430 + 1.36922i 0.587209 + 0.809435i \(0.300227\pi\)
−0.828639 + 0.559783i \(0.810885\pi\)
\(140\) −14.5005 + 25.1155i −1.22551 + 2.12265i
\(141\) 0 0
\(142\) −1.06670 + 0.388249i −0.0895158 + 0.0325811i
\(143\) −10.4315 + 3.79677i −0.872329 + 0.317502i
\(144\) 0 0
\(145\) 1.98293 3.43453i 0.164673 0.285222i
\(146\) 3.92262 22.2463i 0.324638 1.84111i
\(147\) 0 0
\(148\) −17.7121 14.8622i −1.45593 1.22167i
\(149\) 0.870767 + 4.93837i 0.0713360 + 0.404567i 0.999477 + 0.0323378i \(0.0102952\pi\)
−0.928141 + 0.372229i \(0.878594\pi\)
\(150\) 0 0
\(151\) 6.04189 0.491682 0.245841 0.969310i \(-0.420936\pi\)
0.245841 + 0.969310i \(0.420936\pi\)
\(152\) 11.1074 24.1872i 0.900930 1.96184i
\(153\) 0 0
\(154\) 48.5852 + 17.6836i 3.91511 + 1.42498i
\(155\) 1.48158 + 8.40247i 0.119004 + 0.674902i
\(156\) 0 0
\(157\) 10.8289 9.08651i 0.864239 0.725182i −0.0986383 0.995123i \(-0.531449\pi\)
0.962877 + 0.269941i \(0.0870042\pi\)
\(158\) 4.41013 25.0111i 0.350851 1.98978i
\(159\) 0 0
\(160\) −3.09627 5.36289i −0.244781 0.423974i
\(161\) 11.6099 4.22567i 0.914991 0.333030i
\(162\) 0 0
\(163\) −0.669778 1.16009i −0.0524610 0.0908652i 0.838602 0.544744i \(-0.183373\pi\)
−0.891063 + 0.453879i \(0.850040\pi\)
\(164\) 16.2062 28.0700i 1.26549 2.19190i
\(165\) 0 0
\(166\) −8.91534 + 7.48086i −0.691965 + 0.580628i
\(167\) −2.43763 2.04542i −0.188630 0.158279i 0.543582 0.839356i \(-0.317068\pi\)
−0.732212 + 0.681077i \(0.761512\pi\)
\(168\) 0 0
\(169\) 5.60354 + 2.03952i 0.431042 + 0.156886i
\(170\) 22.2344 1.70530
\(171\) 0 0
\(172\) −14.4834 −1.10435
\(173\) 20.5005 + 7.46156i 1.55862 + 0.567292i 0.970420 0.241423i \(-0.0776140\pi\)
0.588202 + 0.808714i \(0.299836\pi\)
\(174\) 0 0
\(175\) 11.9042 + 9.98881i 0.899873 + 0.755083i
\(176\) −21.2802 + 17.8562i −1.60405 + 1.34596i
\(177\) 0 0
\(178\) −23.6250 + 40.9196i −1.77077 + 3.06705i
\(179\) 4.84002 + 8.38316i 0.361760 + 0.626587i 0.988251 0.152842i \(-0.0488426\pi\)
−0.626490 + 0.779429i \(0.715509\pi\)
\(180\) 0 0
\(181\) 5.73308 2.08667i 0.426136 0.155101i −0.120044 0.992769i \(-0.538304\pi\)
0.546180 + 0.837668i \(0.316081\pi\)
\(182\) 16.3871 + 28.3833i 1.21469 + 2.10391i
\(183\) 0 0
\(184\) −2.68479 + 15.2262i −0.197926 + 1.12249i
\(185\) 5.40941 4.53904i 0.397708 0.333717i
\(186\) 0 0
\(187\) −4.73618 26.8602i −0.346344 1.96421i
\(188\) 6.25877 + 2.27801i 0.456468 + 0.166141i
\(189\) 0 0
\(190\) 12.2306 + 8.45805i 0.887297 + 0.613611i
\(191\) −9.04963 −0.654808 −0.327404 0.944884i \(-0.606174\pi\)
−0.327404 + 0.944884i \(0.606174\pi\)
\(192\) 0 0
\(193\) 2.99747 + 16.9995i 0.215763 + 1.22365i 0.879578 + 0.475755i \(0.157825\pi\)
−0.663815 + 0.747897i \(0.731064\pi\)
\(194\) 28.1313 + 23.6050i 2.01971 + 1.69474i
\(195\) 0 0
\(196\) 12.8760 73.0233i 0.919713 5.21595i
\(197\) −4.47519 + 7.75125i −0.318844 + 0.552254i −0.980247 0.197777i \(-0.936628\pi\)
0.661403 + 0.750030i \(0.269961\pi\)
\(198\) 0 0
\(199\) −13.9226 + 5.06742i −0.986948 + 0.359220i −0.784538 0.620081i \(-0.787100\pi\)
−0.202410 + 0.979301i \(0.564878\pi\)
\(200\) −18.2738 + 6.65111i −1.29215 + 0.470305i
\(201\) 0 0
\(202\) −12.8478 + 22.2530i −0.903965 + 1.56571i
\(203\) −2.49407 + 14.1446i −0.175049 + 0.992755i
\(204\) 0 0
\(205\) 7.58306 + 6.36295i 0.529624 + 0.444407i
\(206\) 1.86824 + 10.5953i 0.130167 + 0.738211i
\(207\) 0 0
\(208\) −17.6091 −1.22097
\(209\) 7.61246 16.5767i 0.526565 1.14664i
\(210\) 0 0
\(211\) 19.7690 + 7.19534i 1.36096 + 0.495348i 0.916350 0.400378i \(-0.131121\pi\)
0.444607 + 0.895726i \(0.353343\pi\)
\(212\) 3.05303 + 17.3146i 0.209683 + 1.18917i
\(213\) 0 0
\(214\) 21.6288 18.1487i 1.47852 1.24062i
\(215\) 0.768104 4.35613i 0.0523842 0.297086i
\(216\) 0 0
\(217\) −15.4500 26.7601i −1.04881 1.81659i
\(218\) −24.4329 + 8.89284i −1.65480 + 0.602299i
\(219\) 0 0
\(220\) −12.4363 21.5403i −0.838454 1.45225i
\(221\) 8.64455 14.9728i 0.581496 1.00718i
\(222\) 0 0
\(223\) 8.75671 7.34775i 0.586393 0.492042i −0.300647 0.953736i \(-0.597202\pi\)
0.887039 + 0.461694i \(0.152758\pi\)
\(224\) 17.1800 + 14.4158i 1.14789 + 0.963194i
\(225\) 0 0
\(226\) −6.79813 2.47432i −0.452205 0.164589i
\(227\) −14.1070 −0.936315 −0.468157 0.883645i \(-0.655082\pi\)
−0.468157 + 0.883645i \(0.655082\pi\)
\(228\) 0 0
\(229\) −10.6108 −0.701182 −0.350591 0.936529i \(-0.614019\pi\)
−0.350591 + 0.936529i \(0.614019\pi\)
\(230\) −8.11721 2.95442i −0.535233 0.194809i
\(231\) 0 0
\(232\) −13.7686 11.5532i −0.903951 0.758505i
\(233\) 22.0835 18.5303i 1.44674 1.21396i 0.511824 0.859090i \(-0.328970\pi\)
0.934916 0.354869i \(-0.115474\pi\)
\(234\) 0 0
\(235\) −1.01707 + 1.76162i −0.0663466 + 0.114916i
\(236\) 7.88326 + 13.6542i 0.513156 + 0.888813i
\(237\) 0 0
\(238\) −75.6682 + 27.5410i −4.90484 + 1.78522i
\(239\) 5.22668 + 9.05288i 0.338086 + 0.585582i 0.984073 0.177767i \(-0.0568872\pi\)
−0.645987 + 0.763349i \(0.723554\pi\)
\(240\) 0 0
\(241\) −1.29679 + 7.35446i −0.0835335 + 0.473742i 0.914130 + 0.405421i \(0.132875\pi\)
−0.997663 + 0.0683207i \(0.978236\pi\)
\(242\) −12.6322 + 10.5997i −0.812030 + 0.681374i
\(243\) 0 0
\(244\) 2.28699 + 12.9702i 0.146409 + 0.830329i
\(245\) 21.2802 + 7.74535i 1.35954 + 0.494832i
\(246\) 0 0
\(247\) 10.4508 4.94772i 0.664971 0.314816i
\(248\) 38.6682 2.45543
\(249\) 0 0
\(250\) −4.84864 27.4980i −0.306655 1.73913i
\(251\) −15.0929 12.6644i −0.952653 0.799371i 0.0270893 0.999633i \(-0.491376\pi\)
−0.979742 + 0.200262i \(0.935821\pi\)
\(252\) 0 0
\(253\) −1.84002 + 10.4353i −0.115681 + 0.656061i
\(254\) −21.2986 + 36.8903i −1.33639 + 2.31470i
\(255\) 0 0
\(256\) 28.6634 10.4326i 1.79146 0.652040i
\(257\) 6.41787 2.33591i 0.400336 0.145710i −0.134003 0.990981i \(-0.542783\pi\)
0.534338 + 0.845271i \(0.320561\pi\)
\(258\) 0 0
\(259\) −12.7870 + 22.1477i −0.794545 + 1.37619i
\(260\) 2.73783 15.5270i 0.169793 0.962943i
\(261\) 0 0
\(262\) −8.87733 7.44896i −0.548443 0.460198i
\(263\) −2.15405 12.2162i −0.132824 0.753284i −0.976350 0.216195i \(-0.930635\pi\)
0.843526 0.537089i \(-0.180476\pi\)
\(264\) 0 0
\(265\) −5.36959 −0.329851
\(266\) −52.0997 13.6349i −3.19444 0.836009i
\(267\) 0 0
\(268\) 6.08512 + 2.21480i 0.371708 + 0.135291i
\(269\) 1.35070 + 7.66020i 0.0823536 + 0.467051i 0.997896 + 0.0648299i \(0.0206505\pi\)
−0.915543 + 0.402221i \(0.868238\pi\)
\(270\) 0 0
\(271\) −1.95084 + 1.63695i −0.118505 + 0.0994374i −0.700114 0.714031i \(-0.746868\pi\)
0.581609 + 0.813468i \(0.302423\pi\)
\(272\) 7.51279 42.6072i 0.455530 2.58344i
\(273\) 0 0
\(274\) −25.7087 44.5288i −1.55312 2.69008i
\(275\) −12.5239 + 4.55834i −0.755222 + 0.274878i
\(276\) 0 0
\(277\) 12.5963 + 21.8174i 0.756836 + 1.31088i 0.944456 + 0.328637i \(0.106589\pi\)
−0.187620 + 0.982242i \(0.560077\pi\)
\(278\) −20.7528 + 35.9450i −1.24467 + 2.15584i
\(279\) 0 0
\(280\) −30.7499 + 25.8022i −1.83766 + 1.54198i
\(281\) 7.03667 + 5.90447i 0.419773 + 0.352231i 0.828077 0.560615i \(-0.189435\pi\)
−0.408304 + 0.912846i \(0.633880\pi\)
\(282\) 0 0
\(283\) 6.83022 + 2.48600i 0.406015 + 0.147777i 0.536951 0.843614i \(-0.319576\pi\)
−0.130936 + 0.991391i \(0.541798\pi\)
\(284\) −1.97771 −0.117356
\(285\) 0 0
\(286\) −28.1088 −1.66211
\(287\) −33.6883 12.2615i −1.98855 0.723775i
\(288\) 0 0
\(289\) 19.5175 + 16.3772i 1.14809 + 0.963362i
\(290\) 7.69253 6.45480i 0.451721 0.379039i
\(291\) 0 0
\(292\) 19.6780 34.0833i 1.15157 1.99457i
\(293\) −10.0039 17.3272i −0.584432 1.01227i −0.994946 0.100412i \(-0.967984\pi\)
0.410514 0.911854i \(-0.365349\pi\)
\(294\) 0 0
\(295\) −4.52481 + 1.64690i −0.263445 + 0.0958861i
\(296\) −16.0016 27.7157i −0.930077 1.61094i
\(297\) 0 0
\(298\) −2.20486 + 12.5044i −0.127724 + 0.724359i
\(299\) −5.14543 + 4.31753i −0.297568 + 0.249689i
\(300\) 0 0
\(301\) 2.78177 + 15.7762i 0.160339 + 0.909327i
\(302\) 14.3760 + 5.23243i 0.827245 + 0.301092i
\(303\) 0 0
\(304\) 20.3405 20.5792i 1.16661 1.18030i
\(305\) −4.02229 −0.230316
\(306\) 0 0
\(307\) −0.102196 0.579585i −0.00583266 0.0330787i 0.981753 0.190163i \(-0.0609017\pi\)
−0.987585 + 0.157084i \(0.949791\pi\)
\(308\) 69.0044 + 57.9016i 3.93189 + 3.29925i
\(309\) 0 0
\(310\) −3.75150 + 21.2758i −0.213071 + 1.20838i
\(311\) 3.59240 6.22221i 0.203706 0.352829i −0.746014 0.665931i \(-0.768035\pi\)
0.949720 + 0.313101i \(0.101368\pi\)
\(312\) 0 0
\(313\) 11.1903 4.07294i 0.632514 0.230216i −0.00581126 0.999983i \(-0.501850\pi\)
0.638325 + 0.769767i \(0.279628\pi\)
\(314\) 33.6352 12.2422i 1.89815 0.690868i
\(315\) 0 0
\(316\) 22.1236 38.3192i 1.24455 2.15562i
\(317\) −0.651826 + 3.69669i −0.0366102 + 0.207627i −0.997626 0.0688673i \(-0.978062\pi\)
0.961016 + 0.276494i \(0.0891726\pi\)
\(318\) 0 0
\(319\) −9.43629 7.91799i −0.528331 0.443322i
\(320\) 0.383256 + 2.17355i 0.0214246 + 0.121505i
\(321\) 0 0
\(322\) 31.2841 1.74339
\(323\) 7.51279 + 27.3979i 0.418023 + 1.52446i
\(324\) 0 0
\(325\) −7.93882 2.88949i −0.440366 0.160280i
\(326\) −0.588993 3.34034i −0.0326213 0.185005i
\(327\) 0 0
\(328\) 34.3671 28.8374i 1.89761 1.59228i
\(329\) 1.27925 7.25498i 0.0705272 0.399980i
\(330\) 0 0
\(331\) −4.94222 8.56017i −0.271649 0.470510i 0.697635 0.716453i \(-0.254236\pi\)
−0.969284 + 0.245943i \(0.920902\pi\)
\(332\) −19.0535 + 6.93491i −1.04570 + 0.380602i
\(333\) 0 0
\(334\) −4.02869 6.97789i −0.220440 0.381813i
\(335\) −0.988856 + 1.71275i −0.0540270 + 0.0935774i
\(336\) 0 0
\(337\) 24.5594 20.6078i 1.33784 1.12258i 0.355661 0.934615i \(-0.384256\pi\)
0.982176 0.187964i \(-0.0601888\pi\)
\(338\) 11.5667 + 9.70562i 0.629146 + 0.527916i
\(339\) 0 0
\(340\) 36.4013 + 13.2490i 1.97414 + 0.718527i
\(341\) 26.5012 1.43512
\(342\) 0 0
\(343\) −47.8590 −2.58414
\(344\) −18.8380 6.85646i −1.01567 0.369675i
\(345\) 0 0
\(346\) 42.3166 + 35.5079i 2.27495 + 1.90891i
\(347\) 15.3498 12.8800i 0.824022 0.691436i −0.129889 0.991529i \(-0.541462\pi\)
0.953910 + 0.300092i \(0.0970175\pi\)
\(348\) 0 0
\(349\) −1.63563 + 2.83299i −0.0875532 + 0.151647i −0.906476 0.422257i \(-0.861238\pi\)
0.818923 + 0.573903i \(0.194571\pi\)
\(350\) 19.6741 + 34.0766i 1.05163 + 1.82147i
\(351\) 0 0
\(352\) −18.0744 + 6.57856i −0.963371 + 0.350638i
\(353\) −18.6800 32.3548i −0.994238 1.72207i −0.589949 0.807440i \(-0.700852\pi\)
−0.404289 0.914631i \(-0.632481\pi\)
\(354\) 0 0
\(355\) 0.104885 0.594831i 0.00556671 0.0315704i
\(356\) −63.0608 + 52.9143i −3.34222 + 2.80445i
\(357\) 0 0
\(358\) 4.25624 + 24.1384i 0.224949 + 1.27575i
\(359\) −11.0522 4.02266i −0.583310 0.212308i 0.0334742 0.999440i \(-0.489343\pi\)
−0.616785 + 0.787132i \(0.711565\pi\)
\(360\) 0 0
\(361\) −6.28968 + 17.9287i −0.331036 + 0.943618i
\(362\) 15.4483 0.811945
\(363\) 0 0
\(364\) 9.91534 + 56.2327i 0.519705 + 2.94740i
\(365\) 9.20755 + 7.72605i 0.481945 + 0.404400i
\(366\) 0 0
\(367\) 0.413534 2.34527i 0.0215863 0.122422i −0.972110 0.234523i \(-0.924647\pi\)
0.993697 + 0.112102i \(0.0357582\pi\)
\(368\) −8.40420 + 14.5565i −0.438099 + 0.758810i
\(369\) 0 0
\(370\) 16.8020 6.11543i 0.873495 0.317926i
\(371\) 18.2738 6.65111i 0.948728 0.345309i
\(372\) 0 0
\(373\) 8.73530 15.1300i 0.452297 0.783401i −0.546232 0.837634i \(-0.683938\pi\)
0.998528 + 0.0542334i \(0.0172715\pi\)
\(374\) 11.9924 68.0124i 0.620113 3.51684i
\(375\) 0 0
\(376\) 7.06212 + 5.92582i 0.364201 + 0.305601i
\(377\) −1.35591 7.68977i −0.0698331 0.396043i
\(378\) 0 0
\(379\) 10.2199 0.524960 0.262480 0.964937i \(-0.415460\pi\)
0.262480 + 0.964937i \(0.415460\pi\)
\(380\) 14.9834 + 21.1351i 0.768632 + 1.08421i
\(381\) 0 0
\(382\) −21.5326 7.83721i −1.10170 0.400987i
\(383\) 4.10994 + 23.3086i 0.210008 + 1.19101i 0.889362 + 0.457204i \(0.151149\pi\)
−0.679354 + 0.733811i \(0.737740\pi\)
\(384\) 0 0
\(385\) −21.0744 + 17.6836i −1.07405 + 0.901238i
\(386\) −7.58987 + 43.0443i −0.386314 + 2.19090i
\(387\) 0 0
\(388\) 31.9898 + 55.4079i 1.62404 + 2.81291i
\(389\) −13.6775 + 4.97821i −0.693478 + 0.252405i −0.664624 0.747178i \(-0.731408\pi\)
−0.0288542 + 0.999584i \(0.509186\pi\)
\(390\) 0 0
\(391\) −8.25150 14.2920i −0.417296 0.722778i
\(392\) 51.3166 88.8830i 2.59188 4.48927i
\(393\) 0 0
\(394\) −17.3610 + 14.5676i −0.874633 + 0.733904i
\(395\) 10.3519 + 8.68626i 0.520860 + 0.437053i
\(396\) 0 0
\(397\) 1.49747 + 0.545036i 0.0751561 + 0.0273546i 0.379325 0.925264i \(-0.376156\pi\)
−0.304169 + 0.952618i \(0.598379\pi\)
\(398\) −37.5158 −1.88050
\(399\) 0 0
\(400\) −21.1411 −1.05706
\(401\) 0.714660 + 0.260115i 0.0356884 + 0.0129895i 0.359803 0.933028i \(-0.382844\pi\)
−0.324114 + 0.946018i \(0.605066\pi\)
\(402\) 0 0
\(403\) 12.8687 + 10.7981i 0.641036 + 0.537893i
\(404\) −34.2939 + 28.7760i −1.70618 + 1.43166i
\(405\) 0 0
\(406\) −18.1839 + 31.4955i −0.902453 + 1.56309i
\(407\) −10.9667 18.9949i −0.543601 0.941544i
\(408\) 0 0
\(409\) −7.38326 + 2.68729i −0.365078 + 0.132878i −0.518044 0.855354i \(-0.673340\pi\)
0.152966 + 0.988231i \(0.451118\pi\)
\(410\) 12.5326 + 21.7070i 0.618939 + 1.07203i
\(411\) 0 0
\(412\) −3.25490 + 18.4595i −0.160357 + 0.909432i
\(413\) 13.3589 11.2095i 0.657349 0.551581i
\(414\) 0 0
\(415\) −1.07532 6.09845i −0.0527855 0.299361i
\(416\) −11.4572 4.17009i −0.561737 0.204456i
\(417\) 0 0
\(418\) 32.4688 32.8498i 1.58810 1.60674i
\(419\) −6.77930 −0.331191 −0.165595 0.986194i \(-0.552955\pi\)
−0.165595 + 0.986194i \(0.552955\pi\)
\(420\) 0 0
\(421\) −4.10307 23.2697i −0.199972 1.13410i −0.905159 0.425074i \(-0.860248\pi\)
0.705187 0.709021i \(-0.250863\pi\)
\(422\) 40.8068 + 34.2410i 1.98644 + 1.66682i
\(423\) 0 0
\(424\) −4.22580 + 23.9657i −0.205223 + 1.16388i
\(425\) 10.3785 17.9761i 0.503432 0.871969i
\(426\) 0 0
\(427\) 13.6887 4.98227i 0.662441 0.241109i
\(428\) 46.2242 16.8242i 2.23433 0.813230i
\(429\) 0 0
\(430\) 5.60014 9.69972i 0.270063 0.467762i
\(431\) −3.15729 + 17.9059i −0.152081 + 0.862496i 0.809325 + 0.587362i \(0.199833\pi\)
−0.961406 + 0.275134i \(0.911278\pi\)
\(432\) 0 0
\(433\) −6.87211 5.76639i −0.330253 0.277115i 0.462550 0.886593i \(-0.346935\pi\)
−0.792803 + 0.609478i \(0.791379\pi\)
\(434\) −13.5865 77.0527i −0.652171 3.69865i
\(435\) 0 0
\(436\) −45.2995 −2.16945
\(437\) 0.897804 11.0005i 0.0429478 0.526227i
\(438\) 0 0
\(439\) 0.337496 + 0.122839i 0.0161078 + 0.00586276i 0.350061 0.936727i \(-0.386161\pi\)
−0.333954 + 0.942589i \(0.608383\pi\)
\(440\) −5.97818 33.9039i −0.284998 1.61631i
\(441\) 0 0
\(442\) 33.5355 28.1397i 1.59512 1.33847i
\(443\) 2.52910 14.3432i 0.120161 0.681467i −0.863904 0.503657i \(-0.831988\pi\)
0.984065 0.177810i \(-0.0569012\pi\)
\(444\) 0 0
\(445\) −12.5706 21.7729i −0.595902 1.03213i
\(446\) 27.1989 9.89960i 1.28791 0.468760i
\(447\) 0 0
\(448\) −3.99660 6.92231i −0.188821 0.327048i
\(449\) −0.0248149 + 0.0429807i −0.00117109 + 0.00202839i −0.866610 0.498985i \(-0.833706\pi\)
0.865439 + 0.501014i \(0.167039\pi\)
\(450\) 0 0
\(451\) 23.5535 19.7637i 1.10909 0.930638i
\(452\) −9.65523 8.10170i −0.454144 0.381072i
\(453\) 0 0
\(454\) −33.5660 12.2170i −1.57533 0.573373i
\(455\) −17.4388 −0.817544
\(456\) 0 0
\(457\) 35.5303 1.66204 0.831019 0.556243i \(-0.187758\pi\)
0.831019 + 0.556243i \(0.187758\pi\)
\(458\) −25.2472 9.18923i −1.17972 0.429385i
\(459\) 0 0
\(460\) −11.5287 9.67372i −0.537528 0.451039i
\(461\) −8.85188 + 7.42761i −0.412273 + 0.345938i −0.825215 0.564819i \(-0.808946\pi\)
0.412941 + 0.910758i \(0.364501\pi\)
\(462\) 0 0
\(463\) 6.76739 11.7215i 0.314507 0.544742i −0.664825 0.746999i \(-0.731494\pi\)
0.979333 + 0.202256i \(0.0648274\pi\)
\(464\) −9.76991 16.9220i −0.453557 0.785584i
\(465\) 0 0
\(466\) 68.5929 24.9658i 3.17751 1.15652i
\(467\) 12.4697 + 21.5982i 0.577030 + 0.999445i 0.995818 + 0.0913611i \(0.0291217\pi\)
−0.418788 + 0.908084i \(0.637545\pi\)
\(468\) 0 0
\(469\) 1.24376 7.05369i 0.0574313 0.325709i
\(470\) −3.94562 + 3.31077i −0.181998 + 0.152714i
\(471\) 0 0
\(472\) 3.78952 + 21.4914i 0.174427 + 0.989222i
\(473\) −12.9106 4.69907i −0.593630 0.216064i
\(474\) 0 0
\(475\) 12.5471 5.94015i 0.575701 0.272553i
\(476\) −140.292 −6.43027
\(477\) 0 0
\(478\) 4.59627 + 26.0667i 0.210228 + 1.19226i
\(479\) −5.19846 4.36203i −0.237524 0.199306i 0.516254 0.856436i \(-0.327326\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(480\) 0 0
\(481\) 2.41431 13.6922i 0.110083 0.624311i
\(482\) −9.45471 + 16.3760i −0.430650 + 0.745908i
\(483\) 0 0
\(484\) −26.9971 + 9.82613i −1.22714 + 0.446642i
\(485\) −18.3614 + 6.68302i −0.833750 + 0.303460i
\(486\) 0 0
\(487\) −16.8097 + 29.1153i −0.761722 + 1.31934i 0.180240 + 0.983623i \(0.442313\pi\)
−0.941962 + 0.335719i \(0.891021\pi\)
\(488\) −3.16550 + 17.9524i −0.143295 + 0.812668i
\(489\) 0 0
\(490\) 43.9261 + 36.8584i 1.98438 + 1.66509i
\(491\) −4.97612 28.2210i −0.224569 1.27359i −0.863507 0.504336i \(-0.831737\pi\)
0.638938 0.769258i \(-0.279374\pi\)
\(492\) 0 0
\(493\) 19.1848 0.864040
\(494\) 29.1514 2.72183i 1.31158 0.122461i
\(495\) 0 0
\(496\) 39.5026 + 14.3778i 1.77372 + 0.645581i
\(497\) 0.379852 + 2.15425i 0.0170387 + 0.0966312i
\(498\) 0 0
\(499\) −32.2859 + 27.0911i −1.44531 + 1.21276i −0.509401 + 0.860529i \(0.670133\pi\)
−0.935912 + 0.352233i \(0.885422\pi\)
\(500\) 8.44743 47.9078i 0.377781 2.14250i
\(501\) 0 0
\(502\) −24.9440 43.2043i −1.11331 1.92830i
\(503\) −17.9804 + 6.54433i −0.801706 + 0.291797i −0.710193 0.704007i \(-0.751393\pi\)
−0.0915130 + 0.995804i \(0.529170\pi\)
\(504\) 0 0
\(505\) −6.83615 11.8406i −0.304205 0.526898i
\(506\) −13.4153 + 23.2361i −0.596385 + 1.03297i
\(507\) 0 0
\(508\) −56.8512 + 47.7038i −2.52237 + 2.11652i
\(509\) −22.2690 18.6859i −0.987058 0.828240i −0.00191863 0.999998i \(-0.500611\pi\)
−0.985139 + 0.171758i \(0.945055\pi\)
\(510\) 0 0
\(511\) −40.9051 14.8883i −1.80954 0.658617i
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 17.2935 0.762786
\(515\) −5.37939 1.95794i −0.237044 0.0862770i
\(516\) 0 0
\(517\) 4.84002 + 4.06126i 0.212864 + 0.178614i
\(518\) −49.6057 + 41.6241i −2.17955 + 1.82886i
\(519\) 0 0
\(520\) 10.9115 18.8992i 0.478500 0.828786i
\(521\) 3.48293 + 6.03260i 0.152590 + 0.264293i 0.932179 0.361998i \(-0.117905\pi\)
−0.779589 + 0.626291i \(0.784572\pi\)
\(522\) 0 0
\(523\) 15.8148 5.75612i 0.691533 0.251697i 0.0277414 0.999615i \(-0.491169\pi\)
0.663791 + 0.747918i \(0.268946\pi\)
\(524\) −10.0949 17.4849i −0.440999 0.763832i
\(525\) 0 0
\(526\) 5.45424 30.9325i 0.237816 1.34872i
\(527\) −31.6177 + 26.5304i −1.37729 + 1.15568i
\(528\) 0 0
\(529\) −2.88057 16.3365i −0.125242 0.710283i
\(530\) −12.7763 4.65020i −0.554968 0.201992i
\(531\) 0 0
\(532\) −77.1708 53.3675i −3.34578 2.31377i
\(533\) 19.4902 0.844214
\(534\) 0 0
\(535\) 2.60876 + 14.7950i 0.112786 + 0.639643i
\(536\) 6.86618 + 5.76141i 0.296574 + 0.248855i
\(537\) 0 0
\(538\) −3.42009 + 19.3963i −0.147451 + 0.836234i
\(539\) 35.1698 60.9159i 1.51487 2.62384i
\(540\) 0 0
\(541\) 14.1395 5.14636i 0.607905 0.221259i −0.0196816 0.999806i \(-0.506265\pi\)
0.627586 + 0.778547i \(0.284043\pi\)
\(542\) −6.05943 + 2.20545i −0.260275 + 0.0947323i
\(543\) 0 0
\(544\) 14.9782 25.9430i 0.642184 1.11230i
\(545\) 2.40239 13.6246i 0.102907 0.583615i
\(546\) 0 0
\(547\) −27.6313 23.1855i −1.18143 0.991338i −0.999968 0.00794061i \(-0.997472\pi\)
−0.181463 0.983398i \(-0.558083\pi\)
\(548\) −15.5556 88.2200i −0.664501 3.76857i
\(549\) 0 0
\(550\) −33.7469 −1.43897
\(551\) 10.5530 + 7.29796i 0.449574 + 0.310903i
\(552\) 0 0
\(553\) −45.9889 16.7386i −1.95565 0.711797i
\(554\) 11.0770 + 62.8206i 0.470615 + 2.66899i
\(555\) 0 0
\(556\) −55.3945 + 46.4815i −2.34925 + 1.97125i
\(557\) 5.90151 33.4691i 0.250055 1.41813i −0.558398 0.829573i \(-0.688584\pi\)
0.808454 0.588560i \(-0.200305\pi\)
\(558\) 0 0
\(559\) −4.35457 7.54234i −0.184179 0.319007i
\(560\) −41.0073 + 14.9254i −1.73288 + 0.630715i
\(561\) 0 0
\(562\) 11.6295 + 20.1429i 0.490562 + 0.849679i
\(563\) −9.14290 + 15.8360i −0.385327 + 0.667407i −0.991815 0.127687i \(-0.959245\pi\)
0.606487 + 0.795093i \(0.292578\pi\)
\(564\) 0 0
\(565\) 2.94878 2.47432i 0.124056 0.104095i
\(566\) 14.0988 + 11.8303i 0.592616 + 0.497264i
\(567\) 0 0
\(568\) −2.57233 0.936251i −0.107933 0.0392842i
\(569\) 18.5107 0.776010 0.388005 0.921657i \(-0.373164\pi\)
0.388005 + 0.921657i \(0.373164\pi\)
\(570\) 0 0
\(571\) −1.28136 −0.0536234 −0.0268117 0.999641i \(-0.508535\pi\)
−0.0268117 + 0.999641i \(0.508535\pi\)
\(572\) −46.0185 16.7494i −1.92413 0.700326i
\(573\) 0 0
\(574\) −69.5385 58.3498i −2.90248 2.43547i
\(575\) −6.17752 + 5.18355i −0.257620 + 0.216169i
\(576\) 0 0
\(577\) −1.08466 + 1.87868i −0.0451548 + 0.0782104i −0.887719 0.460385i \(-0.847711\pi\)
0.842565 + 0.538595i \(0.181045\pi\)
\(578\) 32.2567 + 55.8703i 1.34170 + 2.32390i
\(579\) 0 0
\(580\) 16.4402 5.98373i 0.682640 0.248461i
\(581\) 11.2135 + 19.4223i 0.465213 + 0.805773i
\(582\) 0 0
\(583\) −2.89615 + 16.4249i −0.119946 + 0.680250i
\(584\) 41.7294 35.0151i 1.72678 1.44894i
\(585\) 0 0
\(586\) −8.79726 49.8917i −0.363411 2.06101i
\(587\) 31.9111 + 11.6147i 1.31711 + 0.479389i 0.902531 0.430624i \(-0.141707\pi\)
0.414579 + 0.910013i \(0.363929\pi\)
\(588\) 0 0
\(589\) −27.4843 + 2.56617i −1.13247 + 0.105737i
\(590\) −12.1925 −0.501959
\(591\) 0 0
\(592\) −6.04158 34.2635i −0.248308 1.40822i
\(593\) −21.8576 18.3407i −0.897583 0.753161i 0.0721338 0.997395i \(-0.477019\pi\)
−0.969716 + 0.244234i \(0.921464\pi\)
\(594\) 0 0
\(595\) 7.44016 42.1952i 0.305017 1.72984i
\(596\) −11.0608 + 19.1578i −0.453067 + 0.784735i
\(597\) 0 0
\(598\) −15.9820 + 5.81699i −0.653555 + 0.237874i
\(599\) 13.7618 5.00887i 0.562290 0.204657i −0.0452084 0.998978i \(-0.514395\pi\)
0.607499 + 0.794321i \(0.292173\pi\)
\(600\) 0 0
\(601\) −11.8366 + 20.5016i −0.482826 + 0.836279i −0.999806 0.0197189i \(-0.993723\pi\)
0.516980 + 0.855998i \(0.327056\pi\)
\(602\) −7.04370 + 39.9468i −0.287080 + 1.62811i
\(603\) 0 0
\(604\) 20.4179 + 17.1326i 0.830791 + 0.697117i
\(605\) −1.52363 8.64095i −0.0619445 0.351305i
\(606\) 0 0
\(607\) 39.9745 1.62252 0.811258 0.584688i \(-0.198783\pi\)
0.811258 + 0.584688i \(0.198783\pi\)
\(608\) 18.1079 8.57277i 0.734371 0.347672i
\(609\) 0 0
\(610\) −9.57057 3.48340i −0.387501 0.141039i
\(611\) 0.695470 + 3.94421i 0.0281357 + 0.159566i
\(612\) 0 0
\(613\) −15.1518 + 12.7139i −0.611977 + 0.513509i −0.895270 0.445524i \(-0.853017\pi\)
0.283293 + 0.959033i \(0.408573\pi\)
\(614\) 0.258770 1.46756i 0.0104431 0.0592259i
\(615\) 0 0
\(616\) 62.3405 + 107.977i 2.51177 + 4.35052i
\(617\) 0.881607 0.320879i 0.0354922 0.0129181i −0.324213 0.945984i \(-0.605099\pi\)
0.359705 + 0.933066i \(0.382877\pi\)
\(618\) 0 0
\(619\) 0.750152 + 1.29930i 0.0301512 + 0.0522234i 0.880707 0.473661i \(-0.157068\pi\)
−0.850556 + 0.525884i \(0.823734\pi\)
\(620\) −18.8195 + 32.5964i −0.755811 + 1.30910i
\(621\) 0 0
\(622\) 13.9363 11.6939i 0.558794 0.468884i
\(623\) 69.7495 + 58.5268i 2.79445 + 2.34483i
\(624\) 0 0
\(625\) −1.00253 0.364890i −0.0401010 0.0145956i
\(626\) 30.1533 1.20517
\(627\) 0 0
\(628\) 62.3610 2.48848
\(629\) 32.0998 + 11.6834i 1.27990 + 0.465847i
\(630\) 0 0
\(631\) −25.1989 21.1444i −1.00315 0.841746i −0.0157353 0.999876i \(-0.505009\pi\)
−0.987418 + 0.158130i \(0.949453\pi\)
\(632\) 46.9156 39.3669i 1.86620 1.56593i
\(633\) 0 0
\(634\) −4.75237 + 8.23135i −0.188741 + 0.326909i
\(635\) −11.3327 19.6289i −0.449726 0.778949i
\(636\) 0 0
\(637\) 41.8987 15.2499i 1.66009 0.604223i
\(638\) −15.5954 27.0120i −0.617427 1.06942i
\(639\) 0 0
\(640\) −3.12108 + 17.7005i −0.123372 + 0.699675i
\(641\) −13.4436 + 11.2805i −0.530989 + 0.445553i −0.868443 0.495790i \(-0.834879\pi\)
0.337454 + 0.941342i \(0.390434\pi\)
\(642\) 0 0
\(643\) 3.59286 + 20.3761i 0.141689 + 0.803556i 0.969966 + 0.243239i \(0.0782099\pi\)
−0.828278 + 0.560318i \(0.810679\pi\)
\(644\) 51.2169 + 18.6414i 2.01823 + 0.734576i
\(645\) 0 0
\(646\) −5.85147 + 71.6965i −0.230223 + 2.82086i
\(647\) −36.8462 −1.44857 −0.724286 0.689499i \(-0.757831\pi\)
−0.724286 + 0.689499i \(0.757831\pi\)
\(648\) 0 0
\(649\) 2.59714 + 14.7291i 0.101947 + 0.578169i
\(650\) −16.3871 13.7504i −0.642756 0.539336i
\(651\) 0 0
\(652\) 1.02616 5.81964i 0.0401875 0.227915i
\(653\) −11.4278 + 19.7936i −0.447206 + 0.774583i −0.998203 0.0599241i \(-0.980914\pi\)
0.550997 + 0.834507i \(0.314247\pi\)
\(654\) 0 0
\(655\) 5.79426 2.10894i 0.226401 0.0824031i
\(656\) 45.8312 16.6812i 1.78941 0.651291i
\(657\) 0 0
\(658\) 9.32682 16.1545i 0.363597 0.629769i
\(659\) 1.81299 10.2820i 0.0706239 0.400528i −0.928919 0.370284i \(-0.879260\pi\)
0.999543 0.0302442i \(-0.00962849\pi\)
\(660\) 0 0
\(661\) −18.9322 15.8860i −0.736376 0.617893i 0.195486 0.980707i \(-0.437372\pi\)
−0.931862 + 0.362814i \(0.881816\pi\)
\(662\) −4.34611 24.6480i −0.168917 0.957973i
\(663\) 0 0
\(664\) −28.0651 −1.08914
\(665\) 20.1438 20.3802i 0.781144 0.790310i
\(666\) 0 0
\(667\) −7.00387 2.54920i −0.271191 0.0987054i
\(668\) −2.43763 13.8245i −0.0943149 0.534886i
\(669\) 0 0
\(670\) −3.83615 + 3.21891i −0.148203 + 0.124357i
\(671\) −2.16947 + 12.3037i −0.0837516 + 0.474979i
\(672\) 0 0
\(673\) −10.8910 18.8638i −0.419817 0.727144i 0.576104 0.817377i \(-0.304572\pi\)
−0.995921 + 0.0902321i \(0.971239\pi\)
\(674\) 76.2832 27.7648i 2.93832 1.06946i
\(675\) 0 0
\(676\) 13.1532 + 22.7820i 0.505891 + 0.876229i
\(677\) 6.36484 11.0242i 0.244621 0.423695i −0.717404 0.696657i \(-0.754670\pi\)
0.962025 + 0.272962i \(0.0880033\pi\)
\(678\) 0 0
\(679\) 54.2097 45.4873i 2.08038 1.74564i
\(680\) 41.0736 + 34.4648i 1.57510 + 1.32167i
\(681\) 0 0
\(682\) 63.0567 + 22.9507i 2.41456 + 0.878829i
\(683\) 0.706452 0.0270316 0.0135158 0.999909i \(-0.495698\pi\)
0.0135158 + 0.999909i \(0.495698\pi\)
\(684\) 0 0
\(685\) 27.3587 1.04532
\(686\) −113.875 41.4471i −4.34776 1.58246i
\(687\) 0 0
\(688\) −16.6951 14.0088i −0.636493 0.534081i
\(689\) −8.09879 + 6.79569i −0.308539 + 0.258895i
\(690\) 0 0
\(691\) 2.44650 4.23746i 0.0930692 0.161201i −0.815732 0.578430i \(-0.803666\pi\)
0.908801 + 0.417229i \(0.136999\pi\)
\(692\) 48.1207 + 83.3474i 1.82927 + 3.16839i
\(693\) 0 0
\(694\) 47.6776 17.3532i 1.80982 0.658719i
\(695\) −11.0424 19.1259i −0.418860 0.725488i
\(696\) 0 0
\(697\) −8.31537 + 47.1588i −0.314967 + 1.78627i
\(698\) −6.34524 + 5.32429i −0.240171 + 0.201527i
\(699\) 0 0
\(700\) 11.9042 + 67.5121i 0.449936 + 2.55172i
\(701\) −43.6391 15.8833i −1.64823 0.599905i −0.659777 0.751461i \(-0.729349\pi\)
−0.988449 + 0.151556i \(0.951572\pi\)
\(702\) 0 0
\(703\) 13.2128 + 18.6376i 0.498332 + 0.702930i
\(704\) 6.85534 0.258370
\(705\) 0 0
\(706\) −16.4270 93.1619i −0.618237 3.50619i
\(707\) 37.9313 + 31.8281i 1.42655 + 1.19702i
\(708\) 0 0
\(709\) 5.14109 29.1566i 0.193078 1.09500i −0.722052 0.691839i \(-0.756801\pi\)
0.915130 0.403160i \(-0.132088\pi\)
\(710\) 0.764700 1.32450i 0.0286987 0.0497076i
\(711\) 0 0
\(712\) −107.070 + 38.9704i −4.01263 + 1.46048i
\(713\) 15.0680 5.48432i 0.564303 0.205389i
\(714\) 0 0
\(715\) 7.47818 12.9526i 0.279668 0.484399i
\(716\) −7.41534 + 42.0545i −0.277124 + 1.57165i
\(717\) 0 0
\(718\) −22.8136 19.1429i −0.851397 0.714407i
\(719\) −0.820727 4.65457i −0.0306079 0.173586i 0.965672 0.259766i \(-0.0836453\pi\)
−0.996280 + 0.0861793i \(0.972534\pi\)
\(720\) 0 0
\(721\) 20.7324 0.772114
\(722\) −30.4923 + 37.2124i −1.13481 + 1.38490i
\(723\) 0 0
\(724\) 25.2913 + 9.20529i 0.939945 + 0.342112i
\(725\) −1.62789 9.23222i −0.0604583 0.342876i
\(726\) 0 0
\(727\) −28.9636 + 24.3034i −1.07420 + 0.901362i −0.995427 0.0955303i \(-0.969545\pi\)
−0.0787751 + 0.996892i \(0.525101\pi\)
\(728\) −13.7242 + 77.8336i −0.508651 + 2.88470i
\(729\) 0 0
\(730\) 15.2173 + 26.3572i 0.563219 + 0.975524i
\(731\) 20.1074 7.31850i 0.743699 0.270684i
\(732\) 0 0
\(733\) −11.2010 19.4007i −0.413718 0.716581i 0.581575 0.813493i \(-0.302437\pi\)
−0.995293 + 0.0969123i \(0.969103\pi\)
\(734\) 3.01501 5.22216i 0.111286 0.192753i
\(735\) 0 0
\(736\) −8.91534 + 7.48086i −0.328624 + 0.275748i
\(737\) 4.70574 + 3.94858i 0.173338 + 0.145448i
\(738\) 0 0
\(739\) −19.4979 7.09667i −0.717243 0.261055i −0.0424883 0.999097i \(-0.513529\pi\)
−0.674755 + 0.738042i \(0.735751\pi\)
\(740\) 31.1516 1.14515
\(741\) 0 0
\(742\) 49.2404 1.80767
\(743\) −36.6190 13.3282i −1.34342 0.488965i −0.432533 0.901618i \(-0.642380\pi\)
−0.910889 + 0.412653i \(0.864602\pi\)
\(744\) 0 0
\(745\) −5.17546 4.34273i −0.189614 0.159105i
\(746\) 33.8876 28.4351i 1.24071 1.04108i
\(747\) 0 0
\(748\) 60.1605 104.201i 2.19969 3.80997i
\(749\) −27.2041 47.1190i −0.994018 1.72169i
\(750\) 0 0
\(751\) 28.9206 10.5262i 1.05533 0.384107i 0.244656 0.969610i \(-0.421325\pi\)
0.810670 + 0.585503i \(0.199103\pi\)
\(752\) 5.01114 + 8.67956i 0.182738 + 0.316511i
\(753\) 0 0
\(754\) 3.43330 19.4712i 0.125033 0.709099i
\(755\) −6.23577 + 5.23243i −0.226943 + 0.190428i
\(756\) 0 0
\(757\) −0.136812 0.775897i −0.00497250 0.0282005i 0.982221 0.187731i \(-0.0601132\pi\)
−0.987193 + 0.159530i \(0.949002\pi\)
\(758\) 24.3170 + 8.85067i 0.883234 + 0.321471i
\(759\) 0 0
\(760\) 9.48293 + 34.5827i 0.343982 + 1.25445i
\(761\) −19.8384 −0.719143 −0.359571 0.933118i \(-0.617077\pi\)
−0.359571 + 0.933118i \(0.617077\pi\)
\(762\) 0 0
\(763\) 8.70052 + 49.3431i 0.314980 + 1.78634i
\(764\) −30.5822 25.6615i −1.10642 0.928401i
\(765\) 0 0
\(766\) −10.4067 + 59.0195i −0.376010 + 2.13246i
\(767\) −4.74035 + 8.21053i −0.171164 + 0.296465i
\(768\) 0 0
\(769\) 5.31180 1.93334i 0.191549 0.0697180i −0.244465 0.969658i \(-0.578612\pi\)
0.436013 + 0.899940i \(0.356390\pi\)
\(770\) −65.4586 + 23.8250i −2.35897 + 0.858593i
\(771\) 0 0
\(772\) −38.0749 + 65.9477i −1.37035 + 2.37351i
\(773\) 5.05216 28.6522i 0.181713 1.03055i −0.748392 0.663256i \(-0.769174\pi\)
0.930106 0.367292i \(-0.119715\pi\)
\(774\) 0 0
\(775\) 15.4500 + 12.9641i 0.554979 + 0.465683i
\(776\) 15.3776 + 87.2109i 0.552025 + 3.13069i
\(777\) 0 0
\(778\) −36.8553 −1.32133
\(779\) −22.5134 + 22.7776i −0.806627 + 0.816092i
\(780\) 0 0
\(781\) −1.76295 0.641660i −0.0630832 0.0229604i
\(782\) −7.25624 41.1522i −0.259483 1.47160i
\(783\) 0 0
\(784\) 85.4728 71.7202i 3.05260 2.56143i
\(785\) −3.30722 + 18.7562i −0.118040 + 0.669436i
\(786\) 0 0
\(787\) 10.9978 + 19.0487i 0.392028 + 0.679013i 0.992717 0.120470i \(-0.0384401\pi\)
−0.600689 + 0.799483i \(0.705107\pi\)
\(788\) −37.1031 + 13.5044i −1.32174 + 0.481076i
\(789\) 0 0
\(790\) 17.1086 + 29.6330i 0.608696 + 1.05429i
\(791\) −6.97044 + 12.0732i −0.247840 + 0.429272i
\(792\) 0 0
\(793\) −6.06670 + 5.09057i −0.215435 + 0.180771i
\(794\) 3.09105 + 2.59370i 0.109697 + 0.0920470i
\(795\) 0 0
\(796\) −61.4193 22.3548i −2.17695 0.792344i
\(797\) −45.5280 −1.61268 −0.806342 0.591450i \(-0.798556\pi\)
−0.806342 + 0.591450i \(0.798556\pi\)
\(798\) 0 0
\(799\) −9.84018 −0.348121
\(800\) −13.7554 5.00654i −0.486326 0.177008i
\(801\) 0 0
\(802\) 1.47519 + 1.23783i 0.0520906 + 0.0437092i
\(803\) 28.5993 23.9976i 1.00925 0.846858i
\(804\) 0 0
\(805\) −8.32295 + 14.4158i −0.293345 + 0.508089i
\(806\) 21.2682 + 36.8375i 0.749139 + 1.29755i
\(807\) 0 0
\(808\) −58.2272 + 21.1930i −2.04843 + 0.745566i
\(809\) 10.2694 + 17.7872i 0.361055 + 0.625365i 0.988135 0.153590i \(-0.0490835\pi\)
−0.627080 + 0.778955i \(0.715750\pi\)
\(810\) 0 0
\(811\) 1.67499 9.49935i 0.0588169 0.333567i −0.941174 0.337924i \(-0.890275\pi\)
0.999991 + 0.00435609i \(0.00138659\pi\)
\(812\) −48.5374 + 40.7277i −1.70333 + 1.42926i
\(813\) 0 0
\(814\) −9.64398 54.6937i −0.338021 1.91701i
\(815\) 1.69594 + 0.617271i 0.0594061 + 0.0216220i
\(816\) 0 0
\(817\) 13.8445 + 3.62322i 0.484359 + 0.126760i
\(818\) −19.8949 −0.695608
\(819\) 0 0
\(820\) 7.58306 + 43.0057i 0.264812 + 1.50182i
\(821\) 5.39621 + 4.52796i 0.188329 + 0.158027i 0.732077 0.681221i \(-0.238551\pi\)
−0.543748 + 0.839248i \(0.682995\pi\)
\(822\) 0 0
\(823\) −5.46316 + 30.9831i −0.190434 + 1.08000i 0.728339 + 0.685217i \(0.240293\pi\)
−0.918773 + 0.394787i \(0.870818\pi\)
\(824\) −12.9722 + 22.4686i −0.451910 + 0.782731i
\(825\) 0 0
\(826\) 41.4937 15.1025i 1.44375 0.525482i
\(827\) 34.7790 12.6585i 1.20938 0.440180i 0.342894 0.939374i \(-0.388593\pi\)
0.866490 + 0.499194i \(0.166371\pi\)
\(828\) 0 0
\(829\) −12.2653 + 21.2442i −0.425992 + 0.737841i −0.996513 0.0834430i \(-0.973408\pi\)
0.570520 + 0.821284i \(0.306742\pi\)
\(830\) 2.72281 15.4418i 0.0945102 0.535994i
\(831\) 0 0
\(832\) 3.32888 + 2.79326i 0.115408 + 0.0968389i
\(833\) 19.0231 + 107.885i 0.659110 + 3.73800i
\(834\) 0 0
\(835\) 4.28724 0.148366
\(836\) 72.7311 34.4329i 2.51546 1.19089i
\(837\) 0 0
\(838\) −16.1306 5.87105i −0.557222 0.202812i
\(839\) −3.14527 17.8377i −0.108587 0.615826i −0.989727 0.142971i \(-0.954335\pi\)
0.881140 0.472855i \(-0.156777\pi\)
\(840\) 0 0
\(841\) −15.5778 + 13.0714i −0.537167 + 0.450737i
\(842\) 10.3893 58.9209i 0.358041 2.03055i
\(843\) 0 0
\(844\) 46.4038 + 80.3737i 1.59728 + 2.76658i
\(845\) −7.54963 + 2.74784i −0.259715 + 0.0945286i
\(846\) 0 0
\(847\) 15.8885 + 27.5196i 0.545934 + 0.945586i
\(848\) −13.2280 + 22.9116i −0.454252 + 0.786788i
\(849\) 0 0
\(850\) 40.2622 33.7840i 1.38098 1.15878i
\(851\) −10.1664 8.53060i −0.348499 0.292425i
\(852\) 0 0
\(853\) −52.3478 19.0530i −1.79236 0.652364i −0.999052 0.0435374i \(-0.986137\pi\)
−0.793303 0.608826i \(-0.791641\pi\)
\(854\) 36.8854 1.26219
\(855\) 0 0
\(856\) 68.0866 2.32715
\(857\) 47.8141 + 17.4029i 1.63330 + 0.594472i 0.985849 0.167637i \(-0.0536136\pi\)
0.647449 + 0.762109i \(0.275836\pi\)
\(858\) 0 0
\(859\) 8.35844 + 7.01356i 0.285186 + 0.239300i 0.774147 0.633006i \(-0.218179\pi\)
−0.488960 + 0.872306i \(0.662624\pi\)
\(860\) 14.9481 12.5430i 0.509728 0.427712i
\(861\) 0 0
\(862\) −23.0194 + 39.8707i −0.784042 + 1.35800i
\(863\) 9.88120 + 17.1147i 0.336360 + 0.582592i 0.983745 0.179571i \(-0.0574708\pi\)
−0.647385 + 0.762163i \(0.724138\pi\)
\(864\) 0 0
\(865\) −27.6202 + 10.0529i −0.939115 + 0.341810i
\(866\) −11.3576 19.6719i −0.385946 0.668478i
\(867\) 0 0
\(868\) 23.6707 134.243i 0.803436 4.55651i
\(869\) 32.1536 26.9801i 1.09074 0.915237i
\(870\) 0 0
\(871\) 0.676174 + 3.83478i 0.0229113 + 0.129936i
\(872\) −58.9193 21.4449i −1.99526 0.726215i
\(873\) 0 0
\(874\) 11.6630 25.3970i 0.394506 0.859067i
\(875\) −53.8066 −1.81900
\(876\) 0 0
\(877\) 0.686137 + 3.89127i 0.0231692 + 0.131399i 0.994198 0.107562i \(-0.0343044\pi\)
−0.971029 + 0.238961i \(0.923193\pi\)
\(878\) 0.696652 + 0.584561i 0.0235109 + 0.0197280i
\(879\) 0 0
\(880\) 6.49912 36.8584i 0.219085 1.24249i
\(881\) −14.5505 + 25.2022i −0.490219 + 0.849084i −0.999937 0.0112575i \(-0.996417\pi\)
0.509718 + 0.860342i \(0.329750\pi\)
\(882\) 0 0
\(883\) 0.668900 0.243460i 0.0225103 0.00819308i −0.330740 0.943722i \(-0.607298\pi\)
0.353251 + 0.935529i \(0.385076\pi\)
\(884\) 71.6708 26.0860i 2.41055 0.877368i
\(885\) 0 0
\(886\) 18.4393 31.9378i 0.619480 1.07297i
\(887\) 7.75578 43.9852i 0.260414 1.47688i −0.521371 0.853330i \(-0.674579\pi\)
0.781785 0.623548i \(-0.214310\pi\)
\(888\) 0 0
\(889\) 62.8813 + 52.7636i 2.10897 + 1.76964i
\(890\) −11.0544 62.6925i −0.370544 2.10146i
\(891\) 0 0
\(892\) 50.4279 1.68845
\(893\) −5.41282 3.74324i −0.181133 0.125263i
\(894\) 0 0
\(895\) −12.2554 4.46059i −0.409652 0.149101i
\(896\) −11.3033 64.1045i −0.377618 2.14158i
\(897\) 0 0
\(898\) −0.0962667 + 0.0807773i −0.00321246 + 0.00269557i
\(899\) −3.23695 + 18.3576i −0.107958 + 0.612262i
\(900\) 0 0
\(901\) −12.9877 22.4953i −0.432682 0.749427i
\(902\) 73.1587 26.6276i 2.43592 0.886602i
\(903\) 0 0
\(904\) −8.72281 15.1084i −0.290116 0.502496i
\(905\) −4.10994 + 7.11862i −0.136619 + 0.236631i
\(906\) 0 0
\(907\) 25.4124 21.3235i 0.843805 0.708037i −0.114611 0.993410i \(-0.536562\pi\)
0.958416 + 0.285374i \(0.0921178\pi\)
\(908\) −47.6730 40.0024i −1.58208 1.32753i
\(909\) 0 0
\(910\) −41.4937 15.1025i −1.37550 0.500642i
\(911\) −22.7392 −0.753382 −0.376691 0.926339i \(-0.622938\pi\)
−0.376691 + 0.926339i \(0.622938\pi\)
\(912\) 0 0
\(913\) −19.2344 −0.636566
\(914\) 84.5404 + 30.7702i 2.79635 + 1.01779i
\(915\) 0 0
\(916\) −35.8580 30.0885i −1.18478 0.994151i
\(917\) −17.1068 + 14.3543i −0.564916 + 0.474021i
\(918\) 0 0
\(919\) 9.62449 16.6701i 0.317482 0.549896i −0.662480 0.749080i \(-0.730496\pi\)
0.979962 + 0.199184i \(0.0638292\pi\)
\(920\) −10.4153 18.0399i −0.343384 0.594758i
\(921\) 0 0
\(922\) −27.4945 + 10.0072i −0.905484 + 0.329569i
\(923\) −0.594618 1.02991i −0.0195721 0.0338998i
\(924\) 0 0
\(925\) 2.89858 16.4386i 0.0953046 0.540499i
\(926\) 26.2533 22.0291i 0.862737 0.723922i
\(927\) 0 0
\(928\) −2.34936 13.3239i −0.0771214 0.437377i
\(929\) −20.0141 7.28455i −0.656643 0.238998i −0.00785641 0.999969i \(-0.502501\pi\)
−0.648786 + 0.760971i \(0.724723\pi\)
\(930\) 0 0
\(931\) −30.5758 + 66.5811i −1.00208 + 2.18211i
\(932\) 127.174 4.16572
\(933\) 0 0
\(934\) 10.9657 + 62.1895i 0.358808 + 2.03490i
\(935\) 28.1498 + 23.6205i 0.920596 + 0.772472i
\(936\) 0 0
\(937\) −7.99566 + 45.3457i −0.261207 + 1.48138i 0.518416 + 0.855129i \(0.326522\pi\)
−0.779623 + 0.626249i \(0.784589\pi\)
\(938\) 9.06805 15.7063i 0.296082 0.512830i
\(939\) 0 0
\(940\) −8.43242 + 3.06915i −0.275035 + 0.100105i
\(941\) 12.5578 4.57066i 0.409372 0.148999i −0.129122 0.991629i \(-0.541216\pi\)
0.538494 + 0.842630i \(0.318994\pi\)
\(942\) 0 0
\(943\) 9.30200 16.1115i 0.302915 0.524664i
\(944\) −4.11974 + 23.3642i −0.134086 + 0.760440i
\(945\) 0 0
\(946\) −26.6498 22.3618i −0.866459 0.727045i
\(947\) 9.31743 + 52.8418i 0.302776 + 1.71713i 0.633794 + 0.773502i \(0.281497\pi\)
−0.331018 + 0.943624i \(0.607392\pi\)
\(948\) 0 0
\(949\) 23.6655 0.768215
\(950\) 34.9987 3.26779i 1.13551 0.106021i
\(951\) 0 0
\(952\) −182.472 66.4144i −5.91395 2.15250i
\(953\) −2.07960 11.7940i −0.0673650 0.382046i −0.999786 0.0206726i \(-0.993419\pi\)
0.932421 0.361373i \(-0.117692\pi\)
\(954\) 0 0
\(955\) 9.34002 7.83721i 0.302236 0.253606i
\(956\) −8.00774 + 45.4142i −0.258989 + 1.46880i
\(957\) 0 0
\(958\) −8.59152 14.8809i −0.277579 0.480782i
\(959\) −93.1071 + 33.8882i −3.00658 + 1.09431i
\(960\) 0 0
\(961\) −4.55185 7.88404i −0.146834 0.254324i
\(962\) 17.6024 30.4882i 0.567523 0.982978i
\(963\) 0 0
\(964\) −25.2369 + 21.1763i −0.812827 + 0.682043i
\(965\) −17.8157 14.9491i −0.573507 0.481229i
\(966\) 0 0
\(967\) 39.3435 + 14.3199i 1.26520 + 0.460496i 0.885511 0.464618i \(-0.153808\pi\)
0.379690 + 0.925114i \(0.376031\pi\)
\(968\) −39.7657 −1.27812
\(969\) 0 0
\(970\) −49.4766 −1.58860
\(971\) 13.0471 + 4.74876i 0.418701 + 0.152395i 0.542775 0.839878i \(-0.317374\pi\)
−0.124074 + 0.992273i \(0.539596\pi\)
\(972\) 0 0
\(973\) 61.2700 + 51.4116i 1.96423 + 1.64818i
\(974\) −65.2115 + 54.7189i −2.08951 + 1.75331i
\(975\) 0 0
\(976\) −9.90895 + 17.1628i −0.317178 + 0.549368i
\(977\) 19.0753 + 33.0394i 0.610274 + 1.05702i 0.991194 + 0.132417i \(0.0422738\pi\)
−0.380920 + 0.924608i \(0.624393\pi\)
\(978\) 0 0
\(979\) −73.3807 + 26.7084i −2.34526 + 0.853604i
\(980\) 49.9509 + 86.5175i 1.59562 + 2.76370i
\(981\) 0 0
\(982\) 12.6000 71.4580i 0.402081 2.28032i
\(983\) −15.5405 + 13.0401i −0.495666 + 0.415913i −0.856052 0.516890i \(-0.827090\pi\)
0.360385 + 0.932803i \(0.382645\pi\)
\(984\) 0 0
\(985\) −2.09399 11.8756i −0.0667200 0.378388i
\(986\) 45.6480 + 16.6145i 1.45373 + 0.529114i
\(987\) 0 0
\(988\) 49.3474 + 12.9146i 1.56995 + 0.410868i
\(989\) −8.31315 −0.264343
\(990\) 0 0
\(991\) −4.28817 24.3194i −0.136218 0.772532i −0.974004 0.226532i \(-0.927261\pi\)
0.837785 0.546000i \(-0.183850\pi\)
\(992\) 22.2973 + 18.7096i 0.707939 + 0.594031i
\(993\) 0 0
\(994\) −0.961819 + 5.45475i −0.0305071 + 0.173014i
\(995\) 9.98087 17.2874i 0.316415 0.548046i
\(996\) 0 0
\(997\) −27.3704 + 9.96200i −0.866828 + 0.315500i −0.736882 0.676022i \(-0.763703\pi\)
−0.129946 + 0.991521i \(0.541480\pi\)
\(998\) −100.282 + 36.4997i −3.17437 + 1.15538i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.c.460.1 yes 6
3.2 odd 2 513.2.y.a.460.1 yes 6
19.5 even 9 inner 513.2.y.c.271.1 yes 6
19.9 even 9 9747.2.a.u.1.1 3
19.10 odd 18 9747.2.a.bb.1.3 3
57.5 odd 18 513.2.y.a.271.1 6
57.29 even 18 9747.2.a.v.1.1 3
57.47 odd 18 9747.2.a.bd.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.271.1 6 57.5 odd 18
513.2.y.a.460.1 yes 6 3.2 odd 2
513.2.y.c.271.1 yes 6 19.5 even 9 inner
513.2.y.c.460.1 yes 6 1.1 even 1 trivial
9747.2.a.u.1.1 3 19.9 even 9
9747.2.a.v.1.1 3 57.29 even 18
9747.2.a.bb.1.3 3 19.10 odd 18
9747.2.a.bd.1.3 3 57.47 odd 18