Properties

Label 513.2.t.a.179.16
Level $513$
Weight $2$
Character 513.179
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(179,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.16
Character \(\chi\) \(=\) 513.179
Dual form 513.2.t.a.278.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15080 q^{2} +2.62595 q^{4} +(2.61989 - 1.51259i) q^{5} +(1.86959 + 3.23822i) q^{7} +1.34630 q^{8} +(5.63486 - 3.25329i) q^{10} +(-4.41421 + 2.54855i) q^{11} -2.07051i q^{13} +(4.02111 + 6.96477i) q^{14} -2.35628 q^{16} +(-4.50968 - 2.60366i) q^{17} +(4.31830 - 0.593520i) q^{19} +(6.87970 - 3.97200i) q^{20} +(-9.49410 + 5.48142i) q^{22} -6.34770i q^{23} +(2.07588 - 3.59553i) q^{25} -4.45327i q^{26} +(4.90944 + 8.50340i) q^{28} +(-0.805794 + 1.39568i) q^{29} +(1.31340 + 0.758293i) q^{31} -7.76049 q^{32} +(-9.69943 - 5.59997i) q^{34} +(9.79622 + 5.65585i) q^{35} +4.54399i q^{37} +(9.28782 - 1.27654i) q^{38} +(3.52715 - 2.03640i) q^{40} +(-1.01280 - 1.75421i) q^{41} -1.94650 q^{43} +(-11.5915 + 6.69236i) q^{44} -13.6527i q^{46} +(2.96939 + 1.71438i) q^{47} +(-3.49070 + 6.04608i) q^{49} +(4.46481 - 7.73327i) q^{50} -5.43707i q^{52} +(-4.49378 - 7.78345i) q^{53} +(-7.70983 + 13.3538i) q^{55} +(2.51702 + 4.35961i) q^{56} +(-1.73310 + 3.00183i) q^{58} +(3.60454 + 6.24324i) q^{59} +(3.87522 - 6.71208i) q^{61} +(2.82487 + 1.63094i) q^{62} -11.9787 q^{64} +(-3.13185 - 5.42452i) q^{65} +0.658050i q^{67} +(-11.8422 - 6.83709i) q^{68} +(21.0697 + 12.1646i) q^{70} +(-2.68449 + 4.64968i) q^{71} +(-1.90331 + 3.29663i) q^{73} +9.77323i q^{74} +(11.3397 - 1.55855i) q^{76} +(-16.5055 - 9.52945i) q^{77} +10.4891i q^{79} +(-6.17320 + 3.56410i) q^{80} +(-2.17832 - 3.77297i) q^{82} +(4.06246 - 2.34546i) q^{83} -15.7531 q^{85} -4.18654 q^{86} +(-5.94284 + 3.43110i) q^{88} +(1.49289 + 2.58575i) q^{89} +(6.70478 - 3.87100i) q^{91} -16.6688i q^{92} +(6.38657 + 3.68729i) q^{94} +(10.4157 - 8.08679i) q^{95} -5.46067i q^{97} +(-7.50782 + 13.0039i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 30 q^{4} + 3 q^{5} - q^{7} + 12 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{14} + 18 q^{16} - 27 q^{17} + q^{19} - 9 q^{20} - 6 q^{22} + 11 q^{25} + 2 q^{28} + 12 q^{29} - 12 q^{31} + 30 q^{32}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15080 1.52085 0.760424 0.649427i \(-0.224991\pi\)
0.760424 + 0.649427i \(0.224991\pi\)
\(3\) 0 0
\(4\) 2.62595 1.31298
\(5\) 2.61989 1.51259i 1.17165 0.676452i 0.217582 0.976042i \(-0.430183\pi\)
0.954068 + 0.299590i \(0.0968497\pi\)
\(6\) 0 0
\(7\) 1.86959 + 3.23822i 0.706637 + 1.22393i 0.966097 + 0.258178i \(0.0831220\pi\)
−0.259460 + 0.965754i \(0.583545\pi\)
\(8\) 1.34630 0.475988
\(9\) 0 0
\(10\) 5.63486 3.25329i 1.78190 1.02878i
\(11\) −4.41421 + 2.54855i −1.33093 + 0.768415i −0.985443 0.170006i \(-0.945621\pi\)
−0.345492 + 0.938422i \(0.612288\pi\)
\(12\) 0 0
\(13\) 2.07051i 0.574257i −0.957892 0.287129i \(-0.907299\pi\)
0.957892 0.287129i \(-0.0927007\pi\)
\(14\) 4.02111 + 6.96477i 1.07469 + 1.86141i
\(15\) 0 0
\(16\) −2.35628 −0.589071
\(17\) −4.50968 2.60366i −1.09376 0.631481i −0.159183 0.987249i \(-0.550886\pi\)
−0.934574 + 0.355768i \(0.884219\pi\)
\(18\) 0 0
\(19\) 4.31830 0.593520i 0.990686 0.136163i
\(20\) 6.87970 3.97200i 1.53835 0.888166i
\(21\) 0 0
\(22\) −9.49410 + 5.48142i −2.02415 + 1.16864i
\(23\) 6.34770i 1.32359i −0.749686 0.661794i \(-0.769795\pi\)
0.749686 0.661794i \(-0.230205\pi\)
\(24\) 0 0
\(25\) 2.07588 3.59553i 0.415176 0.719106i
\(26\) 4.45327i 0.873357i
\(27\) 0 0
\(28\) 4.90944 + 8.50340i 0.927797 + 1.60699i
\(29\) −0.805794 + 1.39568i −0.149632 + 0.259171i −0.931092 0.364786i \(-0.881142\pi\)
0.781459 + 0.623956i \(0.214476\pi\)
\(30\) 0 0
\(31\) 1.31340 + 0.758293i 0.235894 + 0.136194i 0.613288 0.789859i \(-0.289846\pi\)
−0.377394 + 0.926053i \(0.623180\pi\)
\(32\) −7.76049 −1.37187
\(33\) 0 0
\(34\) −9.69943 5.59997i −1.66344 0.960386i
\(35\) 9.79622 + 5.65585i 1.65586 + 0.956013i
\(36\) 0 0
\(37\) 4.54399i 0.747028i 0.927625 + 0.373514i \(0.121847\pi\)
−0.927625 + 0.373514i \(0.878153\pi\)
\(38\) 9.28782 1.27654i 1.50668 0.207083i
\(39\) 0 0
\(40\) 3.52715 2.03640i 0.557692 0.321983i
\(41\) −1.01280 1.75421i −0.158172 0.273962i 0.776037 0.630687i \(-0.217227\pi\)
−0.934210 + 0.356725i \(0.883893\pi\)
\(42\) 0 0
\(43\) −1.94650 −0.296838 −0.148419 0.988925i \(-0.547418\pi\)
−0.148419 + 0.988925i \(0.547418\pi\)
\(44\) −11.5915 + 6.69236i −1.74748 + 1.00891i
\(45\) 0 0
\(46\) 13.6527i 2.01297i
\(47\) 2.96939 + 1.71438i 0.433130 + 0.250068i 0.700679 0.713476i \(-0.252880\pi\)
−0.267549 + 0.963544i \(0.586214\pi\)
\(48\) 0 0
\(49\) −3.49070 + 6.04608i −0.498672 + 0.863725i
\(50\) 4.46481 7.73327i 0.631419 1.09365i
\(51\) 0 0
\(52\) 5.43707i 0.753986i
\(53\) −4.49378 7.78345i −0.617268 1.06914i −0.989982 0.141193i \(-0.954906\pi\)
0.372714 0.927946i \(-0.378427\pi\)
\(54\) 0 0
\(55\) −7.70983 + 13.3538i −1.03959 + 1.80063i
\(56\) 2.51702 + 4.35961i 0.336351 + 0.582577i
\(57\) 0 0
\(58\) −1.73310 + 3.00183i −0.227568 + 0.394159i
\(59\) 3.60454 + 6.24324i 0.469271 + 0.812800i 0.999383 0.0351270i \(-0.0111836\pi\)
−0.530112 + 0.847927i \(0.677850\pi\)
\(60\) 0 0
\(61\) 3.87522 6.71208i 0.496171 0.859394i −0.503819 0.863809i \(-0.668072\pi\)
0.999990 + 0.00441560i \(0.00140553\pi\)
\(62\) 2.82487 + 1.63094i 0.358759 + 0.207129i
\(63\) 0 0
\(64\) −11.9787 −1.49734
\(65\) −3.13185 5.42452i −0.388458 0.672829i
\(66\) 0 0
\(67\) 0.658050i 0.0803936i 0.999192 + 0.0401968i \(0.0127985\pi\)
−0.999192 + 0.0401968i \(0.987202\pi\)
\(68\) −11.8422 6.83709i −1.43608 0.829119i
\(69\) 0 0
\(70\) 21.0697 + 12.1646i 2.51831 + 1.45395i
\(71\) −2.68449 + 4.64968i −0.318591 + 0.551815i −0.980194 0.198039i \(-0.936543\pi\)
0.661604 + 0.749854i \(0.269876\pi\)
\(72\) 0 0
\(73\) −1.90331 + 3.29663i −0.222765 + 0.385841i −0.955647 0.294516i \(-0.904842\pi\)
0.732881 + 0.680357i \(0.238175\pi\)
\(74\) 9.77323i 1.13612i
\(75\) 0 0
\(76\) 11.3397 1.55855i 1.30075 0.178778i
\(77\) −16.5055 9.52945i −1.88098 1.08598i
\(78\) 0 0
\(79\) 10.4891i 1.18012i 0.807360 + 0.590059i \(0.200895\pi\)
−0.807360 + 0.590059i \(0.799105\pi\)
\(80\) −6.17320 + 3.56410i −0.690185 + 0.398478i
\(81\) 0 0
\(82\) −2.17832 3.77297i −0.240556 0.416655i
\(83\) 4.06246 2.34546i 0.445913 0.257448i −0.260190 0.965558i \(-0.583785\pi\)
0.706102 + 0.708110i \(0.250452\pi\)
\(84\) 0 0
\(85\) −15.7531 −1.70867
\(86\) −4.18654 −0.451446
\(87\) 0 0
\(88\) −5.94284 + 3.43110i −0.633509 + 0.365757i
\(89\) 1.49289 + 2.58575i 0.158246 + 0.274089i 0.934236 0.356655i \(-0.116083\pi\)
−0.775991 + 0.630745i \(0.782750\pi\)
\(90\) 0 0
\(91\) 6.70478 3.87100i 0.702851 0.405791i
\(92\) 16.6688i 1.73784i
\(93\) 0 0
\(94\) 6.38657 + 3.68729i 0.658725 + 0.380315i
\(95\) 10.4157 8.08679i 1.06863 0.829687i
\(96\) 0 0
\(97\) 5.46067i 0.554447i −0.960805 0.277224i \(-0.910586\pi\)
0.960805 0.277224i \(-0.0894143\pi\)
\(98\) −7.50782 + 13.0039i −0.758404 + 1.31359i
\(99\) 0 0
\(100\) 5.45116 9.44168i 0.545116 0.944168i
\(101\) 1.39704 + 0.806582i 0.139011 + 0.0802579i 0.567892 0.823103i \(-0.307759\pi\)
−0.428882 + 0.903361i \(0.641092\pi\)
\(102\) 0 0
\(103\) −9.11427 5.26213i −0.898056 0.518493i −0.0214871 0.999769i \(-0.506840\pi\)
−0.876569 + 0.481276i \(0.840173\pi\)
\(104\) 2.78753i 0.273340i
\(105\) 0 0
\(106\) −9.66523 16.7407i −0.938770 1.62600i
\(107\) 10.3237 0.998028 0.499014 0.866594i \(-0.333696\pi\)
0.499014 + 0.866594i \(0.333696\pi\)
\(108\) 0 0
\(109\) −5.10016 2.94458i −0.488506 0.282039i 0.235448 0.971887i \(-0.424344\pi\)
−0.723955 + 0.689848i \(0.757677\pi\)
\(110\) −16.5823 + 28.7214i −1.58106 + 2.73848i
\(111\) 0 0
\(112\) −4.40527 7.63016i −0.416259 0.720982i
\(113\) −7.68377 + 13.3087i −0.722828 + 1.25197i 0.237034 + 0.971501i \(0.423825\pi\)
−0.959862 + 0.280473i \(0.909509\pi\)
\(114\) 0 0
\(115\) −9.60150 16.6303i −0.895344 1.55078i
\(116\) −2.11598 + 3.66498i −0.196464 + 0.340285i
\(117\) 0 0
\(118\) 7.75264 + 13.4280i 0.713689 + 1.23615i
\(119\) 19.4711i 1.78491i
\(120\) 0 0
\(121\) 7.49017 12.9734i 0.680925 1.17940i
\(122\) 8.33483 14.4364i 0.754600 1.30701i
\(123\) 0 0
\(124\) 3.44893 + 1.99124i 0.309723 + 0.178819i
\(125\) 2.56609i 0.229518i
\(126\) 0 0
\(127\) 1.69680 0.979649i 0.150567 0.0869298i −0.422824 0.906212i \(-0.638961\pi\)
0.573391 + 0.819282i \(0.305628\pi\)
\(128\) −10.2429 −0.905351
\(129\) 0 0
\(130\) −6.73598 11.6671i −0.590785 1.02327i
\(131\) −11.2918 + 6.51931i −0.986567 + 0.569595i −0.904246 0.427011i \(-0.859566\pi\)
−0.0823204 + 0.996606i \(0.526233\pi\)
\(132\) 0 0
\(133\) 9.99538 + 12.8740i 0.866710 + 1.11631i
\(134\) 1.41534i 0.122266i
\(135\) 0 0
\(136\) −6.07137 3.50531i −0.520616 0.300578i
\(137\) 9.92118 + 5.72800i 0.847624 + 0.489376i 0.859848 0.510549i \(-0.170558\pi\)
−0.0122245 + 0.999925i \(0.503891\pi\)
\(138\) 0 0
\(139\) 18.5228 1.57108 0.785541 0.618810i \(-0.212385\pi\)
0.785541 + 0.618810i \(0.212385\pi\)
\(140\) 25.7244 + 14.8520i 2.17411 + 1.25522i
\(141\) 0 0
\(142\) −5.77381 + 10.0005i −0.484528 + 0.839226i
\(143\) 5.27680 + 9.13968i 0.441268 + 0.764299i
\(144\) 0 0
\(145\) 4.87536i 0.404876i
\(146\) −4.09364 + 7.09039i −0.338792 + 0.586805i
\(147\) 0 0
\(148\) 11.9323i 0.980830i
\(149\) 6.30799 3.64192i 0.516771 0.298358i −0.218842 0.975760i \(-0.570228\pi\)
0.735612 + 0.677403i \(0.236894\pi\)
\(150\) 0 0
\(151\) −1.90838 + 1.10180i −0.155302 + 0.0896635i −0.575637 0.817705i \(-0.695246\pi\)
0.420335 + 0.907369i \(0.361913\pi\)
\(152\) 5.81372 0.799054i 0.471555 0.0648118i
\(153\) 0 0
\(154\) −35.5001 20.4960i −2.86068 1.65161i
\(155\) 4.58796 0.368514
\(156\) 0 0
\(157\) 6.78596 + 11.7536i 0.541579 + 0.938041i 0.998814 + 0.0486957i \(0.0155064\pi\)
−0.457235 + 0.889346i \(0.651160\pi\)
\(158\) 22.5600i 1.79478i
\(159\) 0 0
\(160\) −20.3316 + 11.7385i −1.60736 + 0.928008i
\(161\) 20.5552 11.8676i 1.61998 0.935296i
\(162\) 0 0
\(163\) 3.00114 0.235067 0.117534 0.993069i \(-0.462501\pi\)
0.117534 + 0.993069i \(0.462501\pi\)
\(164\) −2.65955 4.60648i −0.207676 0.359706i
\(165\) 0 0
\(166\) 8.73755 5.04462i 0.678165 0.391539i
\(167\) 5.96291 0.461424 0.230712 0.973022i \(-0.425894\pi\)
0.230712 + 0.973022i \(0.425894\pi\)
\(168\) 0 0
\(169\) 8.71297 0.670229
\(170\) −33.8819 −2.59862
\(171\) 0 0
\(172\) −5.11141 −0.389742
\(173\) −18.7882 −1.42844 −0.714220 0.699921i \(-0.753218\pi\)
−0.714220 + 0.699921i \(0.753218\pi\)
\(174\) 0 0
\(175\) 15.5241 1.17351
\(176\) 10.4011 6.00509i 0.784014 0.452651i
\(177\) 0 0
\(178\) 3.21090 + 5.56144i 0.240667 + 0.416848i
\(179\) 14.8755 1.11184 0.555922 0.831235i \(-0.312365\pi\)
0.555922 + 0.831235i \(0.312365\pi\)
\(180\) 0 0
\(181\) −3.85625 + 2.22640i −0.286633 + 0.165487i −0.636422 0.771341i \(-0.719586\pi\)
0.349790 + 0.936828i \(0.386253\pi\)
\(182\) 14.4206 8.32577i 1.06893 0.617147i
\(183\) 0 0
\(184\) 8.54590i 0.630012i
\(185\) 6.87322 + 11.9048i 0.505329 + 0.875255i
\(186\) 0 0
\(187\) 26.5422 1.94096
\(188\) 7.79748 + 4.50187i 0.568689 + 0.328333i
\(189\) 0 0
\(190\) 22.4022 17.3931i 1.62522 1.26183i
\(191\) 20.1652 11.6424i 1.45910 0.842414i 0.460136 0.887848i \(-0.347801\pi\)
0.998967 + 0.0454345i \(0.0144672\pi\)
\(192\) 0 0
\(193\) 19.5461 11.2849i 1.40696 0.812308i 0.411865 0.911245i \(-0.364878\pi\)
0.995094 + 0.0989370i \(0.0315442\pi\)
\(194\) 11.7448i 0.843230i
\(195\) 0 0
\(196\) −9.16642 + 15.8767i −0.654744 + 1.13405i
\(197\) 2.10025i 0.149637i −0.997197 0.0748184i \(-0.976162\pi\)
0.997197 0.0748184i \(-0.0238377\pi\)
\(198\) 0 0
\(199\) −6.81724 11.8078i −0.483261 0.837033i 0.516554 0.856255i \(-0.327215\pi\)
−0.999815 + 0.0192216i \(0.993881\pi\)
\(200\) 2.79475 4.84065i 0.197619 0.342286i
\(201\) 0 0
\(202\) 3.00476 + 1.73480i 0.211414 + 0.122060i
\(203\) −6.02601 −0.422943
\(204\) 0 0
\(205\) −5.30683 3.06390i −0.370645 0.213992i
\(206\) −19.6030 11.3178i −1.36581 0.788548i
\(207\) 0 0
\(208\) 4.87871i 0.338278i
\(209\) −17.5493 + 13.6253i −1.21391 + 0.942482i
\(210\) 0 0
\(211\) −23.7174 + 13.6933i −1.63277 + 0.942683i −0.649542 + 0.760325i \(0.725039\pi\)
−0.983232 + 0.182357i \(0.941627\pi\)
\(212\) −11.8004 20.4390i −0.810458 1.40375i
\(213\) 0 0
\(214\) 22.2042 1.51785
\(215\) −5.09961 + 2.94426i −0.347791 + 0.200797i
\(216\) 0 0
\(217\) 5.67078i 0.384958i
\(218\) −10.9694 6.33320i −0.742943 0.428939i
\(219\) 0 0
\(220\) −20.2456 + 35.0665i −1.36496 + 2.36418i
\(221\) −5.39092 + 9.33735i −0.362633 + 0.628098i
\(222\) 0 0
\(223\) 2.30986i 0.154679i 0.997005 + 0.0773397i \(0.0246426\pi\)
−0.997005 + 0.0773397i \(0.975357\pi\)
\(224\) −14.5089 25.1302i −0.969417 1.67908i
\(225\) 0 0
\(226\) −16.5263 + 28.6243i −1.09931 + 1.90406i
\(227\) 5.87376 + 10.1737i 0.389855 + 0.675249i 0.992430 0.122813i \(-0.0391917\pi\)
−0.602574 + 0.798063i \(0.705858\pi\)
\(228\) 0 0
\(229\) −3.31652 + 5.74438i −0.219162 + 0.379599i −0.954552 0.298045i \(-0.903666\pi\)
0.735390 + 0.677644i \(0.236999\pi\)
\(230\) −20.6509 35.7684i −1.36168 2.35850i
\(231\) 0 0
\(232\) −1.08484 + 1.87900i −0.0712232 + 0.123362i
\(233\) −3.13882 1.81220i −0.205631 0.118721i 0.393648 0.919261i \(-0.371213\pi\)
−0.599279 + 0.800540i \(0.704546\pi\)
\(234\) 0 0
\(235\) 10.3726 0.676636
\(236\) 9.46533 + 16.3944i 0.616141 + 1.06719i
\(237\) 0 0
\(238\) 41.8785i 2.71458i
\(239\) −13.1428 7.58803i −0.850140 0.490829i 0.0105580 0.999944i \(-0.496639\pi\)
−0.860698 + 0.509116i \(0.829973\pi\)
\(240\) 0 0
\(241\) −21.2378 12.2617i −1.36805 0.789844i −0.377371 0.926062i \(-0.623172\pi\)
−0.990679 + 0.136218i \(0.956505\pi\)
\(242\) 16.1099 27.9031i 1.03558 1.79368i
\(243\) 0 0
\(244\) 10.1761 17.6256i 0.651461 1.12836i
\(245\) 21.1201i 1.34931i
\(246\) 0 0
\(247\) −1.22889 8.94110i −0.0781924 0.568909i
\(248\) 1.76823 + 1.02089i 0.112283 + 0.0648265i
\(249\) 0 0
\(250\) 5.51915i 0.349061i
\(251\) −3.73240 + 2.15490i −0.235587 + 0.136016i −0.613147 0.789969i \(-0.710097\pi\)
0.377560 + 0.925985i \(0.376763\pi\)
\(252\) 0 0
\(253\) 16.1774 + 28.0201i 1.01707 + 1.76161i
\(254\) 3.64949 2.10703i 0.228989 0.132207i
\(255\) 0 0
\(256\) 1.92703 0.120439
\(257\) 25.2532 1.57525 0.787626 0.616154i \(-0.211310\pi\)
0.787626 + 0.616154i \(0.211310\pi\)
\(258\) 0 0
\(259\) −14.7144 + 8.49539i −0.914311 + 0.527878i
\(260\) −8.22408 14.2445i −0.510036 0.883408i
\(261\) 0 0
\(262\) −24.2864 + 14.0217i −1.50042 + 0.866266i
\(263\) 20.1838i 1.24459i −0.782784 0.622293i \(-0.786201\pi\)
0.782784 0.622293i \(-0.213799\pi\)
\(264\) 0 0
\(265\) −23.5464 13.5945i −1.44644 0.835105i
\(266\) 21.4981 + 27.6894i 1.31813 + 1.69774i
\(267\) 0 0
\(268\) 1.72801i 0.105555i
\(269\) −2.92165 + 5.06044i −0.178136 + 0.308540i −0.941242 0.337733i \(-0.890340\pi\)
0.763106 + 0.646273i \(0.223673\pi\)
\(270\) 0 0
\(271\) 7.53980 13.0593i 0.458010 0.793297i −0.540845 0.841122i \(-0.681896\pi\)
0.998856 + 0.0478248i \(0.0152289\pi\)
\(272\) 10.6261 + 6.13497i 0.644300 + 0.371987i
\(273\) 0 0
\(274\) 21.3385 + 12.3198i 1.28911 + 0.744266i
\(275\) 21.1619i 1.27611i
\(276\) 0 0
\(277\) −8.02211 13.8947i −0.482002 0.834852i 0.517785 0.855511i \(-0.326757\pi\)
−0.999787 + 0.0206591i \(0.993424\pi\)
\(278\) 39.8388 2.38937
\(279\) 0 0
\(280\) 13.1886 + 7.61446i 0.788171 + 0.455051i
\(281\) 8.49793 14.7188i 0.506944 0.878052i −0.493024 0.870016i \(-0.664108\pi\)
0.999968 0.00803669i \(-0.00255819\pi\)
\(282\) 0 0
\(283\) 7.76431 + 13.4482i 0.461540 + 0.799411i 0.999038 0.0438543i \(-0.0139637\pi\)
−0.537498 + 0.843265i \(0.680630\pi\)
\(284\) −7.04935 + 12.2098i −0.418302 + 0.724520i
\(285\) 0 0
\(286\) 11.3494 + 19.6577i 0.671101 + 1.16238i
\(287\) 3.78702 6.55931i 0.223541 0.387184i
\(288\) 0 0
\(289\) 5.05813 + 8.76093i 0.297537 + 0.515349i
\(290\) 10.4859i 0.615755i
\(291\) 0 0
\(292\) −4.99800 + 8.65678i −0.292486 + 0.506600i
\(293\) −15.1343 + 26.2134i −0.884156 + 1.53140i −0.0374772 + 0.999297i \(0.511932\pi\)
−0.846678 + 0.532105i \(0.821401\pi\)
\(294\) 0 0
\(295\) 18.8870 + 10.9044i 1.09964 + 0.634878i
\(296\) 6.11757i 0.355576i
\(297\) 0 0
\(298\) 13.5672 7.83305i 0.785929 0.453757i
\(299\) −13.1430 −0.760080
\(300\) 0 0
\(301\) −3.63915 6.30319i −0.209757 0.363310i
\(302\) −4.10455 + 2.36976i −0.236190 + 0.136365i
\(303\) 0 0
\(304\) −10.1751 + 1.39850i −0.583584 + 0.0802095i
\(305\) 23.4465i 1.34254i
\(306\) 0 0
\(307\) −24.4373 14.1089i −1.39471 0.805235i −0.400876 0.916132i \(-0.631294\pi\)
−0.993832 + 0.110897i \(0.964628\pi\)
\(308\) −43.3426 25.0239i −2.46968 1.42587i
\(309\) 0 0
\(310\) 9.86779 0.560453
\(311\) −16.5220 9.53896i −0.936875 0.540905i −0.0478956 0.998852i \(-0.515251\pi\)
−0.888979 + 0.457947i \(0.848585\pi\)
\(312\) 0 0
\(313\) 5.61840 9.73135i 0.317571 0.550049i −0.662410 0.749142i \(-0.730466\pi\)
0.979981 + 0.199093i \(0.0637996\pi\)
\(314\) 14.5953 + 25.2797i 0.823658 + 1.42662i
\(315\) 0 0
\(316\) 27.5439i 1.54947i
\(317\) 0.188031 0.325679i 0.0105608 0.0182919i −0.860697 0.509118i \(-0.829972\pi\)
0.871258 + 0.490826i \(0.163305\pi\)
\(318\) 0 0
\(319\) 8.21441i 0.459919i
\(320\) −31.3829 + 18.1189i −1.75436 + 1.01288i
\(321\) 0 0
\(322\) 44.2103 25.5248i 2.46374 1.42244i
\(323\) −21.0195 8.56682i −1.16955 0.476671i
\(324\) 0 0
\(325\) −7.44459 4.29814i −0.412952 0.238418i
\(326\) 6.45486 0.357501
\(327\) 0 0
\(328\) −1.36353 2.36170i −0.0752881 0.130403i
\(329\) 12.8207i 0.706829i
\(330\) 0 0
\(331\) 27.1452 15.6723i 1.49204 0.861428i 0.492078 0.870551i \(-0.336237\pi\)
0.999958 + 0.00912336i \(0.00290410\pi\)
\(332\) 10.6678 6.15907i 0.585473 0.338023i
\(333\) 0 0
\(334\) 12.8250 0.701755
\(335\) 0.995362 + 1.72402i 0.0543825 + 0.0941932i
\(336\) 0 0
\(337\) −0.985879 + 0.569198i −0.0537043 + 0.0310062i −0.526612 0.850106i \(-0.676538\pi\)
0.472907 + 0.881112i \(0.343204\pi\)
\(338\) 18.7399 1.01932
\(339\) 0 0
\(340\) −41.3670 −2.24344
\(341\) −7.73018 −0.418613
\(342\) 0 0
\(343\) 0.0695125 0.00375332
\(344\) −2.62057 −0.141292
\(345\) 0 0
\(346\) −40.4097 −2.17244
\(347\) 28.1036 16.2256i 1.50868 0.871036i 0.508730 0.860926i \(-0.330115\pi\)
0.999949 0.0101104i \(-0.00321829\pi\)
\(348\) 0 0
\(349\) −3.78030 6.54768i −0.202355 0.350489i 0.746932 0.664901i \(-0.231526\pi\)
−0.949287 + 0.314412i \(0.898193\pi\)
\(350\) 33.3894 1.78474
\(351\) 0 0
\(352\) 34.2565 19.7780i 1.82587 1.05417i
\(353\) 4.45738 2.57347i 0.237242 0.136972i −0.376666 0.926349i \(-0.622930\pi\)
0.613909 + 0.789377i \(0.289596\pi\)
\(354\) 0 0
\(355\) 16.2422i 0.862046i
\(356\) 3.92024 + 6.79006i 0.207773 + 0.359873i
\(357\) 0 0
\(358\) 31.9942 1.69094
\(359\) 5.46349 + 3.15435i 0.288352 + 0.166480i 0.637198 0.770700i \(-0.280093\pi\)
−0.348846 + 0.937180i \(0.613426\pi\)
\(360\) 0 0
\(361\) 18.2955 5.12599i 0.962919 0.269789i
\(362\) −8.29402 + 4.78856i −0.435924 + 0.251681i
\(363\) 0 0
\(364\) 17.6064 10.1651i 0.922827 0.532794i
\(365\) 11.5157i 0.602761i
\(366\) 0 0
\(367\) −3.71164 + 6.42875i −0.193746 + 0.335578i −0.946489 0.322737i \(-0.895397\pi\)
0.752743 + 0.658315i \(0.228730\pi\)
\(368\) 14.9570i 0.779686i
\(369\) 0 0
\(370\) 14.7829 + 25.6048i 0.768528 + 1.33113i
\(371\) 16.8030 29.1037i 0.872369 1.51099i
\(372\) 0 0
\(373\) −21.2019 12.2409i −1.09779 0.633811i −0.162153 0.986766i \(-0.551844\pi\)
−0.935641 + 0.352954i \(0.885177\pi\)
\(374\) 57.0871 2.95190
\(375\) 0 0
\(376\) 3.99768 + 2.30806i 0.206165 + 0.119029i
\(377\) 2.88977 + 1.66841i 0.148831 + 0.0859274i
\(378\) 0 0
\(379\) 27.3088i 1.40276i 0.712788 + 0.701380i \(0.247432\pi\)
−0.712788 + 0.701380i \(0.752568\pi\)
\(380\) 27.3512 21.2355i 1.40309 1.08936i
\(381\) 0 0
\(382\) 43.3714 25.0405i 2.21907 1.28118i
\(383\) 0.563982 + 0.976845i 0.0288181 + 0.0499144i 0.880075 0.474835i \(-0.157492\pi\)
−0.851257 + 0.524750i \(0.824159\pi\)
\(384\) 0 0
\(385\) −57.6568 −2.93846
\(386\) 42.0398 24.2717i 2.13977 1.23540i
\(387\) 0 0
\(388\) 14.3395i 0.727976i
\(389\) −1.70122 0.982200i −0.0862553 0.0497995i 0.456252 0.889851i \(-0.349192\pi\)
−0.542507 + 0.840051i \(0.682525\pi\)
\(390\) 0 0
\(391\) −16.5273 + 28.6261i −0.835821 + 1.44768i
\(392\) −4.69953 + 8.13982i −0.237362 + 0.411123i
\(393\) 0 0
\(394\) 4.51723i 0.227575i
\(395\) 15.8658 + 27.4803i 0.798293 + 1.38268i
\(396\) 0 0
\(397\) 16.7936 29.0874i 0.842848 1.45985i −0.0446298 0.999004i \(-0.514211\pi\)
0.887477 0.460851i \(-0.152456\pi\)
\(398\) −14.6625 25.3963i −0.734966 1.27300i
\(399\) 0 0
\(400\) −4.89136 + 8.47208i −0.244568 + 0.423604i
\(401\) −3.07664 5.32889i −0.153640 0.266112i 0.778923 0.627120i \(-0.215766\pi\)
−0.932563 + 0.361007i \(0.882433\pi\)
\(402\) 0 0
\(403\) 1.57006 2.71942i 0.0782101 0.135464i
\(404\) 3.66856 + 2.11805i 0.182518 + 0.105377i
\(405\) 0 0
\(406\) −12.9608 −0.643231
\(407\) −11.5806 20.0581i −0.574028 0.994245i
\(408\) 0 0
\(409\) 3.74581i 0.185218i −0.995703 0.0926091i \(-0.970479\pi\)
0.995703 0.0926091i \(-0.0295207\pi\)
\(410\) −11.4139 6.58984i −0.563694 0.325449i
\(411\) 0 0
\(412\) −23.9336 13.8181i −1.17913 0.680769i
\(413\) −13.4780 + 23.3445i −0.663208 + 1.14871i
\(414\) 0 0
\(415\) 7.09546 12.2897i 0.348302 0.603278i
\(416\) 16.0682i 0.787809i
\(417\) 0 0
\(418\) −37.7450 + 29.3054i −1.84617 + 1.43337i
\(419\) 3.16792 + 1.82900i 0.154763 + 0.0893526i 0.575382 0.817885i \(-0.304854\pi\)
−0.420618 + 0.907238i \(0.638187\pi\)
\(420\) 0 0
\(421\) 7.39683i 0.360499i −0.983621 0.180250i \(-0.942309\pi\)
0.983621 0.180250i \(-0.0576906\pi\)
\(422\) −51.0115 + 29.4515i −2.48320 + 1.43368i
\(423\) 0 0
\(424\) −6.04996 10.4788i −0.293812 0.508898i
\(425\) −18.7231 + 10.8098i −0.908204 + 0.524352i
\(426\) 0 0
\(427\) 28.9802 1.40245
\(428\) 27.1095 1.31039
\(429\) 0 0
\(430\) −10.9683 + 6.33253i −0.528936 + 0.305382i
\(431\) 5.78011 + 10.0114i 0.278418 + 0.482234i 0.970992 0.239113i \(-0.0768566\pi\)
−0.692574 + 0.721347i \(0.743523\pi\)
\(432\) 0 0
\(433\) −2.95790 + 1.70774i −0.142148 + 0.0820689i −0.569387 0.822070i \(-0.692819\pi\)
0.427240 + 0.904138i \(0.359486\pi\)
\(434\) 12.1967i 0.585462i
\(435\) 0 0
\(436\) −13.3928 7.73231i −0.641397 0.370311i
\(437\) −3.76749 27.4113i −0.180223 1.31126i
\(438\) 0 0
\(439\) 24.4034i 1.16471i 0.812934 + 0.582355i \(0.197869\pi\)
−0.812934 + 0.582355i \(0.802131\pi\)
\(440\) −10.3797 + 17.9782i −0.494834 + 0.857078i
\(441\) 0 0
\(442\) −11.5948 + 20.0828i −0.551509 + 0.955241i
\(443\) −33.7632 19.4932i −1.60414 0.926150i −0.990647 0.136448i \(-0.956431\pi\)
−0.613491 0.789702i \(-0.710235\pi\)
\(444\) 0 0
\(445\) 7.82239 + 4.51626i 0.370817 + 0.214091i
\(446\) 4.96805i 0.235244i
\(447\) 0 0
\(448\) −22.3953 38.7897i −1.05808 1.83264i
\(449\) −26.0848 −1.23102 −0.615509 0.788130i \(-0.711050\pi\)
−0.615509 + 0.788130i \(0.711050\pi\)
\(450\) 0 0
\(451\) 8.94139 + 5.16231i 0.421034 + 0.243084i
\(452\) −20.1772 + 34.9479i −0.949056 + 1.64381i
\(453\) 0 0
\(454\) 12.6333 + 21.8815i 0.592910 + 1.02695i
\(455\) 11.7105 20.2832i 0.548997 0.950891i
\(456\) 0 0
\(457\) 8.91236 + 15.4367i 0.416903 + 0.722096i 0.995626 0.0934274i \(-0.0297823\pi\)
−0.578724 + 0.815524i \(0.696449\pi\)
\(458\) −7.13318 + 12.3550i −0.333312 + 0.577313i
\(459\) 0 0
\(460\) −25.2131 43.6703i −1.17557 2.03614i
\(461\) 35.6170i 1.65885i 0.558620 + 0.829424i \(0.311331\pi\)
−0.558620 + 0.829424i \(0.688669\pi\)
\(462\) 0 0
\(463\) −5.50447 + 9.53403i −0.255815 + 0.443084i −0.965116 0.261821i \(-0.915677\pi\)
0.709302 + 0.704905i \(0.249010\pi\)
\(464\) 1.89868 3.28861i 0.0881440 0.152670i
\(465\) 0 0
\(466\) −6.75098 3.89768i −0.312733 0.180557i
\(467\) 23.7561i 1.09930i 0.835394 + 0.549651i \(0.185239\pi\)
−0.835394 + 0.549651i \(0.814761\pi\)
\(468\) 0 0
\(469\) −2.13091 + 1.23028i −0.0983963 + 0.0568091i
\(470\) 22.3095 1.02906
\(471\) 0 0
\(472\) 4.85278 + 8.40526i 0.223367 + 0.386883i
\(473\) 8.59226 4.96074i 0.395072 0.228095i
\(474\) 0 0
\(475\) 6.83026 16.7587i 0.313394 0.768940i
\(476\) 51.1301i 2.34355i
\(477\) 0 0
\(478\) −28.2677 16.3203i −1.29293 0.746475i
\(479\) 35.8666 + 20.7076i 1.63879 + 0.946153i 0.981252 + 0.192728i \(0.0617334\pi\)
0.657533 + 0.753425i \(0.271600\pi\)
\(480\) 0 0
\(481\) 9.40840 0.428986
\(482\) −45.6784 26.3724i −2.08059 1.20123i
\(483\) 0 0
\(484\) 19.6688 34.0674i 0.894037 1.54852i
\(485\) −8.25978 14.3064i −0.375057 0.649618i
\(486\) 0 0
\(487\) 15.0755i 0.683134i −0.939857 0.341567i \(-0.889042\pi\)
0.939857 0.341567i \(-0.110958\pi\)
\(488\) 5.21720 9.03646i 0.236172 0.409061i
\(489\) 0 0
\(490\) 45.4251i 2.05210i
\(491\) −36.6408 + 21.1546i −1.65357 + 0.954691i −0.677988 + 0.735073i \(0.737148\pi\)
−0.975586 + 0.219619i \(0.929519\pi\)
\(492\) 0 0
\(493\) 7.26775 4.19603i 0.327323 0.188980i
\(494\) −2.64310 19.2306i −0.118919 0.865223i
\(495\) 0 0
\(496\) −3.09475 1.78675i −0.138958 0.0802276i
\(497\) −20.0756 −0.900512
\(498\) 0 0
\(499\) −21.6295 37.4634i −0.968268 1.67709i −0.700565 0.713589i \(-0.747068\pi\)
−0.267704 0.963501i \(-0.586265\pi\)
\(500\) 6.73842i 0.301351i
\(501\) 0 0
\(502\) −8.02766 + 4.63477i −0.358292 + 0.206860i
\(503\) 5.29464 3.05686i 0.236077 0.136299i −0.377296 0.926093i \(-0.623146\pi\)
0.613372 + 0.789794i \(0.289813\pi\)
\(504\) 0 0
\(505\) 4.88012 0.217163
\(506\) 34.7944 + 60.2657i 1.54680 + 2.67914i
\(507\) 0 0
\(508\) 4.45572 2.57251i 0.197691 0.114137i
\(509\) −27.7660 −1.23071 −0.615353 0.788252i \(-0.710986\pi\)
−0.615353 + 0.788252i \(0.710986\pi\)
\(510\) 0 0
\(511\) −14.2336 −0.629657
\(512\) 24.6304 1.08852
\(513\) 0 0
\(514\) 54.3147 2.39572
\(515\) −31.8379 −1.40294
\(516\) 0 0
\(517\) −17.4767 −0.768624
\(518\) −31.6479 + 18.2719i −1.39053 + 0.802821i
\(519\) 0 0
\(520\) −4.21640 7.30302i −0.184901 0.320258i
\(521\) −3.72919 −0.163379 −0.0816894 0.996658i \(-0.526032\pi\)
−0.0816894 + 0.996658i \(0.526032\pi\)
\(522\) 0 0
\(523\) −38.8829 + 22.4491i −1.70023 + 0.981629i −0.754715 + 0.656053i \(0.772225\pi\)
−0.945516 + 0.325575i \(0.894442\pi\)
\(524\) −29.6516 + 17.1194i −1.29534 + 0.747864i
\(525\) 0 0
\(526\) 43.4114i 1.89283i
\(527\) −3.94868 6.83932i −0.172007 0.297925i
\(528\) 0 0
\(529\) −17.2933 −0.751884
\(530\) −50.6437 29.2391i −2.19982 1.27007i
\(531\) 0 0
\(532\) 26.2474 + 33.8064i 1.13797 + 1.46569i
\(533\) −3.63213 + 2.09701i −0.157325 + 0.0908315i
\(534\) 0 0
\(535\) 27.0469 15.6155i 1.16934 0.675118i
\(536\) 0.885931i 0.0382664i
\(537\) 0 0
\(538\) −6.28388 + 10.8840i −0.270917 + 0.469243i
\(539\) 35.5849i 1.53275i
\(540\) 0 0
\(541\) −16.3200 28.2670i −0.701651 1.21530i −0.967887 0.251387i \(-0.919113\pi\)
0.266236 0.963908i \(-0.414220\pi\)
\(542\) 16.2166 28.0880i 0.696564 1.20648i
\(543\) 0 0
\(544\) 34.9973 + 20.2057i 1.50050 + 0.866313i
\(545\) −17.8158 −0.763145
\(546\) 0 0
\(547\) −8.90948 5.14389i −0.380942 0.219937i 0.297286 0.954788i \(-0.403918\pi\)
−0.678228 + 0.734852i \(0.737252\pi\)
\(548\) 26.0525 + 15.0414i 1.11291 + 0.642539i
\(549\) 0 0
\(550\) 45.5151i 1.94077i
\(551\) −2.65130 + 6.50521i −0.112949 + 0.277131i
\(552\) 0 0
\(553\) −33.9660 + 19.6103i −1.44438 + 0.833915i
\(554\) −17.2540 29.8848i −0.733051 1.26968i
\(555\) 0 0
\(556\) 48.6399 2.06279
\(557\) 1.55437 0.897418i 0.0658609 0.0380248i −0.466708 0.884411i \(-0.654560\pi\)
0.532569 + 0.846387i \(0.321227\pi\)
\(558\) 0 0
\(559\) 4.03025i 0.170462i
\(560\) −23.0827 13.3268i −0.975420 0.563159i
\(561\) 0 0
\(562\) 18.2774 31.6573i 0.770984 1.33538i
\(563\) 2.51042 4.34817i 0.105801 0.183254i −0.808264 0.588820i \(-0.799593\pi\)
0.914065 + 0.405567i \(0.132926\pi\)
\(564\) 0 0
\(565\) 46.4897i 1.95584i
\(566\) 16.6995 + 28.9244i 0.701932 + 1.21578i
\(567\) 0 0
\(568\) −3.61413 + 6.25985i −0.151645 + 0.262657i
\(569\) −10.4266 18.0595i −0.437107 0.757092i 0.560358 0.828251i \(-0.310664\pi\)
−0.997465 + 0.0711585i \(0.977330\pi\)
\(570\) 0 0
\(571\) −18.2645 + 31.6350i −0.764345 + 1.32388i 0.176248 + 0.984346i \(0.443604\pi\)
−0.940592 + 0.339538i \(0.889729\pi\)
\(572\) 13.8566 + 24.0004i 0.579374 + 1.00351i
\(573\) 0 0
\(574\) 8.14513 14.1078i 0.339971 0.588847i
\(575\) −22.8234 13.1771i −0.951800 0.549522i
\(576\) 0 0
\(577\) −13.8317 −0.575822 −0.287911 0.957657i \(-0.592961\pi\)
−0.287911 + 0.957657i \(0.592961\pi\)
\(578\) 10.8790 + 18.8430i 0.452508 + 0.783767i
\(579\) 0 0
\(580\) 12.8025i 0.531593i
\(581\) 15.1902 + 8.77008i 0.630197 + 0.363844i
\(582\) 0 0
\(583\) 39.6730 + 22.9052i 1.64309 + 0.948636i
\(584\) −2.56242 + 4.43824i −0.106034 + 0.183656i
\(585\) 0 0
\(586\) −32.5509 + 56.3798i −1.34467 + 2.32903i
\(587\) 3.52537i 0.145508i −0.997350 0.0727539i \(-0.976821\pi\)
0.997350 0.0727539i \(-0.0231788\pi\)
\(588\) 0 0
\(589\) 6.12173 + 2.49501i 0.252242 + 0.102805i
\(590\) 40.6221 + 23.4532i 1.67239 + 0.965553i
\(591\) 0 0
\(592\) 10.7069i 0.440052i
\(593\) 3.25664 1.88022i 0.133734 0.0772113i −0.431640 0.902046i \(-0.642065\pi\)
0.565374 + 0.824834i \(0.308732\pi\)
\(594\) 0 0
\(595\) −29.4519 51.0121i −1.20741 2.09129i
\(596\) 16.5645 9.56351i 0.678508 0.391737i
\(597\) 0 0
\(598\) −28.2680 −1.15597
\(599\) 2.69993 0.110316 0.0551580 0.998478i \(-0.482434\pi\)
0.0551580 + 0.998478i \(0.482434\pi\)
\(600\) 0 0
\(601\) −3.51336 + 2.02844i −0.143313 + 0.0827417i −0.569942 0.821685i \(-0.693034\pi\)
0.426629 + 0.904427i \(0.359701\pi\)
\(602\) −7.82709 13.5569i −0.319008 0.552539i
\(603\) 0 0
\(604\) −5.01131 + 2.89328i −0.203907 + 0.117726i
\(605\) 45.3183i 1.84245i
\(606\) 0 0
\(607\) −4.17611 2.41108i −0.169503 0.0978627i 0.412848 0.910800i \(-0.364534\pi\)
−0.582352 + 0.812937i \(0.697867\pi\)
\(608\) −33.5122 + 4.60600i −1.35910 + 0.186798i
\(609\) 0 0
\(610\) 50.4289i 2.04181i
\(611\) 3.54964 6.14817i 0.143603 0.248728i
\(612\) 0 0
\(613\) 4.89396 8.47658i 0.197665 0.342366i −0.750106 0.661318i \(-0.769997\pi\)
0.947771 + 0.318952i \(0.103331\pi\)
\(614\) −52.5597 30.3454i −2.12114 1.22464i
\(615\) 0 0
\(616\) −22.2213 12.8295i −0.895322 0.516914i
\(617\) 3.89095i 0.156644i −0.996928 0.0783219i \(-0.975044\pi\)
0.996928 0.0783219i \(-0.0249562\pi\)
\(618\) 0 0
\(619\) −9.13436 15.8212i −0.367141 0.635907i 0.621976 0.783036i \(-0.286330\pi\)
−0.989117 + 0.147129i \(0.952997\pi\)
\(620\) 12.0478 0.483850
\(621\) 0 0
\(622\) −35.5355 20.5164i −1.42484 0.822634i
\(623\) −5.58216 + 9.66858i −0.223644 + 0.387363i
\(624\) 0 0
\(625\) 14.2608 + 24.7005i 0.570434 + 0.988020i
\(626\) 12.0841 20.9302i 0.482976 0.836540i
\(627\) 0 0
\(628\) 17.8196 + 30.8645i 0.711079 + 1.23163i
\(629\) 11.8310 20.4919i 0.471734 0.817067i
\(630\) 0 0
\(631\) −7.88091 13.6501i −0.313734 0.543404i 0.665433 0.746457i \(-0.268247\pi\)
−0.979168 + 0.203054i \(0.934913\pi\)
\(632\) 14.1215i 0.561722i
\(633\) 0 0
\(634\) 0.404417 0.700470i 0.0160614 0.0278192i
\(635\) 2.96362 5.13314i 0.117608 0.203703i
\(636\) 0 0
\(637\) 12.5185 + 7.22755i 0.496001 + 0.286366i
\(638\) 17.6676i 0.699466i
\(639\) 0 0
\(640\) −26.8352 + 15.4933i −1.06076 + 0.612427i
\(641\) 7.87357 0.310987 0.155494 0.987837i \(-0.450303\pi\)
0.155494 + 0.987837i \(0.450303\pi\)
\(642\) 0 0
\(643\) −14.0900 24.4046i −0.555656 0.962424i −0.997852 0.0655057i \(-0.979134\pi\)
0.442197 0.896918i \(-0.354199\pi\)
\(644\) 53.9771 31.1637i 2.12700 1.22802i
\(645\) 0 0
\(646\) −45.2087 18.4255i −1.77871 0.724943i
\(647\) 41.2832i 1.62301i 0.584346 + 0.811504i \(0.301351\pi\)
−0.584346 + 0.811504i \(0.698649\pi\)
\(648\) 0 0
\(649\) −31.8224 18.3726i −1.24914 0.721189i
\(650\) −16.0118 9.24445i −0.628036 0.362597i
\(651\) 0 0
\(652\) 7.88084 0.308638
\(653\) 30.9349 + 17.8602i 1.21057 + 0.698925i 0.962884 0.269914i \(-0.0869953\pi\)
0.247690 + 0.968839i \(0.420329\pi\)
\(654\) 0 0
\(655\) −19.7221 + 34.1597i −0.770607 + 1.33473i
\(656\) 2.38643 + 4.13342i 0.0931746 + 0.161383i
\(657\) 0 0
\(658\) 27.5748i 1.07498i
\(659\) −16.5224 + 28.6176i −0.643621 + 1.11478i 0.340997 + 0.940064i \(0.389235\pi\)
−0.984618 + 0.174720i \(0.944098\pi\)
\(660\) 0 0
\(661\) 44.6790i 1.73781i −0.494979 0.868905i \(-0.664824\pi\)
0.494979 0.868905i \(-0.335176\pi\)
\(662\) 58.3840 33.7080i 2.26916 1.31010i
\(663\) 0 0
\(664\) 5.46928 3.15769i 0.212249 0.122542i
\(665\) 45.6599 + 18.6094i 1.77061 + 0.721642i
\(666\) 0 0
\(667\) 8.85934 + 5.11494i 0.343035 + 0.198051i
\(668\) 15.6583 0.605839
\(669\) 0 0
\(670\) 2.14083 + 3.70802i 0.0827074 + 0.143253i
\(671\) 39.5047i 1.52506i
\(672\) 0 0
\(673\) −15.8318 + 9.14047i −0.610269 + 0.352339i −0.773071 0.634320i \(-0.781280\pi\)
0.162802 + 0.986659i \(0.447947\pi\)
\(674\) −2.12043 + 1.22423i −0.0816760 + 0.0471556i
\(675\) 0 0
\(676\) 22.8798 0.879994
\(677\) 12.5993 + 21.8227i 0.484232 + 0.838715i 0.999836 0.0181123i \(-0.00576565\pi\)
−0.515604 + 0.856827i \(0.672432\pi\)
\(678\) 0 0
\(679\) 17.6829 10.2092i 0.678606 0.391793i
\(680\) −21.2084 −0.813306
\(681\) 0 0
\(682\) −16.6261 −0.636646
\(683\) −13.1758 −0.504159 −0.252080 0.967706i \(-0.581114\pi\)
−0.252080 + 0.967706i \(0.581114\pi\)
\(684\) 0 0
\(685\) 34.6565 1.32416
\(686\) 0.149508 0.00570823
\(687\) 0 0
\(688\) 4.58650 0.174859
\(689\) −16.1157 + 9.30443i −0.613961 + 0.354470i
\(690\) 0 0
\(691\) 25.6729 + 44.4667i 0.976641 + 1.69159i 0.674409 + 0.738358i \(0.264399\pi\)
0.302233 + 0.953234i \(0.402268\pi\)
\(692\) −49.3369 −1.87551
\(693\) 0 0
\(694\) 60.4452 34.8981i 2.29447 1.32471i
\(695\) 48.5276 28.0174i 1.84076 1.06276i
\(696\) 0 0
\(697\) 10.5479i 0.399531i
\(698\) −8.13069 14.0828i −0.307751 0.533040i
\(699\) 0 0
\(700\) 40.7656 1.54080
\(701\) 25.4463 + 14.6914i 0.961092 + 0.554887i 0.896509 0.443025i \(-0.146095\pi\)
0.0645833 + 0.997912i \(0.479428\pi\)
\(702\) 0 0
\(703\) 2.69695 + 19.6223i 0.101717 + 0.740071i
\(704\) 52.8766 30.5283i 1.99286 1.15058i
\(705\) 0 0
\(706\) 9.58693 5.53502i 0.360809 0.208313i
\(707\) 6.03190i 0.226853i
\(708\) 0 0
\(709\) −23.0980 + 40.0068i −0.867462 + 1.50249i −0.00288007 + 0.999996i \(0.500917\pi\)
−0.864582 + 0.502492i \(0.832417\pi\)
\(710\) 34.9337i 1.31104i
\(711\) 0 0
\(712\) 2.00987 + 3.48119i 0.0753230 + 0.130463i
\(713\) 4.81342 8.33709i 0.180264 0.312226i
\(714\) 0 0
\(715\) 27.6493 + 15.9633i 1.03402 + 0.596994i
\(716\) 39.0622 1.45982
\(717\) 0 0
\(718\) 11.7509 + 6.78438i 0.438540 + 0.253191i
\(719\) −5.87831 3.39385i −0.219224 0.126569i 0.386367 0.922345i \(-0.373730\pi\)
−0.605591 + 0.795776i \(0.707063\pi\)
\(720\) 0 0
\(721\) 39.3520i 1.46555i
\(722\) 39.3499 11.0250i 1.46445 0.410308i
\(723\) 0 0
\(724\) −10.1263 + 5.84643i −0.376342 + 0.217281i
\(725\) 3.34546 + 5.79451i 0.124247 + 0.215203i
\(726\) 0 0
\(727\) 2.67494 0.0992081 0.0496040 0.998769i \(-0.484204\pi\)
0.0496040 + 0.998769i \(0.484204\pi\)
\(728\) 9.02663 5.21152i 0.334549 0.193152i
\(729\) 0 0
\(730\) 24.7681i 0.916707i
\(731\) 8.77808 + 5.06803i 0.324669 + 0.187448i
\(732\) 0 0
\(733\) 11.4965 19.9126i 0.424634 0.735488i −0.571752 0.820426i \(-0.693736\pi\)
0.996386 + 0.0849388i \(0.0270695\pi\)
\(734\) −7.98301 + 13.8270i −0.294658 + 0.510363i
\(735\) 0 0
\(736\) 49.2613i 1.81580i
\(737\) −1.67707 2.90477i −0.0617757 0.106999i
\(738\) 0 0
\(739\) −14.6521 + 25.3781i −0.538985 + 0.933550i 0.459974 + 0.887933i \(0.347859\pi\)
−0.998959 + 0.0456175i \(0.985474\pi\)
\(740\) 18.0487 + 31.2613i 0.663485 + 1.14919i
\(741\) 0 0
\(742\) 36.1400 62.5962i 1.32674 2.29798i
\(743\) −6.75825 11.7056i −0.247936 0.429438i 0.715017 0.699107i \(-0.246419\pi\)
−0.962953 + 0.269669i \(0.913086\pi\)
\(744\) 0 0
\(745\) 11.0175 19.0829i 0.403650 0.699142i
\(746\) −45.6011 26.3278i −1.66958 0.963930i
\(747\) 0 0
\(748\) 69.6986 2.54843
\(749\) 19.3010 + 33.4303i 0.705243 + 1.22152i
\(750\) 0 0
\(751\) 31.6955i 1.15659i 0.815829 + 0.578293i \(0.196281\pi\)
−0.815829 + 0.578293i \(0.803719\pi\)
\(752\) −6.99672 4.03956i −0.255144 0.147308i
\(753\) 0 0
\(754\) 6.21532 + 3.58842i 0.226349 + 0.130682i
\(755\) −3.33316 + 5.77321i −0.121306 + 0.210109i
\(756\) 0 0
\(757\) −2.36484 + 4.09603i −0.0859517 + 0.148873i −0.905796 0.423713i \(-0.860726\pi\)
0.819845 + 0.572586i \(0.194060\pi\)
\(758\) 58.7359i 2.13338i
\(759\) 0 0
\(760\) 14.0227 10.8872i 0.508655 0.394921i
\(761\) −0.577494 0.333416i −0.0209342 0.0120863i 0.489496 0.872005i \(-0.337181\pi\)
−0.510431 + 0.859919i \(0.670514\pi\)
\(762\) 0 0
\(763\) 22.0206i 0.797198i
\(764\) 52.9529 30.5724i 1.91577 1.10607i
\(765\) 0 0
\(766\) 1.21301 + 2.10100i 0.0438279 + 0.0759122i
\(767\) 12.9267 7.46324i 0.466757 0.269482i
\(768\) 0 0
\(769\) 23.8082 0.858546 0.429273 0.903175i \(-0.358770\pi\)
0.429273 + 0.903175i \(0.358770\pi\)
\(770\) −124.008 −4.46895
\(771\) 0 0
\(772\) 51.3271 29.6337i 1.84730 1.06654i
\(773\) −5.80883 10.0612i −0.208929 0.361876i 0.742448 0.669903i \(-0.233664\pi\)
−0.951377 + 0.308027i \(0.900331\pi\)
\(774\) 0 0
\(775\) 5.45293 3.14825i 0.195875 0.113089i
\(776\) 7.35169i 0.263910i
\(777\) 0 0
\(778\) −3.65899 2.11252i −0.131181 0.0757375i
\(779\) −5.41472 6.97411i −0.194003 0.249874i
\(780\) 0 0
\(781\) 27.3662i 0.979240i
\(782\) −35.5469 + 61.5691i −1.27116 + 2.20171i
\(783\) 0 0
\(784\) 8.22509 14.2463i 0.293753 0.508795i
\(785\) 35.5569 + 20.5288i 1.26908 + 0.732704i
\(786\) 0 0
\(787\) −8.15629 4.70904i −0.290740 0.167859i 0.347535 0.937667i \(-0.387019\pi\)
−0.638276 + 0.769808i \(0.720352\pi\)
\(788\) 5.51516i 0.196470i
\(789\) 0 0
\(790\) 34.1241 + 59.1047i 1.21408 + 2.10285i
\(791\) −57.4619 −2.04311
\(792\) 0 0
\(793\) −13.8975 8.02370i −0.493513 0.284930i
\(794\) 36.1198 62.5613i 1.28184 2.22022i
\(795\) 0 0
\(796\) −17.9017 31.0067i −0.634510 1.09900i
\(797\) 22.1959 38.4444i 0.786218 1.36177i −0.142051 0.989859i \(-0.545370\pi\)
0.928269 0.371910i \(-0.121297\pi\)
\(798\) 0 0
\(799\) −8.92733 15.4626i −0.315826 0.547027i
\(800\) −16.1099 + 27.9031i −0.569569 + 0.986523i
\(801\) 0 0
\(802\) −6.61724 11.4614i −0.233663 0.404716i
\(803\) 19.4027i 0.684706i
\(804\) 0 0
\(805\) 35.9016 62.1835i 1.26537 2.19168i
\(806\) 3.37688 5.84893i 0.118946 0.206020i
\(807\) 0 0
\(808\) 1.88083 + 1.08590i 0.0661675 + 0.0382018i
\(809\) 4.81244i 0.169196i −0.996415 0.0845982i \(-0.973039\pi\)
0.996415 0.0845982i \(-0.0269607\pi\)
\(810\) 0 0
\(811\) −17.1253 + 9.88731i −0.601351 + 0.347190i −0.769573 0.638559i \(-0.779531\pi\)
0.168222 + 0.985749i \(0.446198\pi\)
\(812\) −15.8240 −0.555314
\(813\) 0 0
\(814\) −24.9075 43.1411i −0.873009 1.51210i
\(815\) 7.86265 4.53950i 0.275417 0.159012i
\(816\) 0 0
\(817\) −8.40557 + 1.15529i −0.294074 + 0.0404183i
\(818\) 8.05649i 0.281689i
\(819\) 0 0
\(820\) −13.9355 8.04565i −0.486648 0.280966i
\(821\) −5.41819 3.12820i −0.189096 0.109175i 0.402463 0.915436i \(-0.368154\pi\)
−0.591559 + 0.806261i \(0.701487\pi\)
\(822\) 0 0
\(823\) 14.2365 0.496255 0.248127 0.968727i \(-0.420185\pi\)
0.248127 + 0.968727i \(0.420185\pi\)
\(824\) −12.2705 7.08439i −0.427464 0.246796i
\(825\) 0 0
\(826\) −28.9885 + 50.2095i −1.00864 + 1.74701i
\(827\) 6.98747 + 12.1027i 0.242978 + 0.420851i 0.961561 0.274590i \(-0.0885423\pi\)
−0.718583 + 0.695441i \(0.755209\pi\)
\(828\) 0 0
\(829\) 6.20264i 0.215427i 0.994182 + 0.107713i \(0.0343529\pi\)
−0.994182 + 0.107713i \(0.965647\pi\)
\(830\) 15.2609 26.4327i 0.529715 0.917493i
\(831\) 0 0
\(832\) 24.8021i 0.859859i
\(833\) 31.4839 18.1772i 1.09085 0.629804i
\(834\) 0 0
\(835\) 15.6222 9.01946i 0.540628 0.312131i
\(836\) −46.0836 + 35.7794i −1.59383 + 1.23746i
\(837\) 0 0
\(838\) 6.81358 + 3.93382i 0.235371 + 0.135892i
\(839\) 22.4066 0.773563 0.386781 0.922171i \(-0.373587\pi\)
0.386781 + 0.922171i \(0.373587\pi\)
\(840\) 0 0
\(841\) 13.2014 + 22.8655i 0.455220 + 0.788465i
\(842\) 15.9091i 0.548264i
\(843\) 0 0
\(844\) −62.2808 + 35.9578i −2.14379 + 1.23772i
\(845\) 22.8270 13.1792i 0.785273 0.453378i
\(846\) 0 0
\(847\) 56.0141 1.92467
\(848\) 10.5886 + 18.3400i 0.363614 + 0.629798i
\(849\) 0 0
\(850\) −40.2697 + 23.2497i −1.38124 + 0.797459i
\(851\) 28.8439 0.988757
\(852\) 0 0
\(853\) 12.0171 0.411457 0.205728 0.978609i \(-0.434044\pi\)
0.205728 + 0.978609i \(0.434044\pi\)
\(854\) 62.3308 2.13291
\(855\) 0 0
\(856\) 13.8987 0.475049
\(857\) −36.1476 −1.23478 −0.617389 0.786658i \(-0.711810\pi\)
−0.617389 + 0.786658i \(0.711810\pi\)
\(858\) 0 0
\(859\) 35.6504 1.21637 0.608187 0.793794i \(-0.291897\pi\)
0.608187 + 0.793794i \(0.291897\pi\)
\(860\) −13.3913 + 7.73149i −0.456641 + 0.263642i
\(861\) 0 0
\(862\) 12.4319 + 21.5326i 0.423431 + 0.733404i
\(863\) 21.0718 0.717294 0.358647 0.933473i \(-0.383238\pi\)
0.358647 + 0.933473i \(0.383238\pi\)
\(864\) 0 0
\(865\) −49.2230 + 28.4189i −1.67363 + 0.966271i
\(866\) −6.36186 + 3.67302i −0.216185 + 0.124814i
\(867\) 0 0
\(868\) 14.8912i 0.505440i
\(869\) −26.7320 46.3012i −0.906820 1.57066i
\(870\) 0 0
\(871\) 1.36250 0.0461666
\(872\) −6.86633 3.96428i −0.232523 0.134247i
\(873\) 0 0
\(874\) −8.10312 58.9563i −0.274092 1.99423i
\(875\) −8.30955 + 4.79752i −0.280914 + 0.162186i
\(876\) 0 0
\(877\) −44.3724 + 25.6184i −1.49835 + 0.865073i −0.999998 0.00190079i \(-0.999395\pi\)
−0.498353 + 0.866974i \(0.666062\pi\)
\(878\) 52.4869i 1.77135i
\(879\) 0 0
\(880\) 18.1665 31.4654i 0.612394 1.06070i
\(881\) 11.1100i 0.374304i 0.982331 + 0.187152i \(0.0599257\pi\)
−0.982331 + 0.187152i \(0.940074\pi\)
\(882\) 0 0
\(883\) 15.1216 + 26.1914i 0.508883 + 0.881411i 0.999947 + 0.0102875i \(0.00327469\pi\)
−0.491064 + 0.871123i \(0.663392\pi\)
\(884\) −14.1563 + 24.5194i −0.476128 + 0.824678i
\(885\) 0 0
\(886\) −72.6180 41.9260i −2.43965 1.40853i
\(887\) −1.29765 −0.0435708 −0.0217854 0.999763i \(-0.506935\pi\)
−0.0217854 + 0.999763i \(0.506935\pi\)
\(888\) 0 0
\(889\) 6.34463 + 3.66308i 0.212792 + 0.122856i
\(890\) 16.8244 + 9.71358i 0.563956 + 0.325600i
\(891\) 0 0
\(892\) 6.06557i 0.203090i
\(893\) 13.8402 + 5.64081i 0.463146 + 0.188763i
\(894\) 0 0
\(895\) 38.9720 22.5005i 1.30269 0.752109i
\(896\) −19.1500 33.1687i −0.639755 1.10809i
\(897\) 0 0
\(898\) −56.1033 −1.87219
\(899\) −2.11666 + 1.22206i −0.0705947 + 0.0407579i
\(900\) 0 0
\(901\) 46.8011i 1.55917i
\(902\) 19.2312 + 11.1031i 0.640328 + 0.369693i
\(903\) 0 0
\(904\) −10.3446 + 17.9174i −0.344058 + 0.595925i
\(905\) −6.73529 + 11.6659i −0.223889 + 0.387787i
\(906\) 0 0
\(907\) 35.9791i 1.19467i −0.801993 0.597333i \(-0.796227\pi\)
0.801993 0.597333i \(-0.203773\pi\)
\(908\) 15.4242 + 26.7155i 0.511871 + 0.886586i
\(909\) 0 0
\(910\) 25.1870 43.6252i 0.834941 1.44616i
\(911\) −6.18966 10.7208i −0.205073 0.355196i 0.745083 0.666972i \(-0.232410\pi\)
−0.950156 + 0.311775i \(0.899076\pi\)
\(912\) 0 0
\(913\) −11.9550 + 20.7067i −0.395654 + 0.685292i
\(914\) 19.1687 + 33.2012i 0.634045 + 1.09820i
\(915\) 0 0
\(916\) −8.70902 + 15.0845i −0.287754 + 0.498405i
\(917\) −42.2219 24.3768i −1.39429 0.804993i
\(918\) 0 0
\(919\) −10.1943 −0.336279 −0.168139 0.985763i \(-0.553776\pi\)
−0.168139 + 0.985763i \(0.553776\pi\)
\(920\) −12.9265 22.3893i −0.426173 0.738154i
\(921\) 0 0
\(922\) 76.6051i 2.52285i
\(923\) 9.62722 + 5.55828i 0.316884 + 0.182953i
\(924\) 0 0
\(925\) 16.3381 + 9.43279i 0.537192 + 0.310148i
\(926\) −11.8390 + 20.5058i −0.389055 + 0.673863i
\(927\) 0 0
\(928\) 6.25336 10.8311i 0.205277 0.355550i
\(929\) 0.907754i 0.0297824i 0.999889 + 0.0148912i \(0.00474020\pi\)
−0.999889 + 0.0148912i \(0.995260\pi\)
\(930\) 0 0
\(931\) −11.4855 + 28.1806i −0.376421 + 0.923582i
\(932\) −8.24239 4.75875i −0.269989 0.155878i
\(933\) 0 0
\(934\) 51.0947i 1.67187i
\(935\) 69.5377 40.1476i 2.27413 1.31297i
\(936\) 0 0
\(937\) −23.0292 39.8878i −0.752332 1.30308i −0.946690 0.322146i \(-0.895596\pi\)
0.194358 0.980931i \(-0.437738\pi\)
\(938\) −4.58317 + 2.64609i −0.149646 + 0.0863980i
\(939\) 0 0
\(940\) 27.2380 0.888407
\(941\) −52.8596 −1.72317 −0.861587 0.507610i \(-0.830529\pi\)
−0.861587 + 0.507610i \(0.830529\pi\)
\(942\) 0 0
\(943\) −11.1352 + 6.42893i −0.362613 + 0.209355i
\(944\) −8.49330 14.7108i −0.276433 0.478797i
\(945\) 0 0
\(946\) 18.4803 10.6696i 0.600845 0.346898i
\(947\) 6.62284i 0.215214i 0.994194 + 0.107607i \(0.0343187\pi\)
−0.994194 + 0.107607i \(0.965681\pi\)
\(948\) 0 0
\(949\) 6.82571 + 3.94083i 0.221572 + 0.127925i
\(950\) 14.6905 36.0446i 0.476624 1.16944i
\(951\) 0 0
\(952\) 26.2139i 0.849597i
\(953\) −7.59011 + 13.1465i −0.245868 + 0.425855i −0.962375 0.271724i \(-0.912406\pi\)
0.716508 + 0.697579i \(0.245740\pi\)
\(954\) 0 0
\(955\) 35.2204 61.0035i 1.13971 1.97403i
\(956\) −34.5125 19.9258i −1.11621 0.644446i
\(957\) 0 0
\(958\) 77.1419 + 44.5379i 2.49234 + 1.43895i
\(959\) 42.8359i 1.38324i
\(960\) 0 0
\(961\) −14.3500 24.8549i −0.462903 0.801771i
\(962\) 20.2356 0.652422
\(963\) 0 0
\(964\) −55.7696 32.1986i −1.79622 1.03705i
\(965\) 34.1391 59.1306i 1.09898 1.90348i
\(966\) 0 0
\(967\) −14.7829 25.6048i −0.475387 0.823395i 0.524215 0.851586i \(-0.324359\pi\)
−0.999603 + 0.0281906i \(0.991025\pi\)
\(968\) 10.0840 17.4660i 0.324112 0.561378i
\(969\) 0 0
\(970\) −17.7652 30.7702i −0.570405 0.987970i
\(971\) −17.8609 + 30.9360i −0.573184 + 0.992784i 0.423052 + 0.906105i \(0.360959\pi\)
−0.996236 + 0.0866789i \(0.972375\pi\)
\(972\) 0 0
\(973\) 34.6299 + 59.9808i 1.11018 + 1.92290i
\(974\) 32.4243i 1.03894i
\(975\) 0 0
\(976\) −9.13111 + 15.8155i −0.292280 + 0.506243i
\(977\) 0.303010 0.524829i 0.00969416 0.0167908i −0.861138 0.508372i \(-0.830248\pi\)
0.870832 + 0.491581i \(0.163581\pi\)
\(978\) 0 0
\(979\) −13.1798 7.60937i −0.421229 0.243197i
\(980\) 55.4603i 1.77161i
\(981\) 0 0
\(982\) −78.8070 + 45.4993i −2.51483 + 1.45194i
\(983\) 28.3050 0.902790 0.451395 0.892324i \(-0.350927\pi\)
0.451395 + 0.892324i \(0.350927\pi\)
\(984\) 0 0
\(985\) −3.17683 5.50243i −0.101222 0.175322i
\(986\) 15.6315 9.02484i 0.497808 0.287410i
\(987\) 0 0
\(988\) −3.22701 23.4789i −0.102665 0.746964i
\(989\) 12.3558i 0.392892i
\(990\) 0 0
\(991\) 49.4706 + 28.5619i 1.57149 + 0.907298i 0.995987 + 0.0894946i \(0.0285252\pi\)
0.575498 + 0.817803i \(0.304808\pi\)
\(992\) −10.1927 5.88473i −0.323617 0.186840i
\(993\) 0 0
\(994\) −43.1786 −1.36954
\(995\) −35.7208 20.6234i −1.13243 0.653806i
\(996\) 0 0
\(997\) 18.3712 31.8199i 0.581823 1.00775i −0.413441 0.910531i \(-0.635673\pi\)
0.995263 0.0972153i \(-0.0309935\pi\)
\(998\) −46.5207 80.5763i −1.47259 2.55060i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.t.a.179.16 36
3.2 odd 2 171.2.t.a.122.3 yes 36
9.2 odd 6 513.2.k.a.8.16 36
9.7 even 3 171.2.k.a.65.3 yes 36
19.12 odd 6 513.2.k.a.449.16 36
57.50 even 6 171.2.k.a.50.3 36
171.88 odd 6 171.2.t.a.164.3 yes 36
171.164 even 6 inner 513.2.t.a.278.16 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.3 36 57.50 even 6
171.2.k.a.65.3 yes 36 9.7 even 3
171.2.t.a.122.3 yes 36 3.2 odd 2
171.2.t.a.164.3 yes 36 171.88 odd 6
513.2.k.a.8.16 36 9.2 odd 6
513.2.k.a.449.16 36 19.12 odd 6
513.2.t.a.179.16 36 1.1 even 1 trivial
513.2.t.a.278.16 36 171.164 even 6 inner