Properties

Label 513.2.k.a.449.16
Level $513$
Weight $2$
Character 513.449
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(8,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.16
Character \(\chi\) \(=\) 513.449
Dual form 513.2.k.a.8.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07540 - 1.86265i) q^{2} +(-1.31298 - 2.27414i) q^{4} +3.02519i q^{5} +(1.86959 + 3.23822i) q^{7} -1.34630 q^{8} +(5.63486 + 3.25329i) q^{10} +(-4.41421 + 2.54855i) q^{11} +(1.79312 - 1.03526i) q^{13} +8.04222 q^{14} +(1.17814 - 2.04060i) q^{16} +(4.50968 - 2.60366i) q^{17} +(4.31830 + 0.593520i) q^{19} +(6.87970 - 3.97200i) q^{20} +10.9628i q^{22} +(-5.49727 + 3.17385i) q^{23} -4.15176 q^{25} -4.45327i q^{26} +(4.90944 - 8.50340i) q^{28} -1.61159 q^{29} +(-1.31340 - 0.758293i) q^{31} +(-3.88025 - 6.72078i) q^{32} -11.1999i q^{34} +(-9.79622 + 5.65585i) q^{35} -4.54399i q^{37} +(5.74943 - 7.40521i) q^{38} -4.07280i q^{40} -2.02559 q^{41} +(0.973250 - 1.68572i) q^{43} +(11.5915 + 6.69236i) q^{44} +13.6527i q^{46} -3.42876i q^{47} +(-3.49070 + 6.04608i) q^{49} +(-4.46481 + 7.73327i) q^{50} +(-4.70864 - 2.71853i) q^{52} +(4.49378 - 7.78345i) q^{53} +(-7.70983 - 13.3538i) q^{55} +(-2.51702 - 4.35961i) q^{56} +(-1.73310 + 3.00183i) q^{58} +7.20907 q^{59} -7.75044 q^{61} +(-2.82487 + 1.63094i) q^{62} -11.9787 q^{64} +(3.13185 + 5.42452i) q^{65} +(-0.569888 + 0.329025i) q^{67} +(-11.8422 - 6.83709i) q^{68} +24.3292i q^{70} +(2.68449 + 4.64968i) q^{71} +(-1.90331 - 3.29663i) q^{73} +(-8.46387 - 4.88662i) q^{74} +(-4.32008 - 10.5997i) q^{76} +(-16.5055 - 9.52945i) q^{77} +(9.08384 + 5.24456i) q^{79} +(6.17320 + 3.56410i) q^{80} +(-2.17832 + 3.77297i) q^{82} +(4.06246 - 2.34546i) q^{83} +(7.87657 + 13.6426i) q^{85} +(-2.09327 - 3.62565i) q^{86} +(5.94284 - 3.43110i) q^{88} +(-1.49289 + 2.58575i) q^{89} +(6.70478 + 3.87100i) q^{91} +(14.4356 + 8.33438i) q^{92} +(-6.38657 - 3.68729i) q^{94} +(-1.79551 + 13.0637i) q^{95} +(-4.72908 - 2.73034i) q^{97} +(7.50782 + 13.0039i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3 q^{2} - 15 q^{4} - q^{7} - 12 q^{8} - 6 q^{10} + 9 q^{11} - 6 q^{13} + 6 q^{14} - 9 q^{16} + 27 q^{17} + q^{19} - 9 q^{20} - 9 q^{23} - 22 q^{25} + 2 q^{28} + 24 q^{29} + 12 q^{31} + 15 q^{32}+ \cdots + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07540 1.86265i 0.760424 1.31709i −0.182209 0.983260i \(-0.558325\pi\)
0.942632 0.333832i \(-0.108342\pi\)
\(3\) 0 0
\(4\) −1.31298 2.27414i −0.656488 1.13707i
\(5\) 3.02519i 1.35290i 0.736486 + 0.676452i \(0.236484\pi\)
−0.736486 + 0.676452i \(0.763516\pi\)
\(6\) 0 0
\(7\) 1.86959 + 3.23822i 0.706637 + 1.22393i 0.966097 + 0.258178i \(0.0831220\pi\)
−0.259460 + 0.965754i \(0.583545\pi\)
\(8\) −1.34630 −0.475988
\(9\) 0 0
\(10\) 5.63486 + 3.25329i 1.78190 + 1.02878i
\(11\) −4.41421 + 2.54855i −1.33093 + 0.768415i −0.985443 0.170006i \(-0.945621\pi\)
−0.345492 + 0.938422i \(0.612288\pi\)
\(12\) 0 0
\(13\) 1.79312 1.03526i 0.497321 0.287129i −0.230285 0.973123i \(-0.573966\pi\)
0.727607 + 0.685995i \(0.240633\pi\)
\(14\) 8.04222 2.14937
\(15\) 0 0
\(16\) 1.17814 2.04060i 0.294535 0.510150i
\(17\) 4.50968 2.60366i 1.09376 0.631481i 0.159183 0.987249i \(-0.449114\pi\)
0.934574 + 0.355768i \(0.115781\pi\)
\(18\) 0 0
\(19\) 4.31830 + 0.593520i 0.990686 + 0.136163i
\(20\) 6.87970 3.97200i 1.53835 0.888166i
\(21\) 0 0
\(22\) 10.9628i 2.33728i
\(23\) −5.49727 + 3.17385i −1.14626 + 0.661794i −0.947973 0.318350i \(-0.896871\pi\)
−0.198287 + 0.980144i \(0.563538\pi\)
\(24\) 0 0
\(25\) −4.15176 −0.830352
\(26\) 4.45327i 0.873357i
\(27\) 0 0
\(28\) 4.90944 8.50340i 0.927797 1.60699i
\(29\) −1.61159 −0.299265 −0.149632 0.988742i \(-0.547809\pi\)
−0.149632 + 0.988742i \(0.547809\pi\)
\(30\) 0 0
\(31\) −1.31340 0.758293i −0.235894 0.136194i 0.377394 0.926053i \(-0.376820\pi\)
−0.613288 + 0.789859i \(0.710154\pi\)
\(32\) −3.88025 6.72078i −0.685937 1.18808i
\(33\) 0 0
\(34\) 11.1999i 1.92077i
\(35\) −9.79622 + 5.65585i −1.65586 + 0.956013i
\(36\) 0 0
\(37\) 4.54399i 0.747028i −0.927625 0.373514i \(-0.878153\pi\)
0.927625 0.373514i \(-0.121847\pi\)
\(38\) 5.74943 7.40521i 0.932680 1.20128i
\(39\) 0 0
\(40\) 4.07280i 0.643967i
\(41\) −2.02559 −0.316344 −0.158172 0.987412i \(-0.550560\pi\)
−0.158172 + 0.987412i \(0.550560\pi\)
\(42\) 0 0
\(43\) 0.973250 1.68572i 0.148419 0.257070i −0.782224 0.622997i \(-0.785915\pi\)
0.930643 + 0.365927i \(0.119248\pi\)
\(44\) 11.5915 + 6.69236i 1.74748 + 1.00891i
\(45\) 0 0
\(46\) 13.6527i 2.01297i
\(47\) 3.42876i 0.500136i −0.968228 0.250068i \(-0.919547\pi\)
0.968228 0.250068i \(-0.0804529\pi\)
\(48\) 0 0
\(49\) −3.49070 + 6.04608i −0.498672 + 0.863725i
\(50\) −4.46481 + 7.73327i −0.631419 + 1.09365i
\(51\) 0 0
\(52\) −4.70864 2.71853i −0.652971 0.376993i
\(53\) 4.49378 7.78345i 0.617268 1.06914i −0.372714 0.927946i \(-0.621573\pi\)
0.989982 0.141193i \(-0.0450938\pi\)
\(54\) 0 0
\(55\) −7.70983 13.3538i −1.03959 1.80063i
\(56\) −2.51702 4.35961i −0.336351 0.582577i
\(57\) 0 0
\(58\) −1.73310 + 3.00183i −0.227568 + 0.394159i
\(59\) 7.20907 0.938541 0.469271 0.883054i \(-0.344517\pi\)
0.469271 + 0.883054i \(0.344517\pi\)
\(60\) 0 0
\(61\) −7.75044 −0.992342 −0.496171 0.868225i \(-0.665261\pi\)
−0.496171 + 0.868225i \(0.665261\pi\)
\(62\) −2.82487 + 1.63094i −0.358759 + 0.207129i
\(63\) 0 0
\(64\) −11.9787 −1.49734
\(65\) 3.13185 + 5.42452i 0.388458 + 0.672829i
\(66\) 0 0
\(67\) −0.569888 + 0.329025i −0.0696229 + 0.0401968i −0.534407 0.845227i \(-0.679465\pi\)
0.464784 + 0.885424i \(0.346132\pi\)
\(68\) −11.8422 6.83709i −1.43608 0.829119i
\(69\) 0 0
\(70\) 24.3292i 2.90790i
\(71\) 2.68449 + 4.64968i 0.318591 + 0.551815i 0.980194 0.198039i \(-0.0634572\pi\)
−0.661604 + 0.749854i \(0.730124\pi\)
\(72\) 0 0
\(73\) −1.90331 3.29663i −0.222765 0.385841i 0.732881 0.680357i \(-0.238175\pi\)
−0.955647 + 0.294516i \(0.904842\pi\)
\(74\) −8.46387 4.88662i −0.983905 0.568058i
\(75\) 0 0
\(76\) −4.32008 10.5997i −0.495547 1.21587i
\(77\) −16.5055 9.52945i −1.88098 1.08598i
\(78\) 0 0
\(79\) 9.08384 + 5.24456i 1.02201 + 0.590059i 0.914686 0.404165i \(-0.132438\pi\)
0.107326 + 0.994224i \(0.465771\pi\)
\(80\) 6.17320 + 3.56410i 0.690185 + 0.398478i
\(81\) 0 0
\(82\) −2.17832 + 3.77297i −0.240556 + 0.416655i
\(83\) 4.06246 2.34546i 0.445913 0.257448i −0.260190 0.965558i \(-0.583785\pi\)
0.706102 + 0.708110i \(0.250452\pi\)
\(84\) 0 0
\(85\) 7.87657 + 13.6426i 0.854334 + 1.47975i
\(86\) −2.09327 3.62565i −0.225723 0.390963i
\(87\) 0 0
\(88\) 5.94284 3.43110i 0.633509 0.365757i
\(89\) −1.49289 + 2.58575i −0.158246 + 0.274089i −0.934236 0.356655i \(-0.883917\pi\)
0.775991 + 0.630745i \(0.217250\pi\)
\(90\) 0 0
\(91\) 6.70478 + 3.87100i 0.702851 + 0.405791i
\(92\) 14.4356 + 8.33438i 1.50501 + 0.868919i
\(93\) 0 0
\(94\) −6.38657 3.68729i −0.658725 0.380315i
\(95\) −1.79551 + 13.0637i −0.184215 + 1.34030i
\(96\) 0 0
\(97\) −4.72908 2.73034i −0.480165 0.277224i 0.240320 0.970694i \(-0.422748\pi\)
−0.720485 + 0.693470i \(0.756081\pi\)
\(98\) 7.50782 + 13.0039i 0.758404 + 1.31359i
\(99\) 0 0
\(100\) 5.45116 + 9.44168i 0.545116 + 0.944168i
\(101\) 1.61316i 0.160516i −0.996774 0.0802579i \(-0.974426\pi\)
0.996774 0.0802579i \(-0.0255744\pi\)
\(102\) 0 0
\(103\) 9.11427 + 5.26213i 0.898056 + 0.518493i 0.876569 0.481276i \(-0.159827\pi\)
0.0214871 + 0.999769i \(0.493160\pi\)
\(104\) −2.41407 + 1.39376i −0.236719 + 0.136670i
\(105\) 0 0
\(106\) −9.66523 16.7407i −0.938770 1.62600i
\(107\) −10.3237 −0.998028 −0.499014 0.866594i \(-0.666304\pi\)
−0.499014 + 0.866594i \(0.666304\pi\)
\(108\) 0 0
\(109\) −5.10016 + 2.94458i −0.488506 + 0.282039i −0.723955 0.689848i \(-0.757677\pi\)
0.235448 + 0.971887i \(0.424344\pi\)
\(110\) −33.1646 −3.16212
\(111\) 0 0
\(112\) 8.81054 0.832518
\(113\) 7.68377 13.3087i 0.722828 1.25197i −0.237034 0.971501i \(-0.576175\pi\)
0.959862 0.280473i \(-0.0904915\pi\)
\(114\) 0 0
\(115\) −9.60150 16.6303i −0.895344 1.55078i
\(116\) 2.11598 + 3.66498i 0.196464 + 0.340285i
\(117\) 0 0
\(118\) 7.75264 13.4280i 0.713689 1.23615i
\(119\) 16.8625 + 9.73555i 1.54578 + 0.892456i
\(120\) 0 0
\(121\) 7.49017 12.9734i 0.680925 1.17940i
\(122\) −8.33483 + 14.4364i −0.754600 + 1.30701i
\(123\) 0 0
\(124\) 3.98248i 0.357638i
\(125\) 2.56609i 0.229518i
\(126\) 0 0
\(127\) 1.69680 + 0.979649i 0.150567 + 0.0869298i 0.573391 0.819282i \(-0.305628\pi\)
−0.422824 + 0.906212i \(0.638961\pi\)
\(128\) −5.12144 + 8.87060i −0.452676 + 0.784057i
\(129\) 0 0
\(130\) 13.4720 1.18157
\(131\) 13.0386i 1.13919i −0.821926 0.569595i \(-0.807100\pi\)
0.821926 0.569595i \(-0.192900\pi\)
\(132\) 0 0
\(133\) 6.15149 + 15.0932i 0.533402 + 1.30875i
\(134\) 1.41534i 0.122266i
\(135\) 0 0
\(136\) −6.07137 + 3.50531i −0.520616 + 0.300578i
\(137\) 11.4560i 0.978752i −0.872073 0.489376i \(-0.837225\pi\)
0.872073 0.489376i \(-0.162775\pi\)
\(138\) 0 0
\(139\) −9.26139 16.0412i −0.785541 1.36060i −0.928676 0.370893i \(-0.879052\pi\)
0.143135 0.989703i \(-0.454282\pi\)
\(140\) 25.7244 + 14.8520i 2.17411 + 1.25522i
\(141\) 0 0
\(142\) 11.5476 0.969055
\(143\) −5.27680 + 9.13968i −0.441268 + 0.764299i
\(144\) 0 0
\(145\) 4.87536i 0.404876i
\(146\) −8.18728 −0.677584
\(147\) 0 0
\(148\) −10.3337 + 5.96615i −0.849423 + 0.490415i
\(149\) 7.28384i 0.596716i 0.954454 + 0.298358i \(0.0964389\pi\)
−0.954454 + 0.298358i \(0.903561\pi\)
\(150\) 0 0
\(151\) 1.90838 1.10180i 0.155302 0.0896635i −0.420335 0.907369i \(-0.638087\pi\)
0.575637 + 0.817705i \(0.304754\pi\)
\(152\) −5.81372 0.799054i −0.471555 0.0648118i
\(153\) 0 0
\(154\) −35.5001 + 20.4960i −2.86068 + 1.65161i
\(155\) 2.29398 3.97329i 0.184257 0.319142i
\(156\) 0 0
\(157\) −13.5719 −1.08316 −0.541579 0.840650i \(-0.682173\pi\)
−0.541579 + 0.840650i \(0.682173\pi\)
\(158\) 19.5375 11.2800i 1.55432 0.897389i
\(159\) 0 0
\(160\) 20.3316 11.7385i 1.60736 0.928008i
\(161\) −20.5552 11.8676i −1.61998 0.935296i
\(162\) 0 0
\(163\) 3.00114 0.235067 0.117534 0.993069i \(-0.462501\pi\)
0.117534 + 0.993069i \(0.462501\pi\)
\(164\) 2.65955 + 4.60648i 0.207676 + 0.359706i
\(165\) 0 0
\(166\) 10.0892i 0.783078i
\(167\) 2.98146 + 5.16403i 0.230712 + 0.399605i 0.958018 0.286709i \(-0.0925611\pi\)
−0.727306 + 0.686314i \(0.759228\pi\)
\(168\) 0 0
\(169\) −4.35649 + 7.54566i −0.335114 + 0.580435i
\(170\) 33.8819 2.59862
\(171\) 0 0
\(172\) −5.11141 −0.389742
\(173\) −9.39409 + 16.2710i −0.714220 + 1.23706i 0.249040 + 0.968493i \(0.419885\pi\)
−0.963260 + 0.268572i \(0.913448\pi\)
\(174\) 0 0
\(175\) −7.76207 13.4443i −0.586757 1.01629i
\(176\) 12.0102i 0.905302i
\(177\) 0 0
\(178\) 3.21090 + 5.56144i 0.240667 + 0.416848i
\(179\) −14.8755 −1.11184 −0.555922 0.831235i \(-0.687635\pi\)
−0.555922 + 0.831235i \(0.687635\pi\)
\(180\) 0 0
\(181\) −3.85625 2.22640i −0.286633 0.165487i 0.349790 0.936828i \(-0.386253\pi\)
−0.636422 + 0.771341i \(0.719586\pi\)
\(182\) 14.4206 8.32577i 1.06893 0.617147i
\(183\) 0 0
\(184\) 7.40097 4.27295i 0.545606 0.315006i
\(185\) 13.7464 1.01066
\(186\) 0 0
\(187\) −13.2711 + 22.9862i −0.970480 + 1.68092i
\(188\) −7.79748 + 4.50187i −0.568689 + 0.328333i
\(189\) 0 0
\(190\) 22.4022 + 17.3931i 1.62522 + 1.26183i
\(191\) 20.1652 11.6424i 1.45910 0.842414i 0.460136 0.887848i \(-0.347801\pi\)
0.998967 + 0.0454345i \(0.0144672\pi\)
\(192\) 0 0
\(193\) 22.5699i 1.62462i −0.583229 0.812308i \(-0.698211\pi\)
0.583229 0.812308i \(-0.301789\pi\)
\(194\) −10.1713 + 5.87241i −0.730258 + 0.421615i
\(195\) 0 0
\(196\) 18.3328 1.30949
\(197\) 2.10025i 0.149637i −0.997197 0.0748184i \(-0.976162\pi\)
0.997197 0.0748184i \(-0.0238377\pi\)
\(198\) 0 0
\(199\) −6.81724 + 11.8078i −0.483261 + 0.837033i −0.999815 0.0192216i \(-0.993881\pi\)
0.516554 + 0.856255i \(0.327215\pi\)
\(200\) 5.58950 0.395238
\(201\) 0 0
\(202\) −3.00476 1.73480i −0.211414 0.122060i
\(203\) −3.01300 5.21868i −0.211471 0.366279i
\(204\) 0 0
\(205\) 6.12780i 0.427984i
\(206\) 19.6030 11.3178i 1.36581 0.788548i
\(207\) 0 0
\(208\) 4.87871i 0.338278i
\(209\) −20.5745 + 8.38547i −1.42317 + 0.580035i
\(210\) 0 0
\(211\) 27.3865i 1.88537i 0.333690 + 0.942683i \(0.391706\pi\)
−0.333690 + 0.942683i \(0.608294\pi\)
\(212\) −23.6009 −1.62092
\(213\) 0 0
\(214\) −11.1021 + 19.2294i −0.758924 + 1.31449i
\(215\) 5.09961 + 2.94426i 0.347791 + 0.200797i
\(216\) 0 0
\(217\) 5.67078i 0.384958i
\(218\) 12.6664i 0.857877i
\(219\) 0 0
\(220\) −20.2456 + 35.0665i −1.36496 + 2.36418i
\(221\) 5.39092 9.33735i 0.362633 0.628098i
\(222\) 0 0
\(223\) 2.00040 + 1.15493i 0.133956 + 0.0773397i 0.565481 0.824762i \(-0.308691\pi\)
−0.431524 + 0.902101i \(0.642024\pi\)
\(224\) 14.5089 25.1302i 0.969417 1.67908i
\(225\) 0 0
\(226\) −16.5263 28.6243i −1.09931 1.90406i
\(227\) −5.87376 10.1737i −0.389855 0.675249i 0.602574 0.798063i \(-0.294142\pi\)
−0.992430 + 0.122813i \(0.960808\pi\)
\(228\) 0 0
\(229\) −3.31652 + 5.74438i −0.219162 + 0.379599i −0.954552 0.298045i \(-0.903666\pi\)
0.735390 + 0.677644i \(0.236999\pi\)
\(230\) −41.3018 −2.72336
\(231\) 0 0
\(232\) 2.16968 0.142446
\(233\) 3.13882 1.81220i 0.205631 0.118721i −0.393648 0.919261i \(-0.628787\pi\)
0.599279 + 0.800540i \(0.295454\pi\)
\(234\) 0 0
\(235\) 10.3726 0.676636
\(236\) −9.46533 16.3944i −0.616141 1.06719i
\(237\) 0 0
\(238\) 36.2678 20.9392i 2.35089 1.35729i
\(239\) −13.1428 7.58803i −0.850140 0.490829i 0.0105580 0.999944i \(-0.496639\pi\)
−0.860698 + 0.509116i \(0.829973\pi\)
\(240\) 0 0
\(241\) 24.5234i 1.57969i −0.613308 0.789844i \(-0.710161\pi\)
0.613308 0.789844i \(-0.289839\pi\)
\(242\) −16.1099 27.9031i −1.03558 1.79368i
\(243\) 0 0
\(244\) 10.1761 + 17.6256i 0.651461 + 1.12836i
\(245\) −18.2905 10.5600i −1.16854 0.674656i
\(246\) 0 0
\(247\) 8.35767 3.40630i 0.531786 0.216738i
\(248\) 1.76823 + 1.02089i 0.112283 + 0.0648265i
\(249\) 0 0
\(250\) 4.77972 + 2.75957i 0.302296 + 0.174531i
\(251\) 3.73240 + 2.15490i 0.235587 + 0.136016i 0.613147 0.789969i \(-0.289903\pi\)
−0.377560 + 0.925985i \(0.623237\pi\)
\(252\) 0 0
\(253\) 16.1774 28.0201i 1.01707 1.76161i
\(254\) 3.64949 2.10703i 0.228989 0.132207i
\(255\) 0 0
\(256\) −0.963515 1.66886i −0.0602197 0.104304i
\(257\) 12.6266 + 21.8699i 0.787626 + 1.36421i 0.927418 + 0.374027i \(0.122023\pi\)
−0.139792 + 0.990181i \(0.544643\pi\)
\(258\) 0 0
\(259\) 14.7144 8.49539i 0.914311 0.527878i
\(260\) 8.22408 14.2445i 0.510036 0.883408i
\(261\) 0 0
\(262\) −24.2864 14.0217i −1.50042 0.866266i
\(263\) 17.4797 + 10.0919i 1.07784 + 0.622293i 0.930314 0.366764i \(-0.119534\pi\)
0.147530 + 0.989058i \(0.452868\pi\)
\(264\) 0 0
\(265\) 23.5464 + 13.5945i 1.44644 + 0.835105i
\(266\) 34.7287 + 4.77322i 2.12936 + 0.292665i
\(267\) 0 0
\(268\) 1.49650 + 0.864004i 0.0914132 + 0.0527774i
\(269\) 2.92165 + 5.06044i 0.178136 + 0.308540i 0.941242 0.337733i \(-0.109660\pi\)
−0.763106 + 0.646273i \(0.776327\pi\)
\(270\) 0 0
\(271\) 7.53980 + 13.0593i 0.458010 + 0.793297i 0.998856 0.0478248i \(-0.0152289\pi\)
−0.540845 + 0.841122i \(0.681896\pi\)
\(272\) 12.2699i 0.743974i
\(273\) 0 0
\(274\) −21.3385 12.3198i −1.28911 0.744266i
\(275\) 18.3267 10.5809i 1.10514 0.638055i
\(276\) 0 0
\(277\) −8.02211 13.8947i −0.482002 0.834852i 0.517785 0.855511i \(-0.326757\pi\)
−0.999787 + 0.0206591i \(0.993424\pi\)
\(278\) −39.8388 −2.38937
\(279\) 0 0
\(280\) 13.1886 7.61446i 0.788171 0.455051i
\(281\) 16.9959 1.01389 0.506944 0.861979i \(-0.330775\pi\)
0.506944 + 0.861979i \(0.330775\pi\)
\(282\) 0 0
\(283\) −15.5286 −0.923080 −0.461540 0.887119i \(-0.652703\pi\)
−0.461540 + 0.887119i \(0.652703\pi\)
\(284\) 7.04935 12.2098i 0.418302 0.724520i
\(285\) 0 0
\(286\) 11.3494 + 19.6577i 0.671101 + 1.16238i
\(287\) −3.78702 6.55931i −0.223541 0.387184i
\(288\) 0 0
\(289\) 5.05813 8.76093i 0.297537 0.515349i
\(290\) −9.08108 5.24297i −0.533260 0.307878i
\(291\) 0 0
\(292\) −4.99800 + 8.65678i −0.292486 + 0.506600i
\(293\) 15.1343 26.2134i 0.884156 1.53140i 0.0374772 0.999297i \(-0.488068\pi\)
0.846678 0.532105i \(-0.178599\pi\)
\(294\) 0 0
\(295\) 21.8088i 1.26976i
\(296\) 6.11757i 0.355576i
\(297\) 0 0
\(298\) 13.5672 + 7.83305i 0.785929 + 0.453757i
\(299\) −6.57150 + 11.3822i −0.380040 + 0.658248i
\(300\) 0 0
\(301\) 7.27830 0.419514
\(302\) 4.73953i 0.272729i
\(303\) 0 0
\(304\) 6.29871 8.11268i 0.361256 0.465294i
\(305\) 23.4465i 1.34254i
\(306\) 0 0
\(307\) −24.4373 + 14.1089i −1.39471 + 0.805235i −0.993832 0.110897i \(-0.964628\pi\)
−0.400876 + 0.916132i \(0.631294\pi\)
\(308\) 50.0478i 2.85174i
\(309\) 0 0
\(310\) −4.93390 8.54576i −0.280227 0.485367i
\(311\) −16.5220 9.53896i −0.936875 0.540905i −0.0478956 0.998852i \(-0.515251\pi\)
−0.888979 + 0.457947i \(0.848585\pi\)
\(312\) 0 0
\(313\) −11.2368 −0.635141 −0.317571 0.948235i \(-0.602867\pi\)
−0.317571 + 0.948235i \(0.602867\pi\)
\(314\) −14.5953 + 25.2797i −0.823658 + 1.42662i
\(315\) 0 0
\(316\) 27.5439i 1.54947i
\(317\) 0.376061 0.0211217 0.0105608 0.999944i \(-0.496638\pi\)
0.0105608 + 0.999944i \(0.496638\pi\)
\(318\) 0 0
\(319\) 7.11389 4.10721i 0.398301 0.229959i
\(320\) 36.2379i 2.02576i
\(321\) 0 0
\(322\) −44.2103 + 25.5248i −2.46374 + 1.42244i
\(323\) 21.0195 8.56682i 1.16955 0.476671i
\(324\) 0 0
\(325\) −7.44459 + 4.29814i −0.412952 + 0.238418i
\(326\) 3.22743 5.59007i 0.178751 0.309605i
\(327\) 0 0
\(328\) 2.72705 0.150576
\(329\) 11.1031 6.41036i 0.612132 0.353414i
\(330\) 0 0
\(331\) −27.1452 + 15.6723i −1.49204 + 0.861428i −0.999958 0.00912336i \(-0.997096\pi\)
−0.492078 + 0.870551i \(0.663763\pi\)
\(332\) −10.6678 6.15907i −0.585473 0.338023i
\(333\) 0 0
\(334\) 12.8250 0.701755
\(335\) −0.995362 1.72402i −0.0543825 0.0941932i
\(336\) 0 0
\(337\) 1.13840i 0.0620123i 0.999519 + 0.0310062i \(0.00987115\pi\)
−0.999519 + 0.0310062i \(0.990129\pi\)
\(338\) 9.36994 + 16.2292i 0.509658 + 0.882753i
\(339\) 0 0
\(340\) 20.6835 35.8249i 1.12172 1.94288i
\(341\) 7.73018 0.418613
\(342\) 0 0
\(343\) 0.0695125 0.00375332
\(344\) −1.31028 + 2.26948i −0.0706458 + 0.122362i
\(345\) 0 0
\(346\) 20.2048 + 34.9958i 1.08622 + 1.88139i
\(347\) 32.4512i 1.74207i 0.491219 + 0.871036i \(0.336552\pi\)
−0.491219 + 0.871036i \(0.663448\pi\)
\(348\) 0 0
\(349\) −3.78030 6.54768i −0.202355 0.350489i 0.746932 0.664901i \(-0.231526\pi\)
−0.949287 + 0.314412i \(0.898193\pi\)
\(350\) −33.3894 −1.78474
\(351\) 0 0
\(352\) 34.2565 + 19.7780i 1.82587 + 1.05417i
\(353\) 4.45738 2.57347i 0.237242 0.136972i −0.376666 0.926349i \(-0.622930\pi\)
0.613909 + 0.789377i \(0.289596\pi\)
\(354\) 0 0
\(355\) −14.0661 + 8.12109i −0.746553 + 0.431023i
\(356\) 7.84049 0.415545
\(357\) 0 0
\(358\) −15.9971 + 27.7078i −0.845472 + 1.46440i
\(359\) −5.46349 + 3.15435i −0.288352 + 0.166480i −0.637198 0.770700i \(-0.719907\pi\)
0.348846 + 0.937180i \(0.386574\pi\)
\(360\) 0 0
\(361\) 18.2955 + 5.12599i 0.962919 + 0.269789i
\(362\) −8.29402 + 4.78856i −0.435924 + 0.251681i
\(363\) 0 0
\(364\) 20.3301i 1.06559i
\(365\) 9.97292 5.75787i 0.522006 0.301380i
\(366\) 0 0
\(367\) 7.42328 0.387492 0.193746 0.981052i \(-0.437936\pi\)
0.193746 + 0.981052i \(0.437936\pi\)
\(368\) 14.9570i 0.779686i
\(369\) 0 0
\(370\) 14.7829 25.6048i 0.768528 1.33113i
\(371\) 33.6060 1.74474
\(372\) 0 0
\(373\) 21.2019 + 12.2409i 1.09779 + 0.633811i 0.935641 0.352954i \(-0.114823\pi\)
0.162153 + 0.986766i \(0.448156\pi\)
\(374\) 28.5435 + 49.4389i 1.47595 + 2.55642i
\(375\) 0 0
\(376\) 4.61613i 0.238059i
\(377\) −2.88977 + 1.66841i −0.148831 + 0.0859274i
\(378\) 0 0
\(379\) 27.3088i 1.40276i −0.712788 0.701380i \(-0.752568\pi\)
0.712788 0.701380i \(-0.247432\pi\)
\(380\) 32.0661 13.0690i 1.64496 0.670428i
\(381\) 0 0
\(382\) 50.0810i 2.56237i
\(383\) 1.12796 0.0576362 0.0288181 0.999585i \(-0.490826\pi\)
0.0288181 + 0.999585i \(0.490826\pi\)
\(384\) 0 0
\(385\) 28.8284 49.9322i 1.46923 2.54478i
\(386\) −42.0398 24.2717i −2.13977 1.23540i
\(387\) 0 0
\(388\) 14.3395i 0.727976i
\(389\) 1.96440i 0.0995991i 0.998759 + 0.0497995i \(0.0158582\pi\)
−0.998759 + 0.0497995i \(0.984142\pi\)
\(390\) 0 0
\(391\) −16.5273 + 28.6261i −0.835821 + 1.44768i
\(392\) 4.69953 8.13982i 0.237362 0.411123i
\(393\) 0 0
\(394\) −3.91204 2.25862i −0.197086 0.113787i
\(395\) −15.8658 + 27.4803i −0.798293 + 1.38268i
\(396\) 0 0
\(397\) 16.7936 + 29.0874i 0.842848 + 1.45985i 0.887477 + 0.460851i \(0.152456\pi\)
−0.0446298 + 0.999004i \(0.514211\pi\)
\(398\) 14.6625 + 25.3963i 0.734966 + 1.27300i
\(399\) 0 0
\(400\) −4.89136 + 8.47208i −0.244568 + 0.423604i
\(401\) −6.15328 −0.307280 −0.153640 0.988127i \(-0.549100\pi\)
−0.153640 + 0.988127i \(0.549100\pi\)
\(402\) 0 0
\(403\) −3.14011 −0.156420
\(404\) −3.66856 + 2.11805i −0.182518 + 0.105377i
\(405\) 0 0
\(406\) −12.9608 −0.643231
\(407\) 11.5806 + 20.0581i 0.574028 + 0.994245i
\(408\) 0 0
\(409\) 3.24396 1.87290i 0.160404 0.0926091i −0.417649 0.908608i \(-0.637146\pi\)
0.578053 + 0.815999i \(0.303813\pi\)
\(410\) −11.4139 6.58984i −0.563694 0.325449i
\(411\) 0 0
\(412\) 27.6362i 1.36154i
\(413\) 13.4780 + 23.3445i 0.663208 + 1.14871i
\(414\) 0 0
\(415\) 7.09546 + 12.2897i 0.348302 + 0.603278i
\(416\) −13.9155 8.03410i −0.682262 0.393904i
\(417\) 0 0
\(418\) −6.50666 + 47.3408i −0.318251 + 2.31552i
\(419\) 3.16792 + 1.82900i 0.154763 + 0.0893526i 0.575382 0.817885i \(-0.304854\pi\)
−0.420618 + 0.907238i \(0.638187\pi\)
\(420\) 0 0
\(421\) −6.40584 3.69841i −0.312202 0.180250i 0.335710 0.941966i \(-0.391024\pi\)
−0.647911 + 0.761716i \(0.724357\pi\)
\(422\) 51.0115 + 29.4515i 2.48320 + 1.43368i
\(423\) 0 0
\(424\) −6.04996 + 10.4788i −0.293812 + 0.508898i
\(425\) −18.7231 + 10.8098i −0.908204 + 0.524352i
\(426\) 0 0
\(427\) −14.4901 25.0976i −0.701226 1.21456i
\(428\) 13.5547 + 23.4775i 0.655193 + 1.13483i
\(429\) 0 0
\(430\) 10.9683 6.33253i 0.528936 0.305382i
\(431\) −5.78011 + 10.0114i −0.278418 + 0.482234i −0.970992 0.239113i \(-0.923143\pi\)
0.692574 + 0.721347i \(0.256477\pi\)
\(432\) 0 0
\(433\) −2.95790 1.70774i −0.142148 0.0820689i 0.427240 0.904138i \(-0.359486\pi\)
−0.569387 + 0.822070i \(0.692819\pi\)
\(434\) −10.5627 6.09836i −0.507025 0.292731i
\(435\) 0 0
\(436\) 13.3928 + 7.73231i 0.641397 + 0.370311i
\(437\) −25.6226 + 10.4429i −1.22570 + 0.499552i
\(438\) 0 0
\(439\) 21.1340 + 12.2017i 1.00867 + 0.582355i 0.910802 0.412844i \(-0.135465\pi\)
0.0978674 + 0.995199i \(0.468798\pi\)
\(440\) 10.3797 + 17.9782i 0.494834 + 0.857078i
\(441\) 0 0
\(442\) −11.5948 20.0828i −0.551509 0.955241i
\(443\) 38.9864i 1.85230i 0.377157 + 0.926150i \(0.376902\pi\)
−0.377157 + 0.926150i \(0.623098\pi\)
\(444\) 0 0
\(445\) −7.82239 4.51626i −0.370817 0.214091i
\(446\) 4.30245 2.48402i 0.203727 0.117622i
\(447\) 0 0
\(448\) −22.3953 38.7897i −1.05808 1.83264i
\(449\) 26.0848 1.23102 0.615509 0.788130i \(-0.288950\pi\)
0.615509 + 0.788130i \(0.288950\pi\)
\(450\) 0 0
\(451\) 8.94139 5.16231i 0.421034 0.243084i
\(452\) −40.3544 −1.89811
\(453\) 0 0
\(454\) −25.2666 −1.18582
\(455\) −11.7105 + 20.2832i −0.548997 + 0.950891i
\(456\) 0 0
\(457\) 8.91236 + 15.4367i 0.416903 + 0.722096i 0.995626 0.0934274i \(-0.0297823\pi\)
−0.578724 + 0.815524i \(0.696449\pi\)
\(458\) 7.13318 + 12.3550i 0.333312 + 0.577313i
\(459\) 0 0
\(460\) −25.2131 + 43.6703i −1.17557 + 2.03614i
\(461\) −30.8452 17.8085i −1.43660 0.829424i −0.438992 0.898491i \(-0.644664\pi\)
−0.997612 + 0.0690673i \(0.977998\pi\)
\(462\) 0 0
\(463\) −5.50447 + 9.53403i −0.255815 + 0.443084i −0.965116 0.261821i \(-0.915677\pi\)
0.709302 + 0.704905i \(0.249010\pi\)
\(464\) −1.89868 + 3.28861i −0.0881440 + 0.152670i
\(465\) 0 0
\(466\) 7.79537i 0.361113i
\(467\) 23.7561i 1.09930i 0.835394 + 0.549651i \(0.185239\pi\)
−0.835394 + 0.549651i \(0.814761\pi\)
\(468\) 0 0
\(469\) −2.13091 1.23028i −0.0983963 0.0568091i
\(470\) 11.1547 19.3206i 0.514530 0.891192i
\(471\) 0 0
\(472\) −9.70556 −0.446734
\(473\) 9.92149i 0.456190i
\(474\) 0 0
\(475\) −17.9286 2.46415i −0.822618 0.113063i
\(476\) 51.1301i 2.34355i
\(477\) 0 0
\(478\) −28.2677 + 16.3203i −1.29293 + 0.746475i
\(479\) 41.4152i 1.89231i −0.323719 0.946153i \(-0.604933\pi\)
0.323719 0.946153i \(-0.395067\pi\)
\(480\) 0 0
\(481\) −4.70420 8.14792i −0.214493 0.371513i
\(482\) −45.6784 26.3724i −2.08059 1.20123i
\(483\) 0 0
\(484\) −39.3376 −1.78807
\(485\) 8.25978 14.3064i 0.375057 0.649618i
\(486\) 0 0
\(487\) 15.0755i 0.683134i 0.939857 + 0.341567i \(0.110958\pi\)
−0.939857 + 0.341567i \(0.889042\pi\)
\(488\) 10.4344 0.472343
\(489\) 0 0
\(490\) −39.3393 + 22.7126i −1.77717 + 1.02605i
\(491\) 42.3091i 1.90938i −0.297597 0.954691i \(-0.596185\pi\)
0.297597 0.954691i \(-0.403815\pi\)
\(492\) 0 0
\(493\) −7.26775 + 4.19603i −0.327323 + 0.188980i
\(494\) 2.64310 19.2306i 0.118919 0.865223i
\(495\) 0 0
\(496\) −3.09475 + 1.78675i −0.138958 + 0.0802276i
\(497\) −10.0378 + 17.3859i −0.450256 + 0.779866i
\(498\) 0 0
\(499\) 43.2590 1.93654 0.968268 0.249912i \(-0.0804018\pi\)
0.968268 + 0.249912i \(0.0804018\pi\)
\(500\) 5.83564 3.36921i 0.260978 0.150676i
\(501\) 0 0
\(502\) 8.02766 4.63477i 0.358292 0.206860i
\(503\) −5.29464 3.05686i −0.236077 0.136299i 0.377296 0.926093i \(-0.376854\pi\)
−0.613372 + 0.789794i \(0.710187\pi\)
\(504\) 0 0
\(505\) 4.88012 0.217163
\(506\) −34.7944 60.2657i −1.54680 2.67914i
\(507\) 0 0
\(508\) 5.14502i 0.228273i
\(509\) −13.8830 24.0460i −0.615353 1.06582i −0.990322 0.138785i \(-0.955680\pi\)
0.374970 0.927037i \(-0.377653\pi\)
\(510\) 0 0
\(511\) 7.11680 12.3267i 0.314829 0.545299i
\(512\) −24.6304 −1.08852
\(513\) 0 0
\(514\) 54.3147 2.39572
\(515\) −15.9189 + 27.5724i −0.701472 + 1.21498i
\(516\) 0 0
\(517\) 8.73834 + 15.1353i 0.384312 + 0.665648i
\(518\) 36.5438i 1.60564i
\(519\) 0 0
\(520\) −4.21640 7.30302i −0.184901 0.320258i
\(521\) 3.72919 0.163379 0.0816894 0.996658i \(-0.473968\pi\)
0.0816894 + 0.996658i \(0.473968\pi\)
\(522\) 0 0
\(523\) −38.8829 22.4491i −1.70023 0.981629i −0.945516 0.325575i \(-0.894442\pi\)
−0.754715 0.656053i \(-0.772225\pi\)
\(524\) −29.6516 + 17.1194i −1.29534 + 0.747864i
\(525\) 0 0
\(526\) 37.5953 21.7057i 1.63924 0.946413i
\(527\) −7.89736 −0.344015
\(528\) 0 0
\(529\) 8.64667 14.9765i 0.375942 0.651151i
\(530\) 50.6437 29.2391i 2.19982 1.27007i
\(531\) 0 0
\(532\) 26.2474 33.8064i 1.13797 1.46569i
\(533\) −3.63213 + 2.09701i −0.157325 + 0.0908315i
\(534\) 0 0
\(535\) 31.2311i 1.35024i
\(536\) 0.767239 0.442966i 0.0331397 0.0191332i
\(537\) 0 0
\(538\) 12.5678 0.541835
\(539\) 35.5849i 1.53275i
\(540\) 0 0
\(541\) −16.3200 + 28.2670i −0.701651 + 1.21530i 0.266236 + 0.963908i \(0.414220\pi\)
−0.967887 + 0.251387i \(0.919113\pi\)
\(542\) 32.4333 1.39313
\(543\) 0 0
\(544\) −34.9973 20.2057i −1.50050 0.866313i
\(545\) −8.90789 15.4289i −0.381572 0.660903i
\(546\) 0 0
\(547\) 10.2878i 0.439874i −0.975514 0.219937i \(-0.929415\pi\)
0.975514 0.219937i \(-0.0705851\pi\)
\(548\) −26.0525 + 15.0414i −1.11291 + 0.642539i
\(549\) 0 0
\(550\) 45.5151i 1.94077i
\(551\) −6.95933 0.956509i −0.296477 0.0407487i
\(552\) 0 0
\(553\) 39.2206i 1.66783i
\(554\) −34.5080 −1.46610
\(555\) 0 0
\(556\) −24.3199 + 42.1234i −1.03140 + 1.78643i
\(557\) −1.55437 0.897418i −0.0658609 0.0380248i 0.466708 0.884411i \(-0.345440\pi\)
−0.532569 + 0.846387i \(0.678773\pi\)
\(558\) 0 0
\(559\) 4.03025i 0.170462i
\(560\) 26.6535i 1.12632i
\(561\) 0 0
\(562\) 18.2774 31.6573i 0.770984 1.33538i
\(563\) −2.51042 + 4.34817i −0.105801 + 0.183254i −0.914065 0.405567i \(-0.867074\pi\)
0.808264 + 0.588820i \(0.200407\pi\)
\(564\) 0 0
\(565\) 40.2612 + 23.2448i 1.69380 + 0.977918i
\(566\) −16.6995 + 28.9244i −0.701932 + 1.21578i
\(567\) 0 0
\(568\) −3.61413 6.25985i −0.151645 0.262657i
\(569\) 10.4266 + 18.0595i 0.437107 + 0.757092i 0.997465 0.0711585i \(-0.0226696\pi\)
−0.560358 + 0.828251i \(0.689336\pi\)
\(570\) 0 0
\(571\) −18.2645 + 31.6350i −0.764345 + 1.32388i 0.176248 + 0.984346i \(0.443604\pi\)
−0.940592 + 0.339538i \(0.889729\pi\)
\(572\) 27.7132 1.15875
\(573\) 0 0
\(574\) −16.2903 −0.679942
\(575\) 22.8234 13.1771i 0.951800 0.549522i
\(576\) 0 0
\(577\) −13.8317 −0.575822 −0.287911 0.957657i \(-0.592961\pi\)
−0.287911 + 0.957657i \(0.592961\pi\)
\(578\) −10.8790 18.8430i −0.452508 0.783767i
\(579\) 0 0
\(580\) −11.0872 + 6.40123i −0.460373 + 0.265796i
\(581\) 15.1902 + 8.77008i 0.630197 + 0.363844i
\(582\) 0 0
\(583\) 45.8104i 1.89727i
\(584\) 2.56242 + 4.43824i 0.106034 + 0.183656i
\(585\) 0 0
\(586\) −32.5509 56.3798i −1.34467 2.32903i
\(587\) 3.05306 + 1.76269i 0.126013 + 0.0727539i 0.561682 0.827353i \(-0.310155\pi\)
−0.435668 + 0.900107i \(0.643488\pi\)
\(588\) 0 0
\(589\) −5.22161 4.05407i −0.215153 0.167045i
\(590\) 40.6221 + 23.4532i 1.67239 + 0.965553i
\(591\) 0 0
\(592\) −9.27247 5.35347i −0.381096 0.220026i
\(593\) −3.25664 1.88022i −0.133734 0.0772113i 0.431640 0.902046i \(-0.357935\pi\)
−0.565374 + 0.824834i \(0.691268\pi\)
\(594\) 0 0
\(595\) −29.4519 + 51.0121i −1.20741 + 2.09129i
\(596\) 16.5645 9.56351i 0.678508 0.391737i
\(597\) 0 0
\(598\) 14.1340 + 24.4808i 0.577983 + 1.00110i
\(599\) 1.34996 + 2.33820i 0.0551580 + 0.0955365i 0.892286 0.451471i \(-0.149100\pi\)
−0.837128 + 0.547007i \(0.815767\pi\)
\(600\) 0 0
\(601\) 3.51336 2.02844i 0.143313 0.0827417i −0.426629 0.904427i \(-0.640299\pi\)
0.569942 + 0.821685i \(0.306966\pi\)
\(602\) 7.82709 13.5569i 0.319008 0.552539i
\(603\) 0 0
\(604\) −5.01131 2.89328i −0.203907 0.117726i
\(605\) 39.2468 + 22.6592i 1.59561 + 0.921226i
\(606\) 0 0
\(607\) 4.17611 + 2.41108i 0.169503 + 0.0978627i 0.582352 0.812937i \(-0.302133\pi\)
−0.412848 + 0.910800i \(0.635466\pi\)
\(608\) −12.7672 31.3254i −0.517777 1.27041i
\(609\) 0 0
\(610\) −43.6727 25.2144i −1.76826 1.02090i
\(611\) −3.54964 6.14817i −0.143603 0.248728i
\(612\) 0 0
\(613\) 4.89396 + 8.47658i 0.197665 + 0.342366i 0.947771 0.318952i \(-0.103331\pi\)
−0.750106 + 0.661318i \(0.769997\pi\)
\(614\) 60.6907i 2.44928i
\(615\) 0 0
\(616\) 22.2213 + 12.8295i 0.895322 + 0.516914i
\(617\) −3.36966 + 1.94547i −0.135657 + 0.0783219i −0.566293 0.824204i \(-0.691623\pi\)
0.430635 + 0.902526i \(0.358290\pi\)
\(618\) 0 0
\(619\) −9.13436 15.8212i −0.367141 0.635907i 0.621976 0.783036i \(-0.286330\pi\)
−0.989117 + 0.147129i \(0.952997\pi\)
\(620\) −12.0478 −0.483850
\(621\) 0 0
\(622\) −35.5355 + 20.5164i −1.42484 + 0.822634i
\(623\) −11.1643 −0.447289
\(624\) 0 0
\(625\) −28.5217 −1.14087
\(626\) −12.0841 + 20.9302i −0.482976 + 0.836540i
\(627\) 0 0
\(628\) 17.8196 + 30.8645i 0.711079 + 1.23163i
\(629\) −11.8310 20.4919i −0.471734 0.817067i
\(630\) 0 0
\(631\) −7.88091 + 13.6501i −0.313734 + 0.543404i −0.979168 0.203054i \(-0.934913\pi\)
0.665433 + 0.746457i \(0.268247\pi\)
\(632\) −12.2296 7.06073i −0.486465 0.280861i
\(633\) 0 0
\(634\) 0.404417 0.700470i 0.0160614 0.0278192i
\(635\) −2.96362 + 5.13314i −0.117608 + 0.203703i
\(636\) 0 0
\(637\) 14.4551i 0.572732i
\(638\) 17.6676i 0.699466i
\(639\) 0 0
\(640\) −26.8352 15.4933i −1.06076 0.612427i
\(641\) 3.93679 6.81871i 0.155494 0.269323i −0.777745 0.628580i \(-0.783637\pi\)
0.933239 + 0.359257i \(0.116970\pi\)
\(642\) 0 0
\(643\) 28.1800 1.11131 0.555656 0.831413i \(-0.312467\pi\)
0.555656 + 0.831413i \(0.312467\pi\)
\(644\) 62.3274i 2.45604i
\(645\) 0 0
\(646\) 6.64738 48.3647i 0.261538 1.90288i
\(647\) 41.2832i 1.62301i 0.584346 + 0.811504i \(0.301351\pi\)
−0.584346 + 0.811504i \(0.698649\pi\)
\(648\) 0 0
\(649\) −31.8224 + 18.3726i −1.24914 + 0.721189i
\(650\) 18.4889i 0.725194i
\(651\) 0 0
\(652\) −3.94042 6.82501i −0.154319 0.267288i
\(653\) 30.9349 + 17.8602i 1.21057 + 0.698925i 0.962884 0.269914i \(-0.0869953\pi\)
0.247690 + 0.968839i \(0.420329\pi\)
\(654\) 0 0
\(655\) 39.4443 1.54121
\(656\) −2.38643 + 4.13342i −0.0931746 + 0.161383i
\(657\) 0 0
\(658\) 27.5748i 1.07498i
\(659\) −33.0448 −1.28724 −0.643621 0.765344i \(-0.722569\pi\)
−0.643621 + 0.765344i \(0.722569\pi\)
\(660\) 0 0
\(661\) 38.6931 22.3395i 1.50499 0.868905i 0.505004 0.863117i \(-0.331491\pi\)
0.999983 0.00578816i \(-0.00184244\pi\)
\(662\) 67.4161i 2.62020i
\(663\) 0 0
\(664\) −5.46928 + 3.15769i −0.212249 + 0.122542i
\(665\) −45.6599 + 18.6094i −1.77061 + 0.721642i
\(666\) 0 0
\(667\) 8.85934 5.11494i 0.343035 0.198051i
\(668\) 7.82916 13.5605i 0.302919 0.524672i
\(669\) 0 0
\(670\) −4.28166 −0.165415
\(671\) 34.2121 19.7524i 1.32074 0.762531i
\(672\) 0 0
\(673\) 15.8318 9.14047i 0.610269 0.352339i −0.162802 0.986659i \(-0.552053\pi\)
0.773071 + 0.634320i \(0.218720\pi\)
\(674\) 2.12043 + 1.22423i 0.0816760 + 0.0471556i
\(675\) 0 0
\(676\) 22.8798 0.879994
\(677\) −12.5993 21.8227i −0.484232 0.838715i 0.515604 0.856827i \(-0.327568\pi\)
−0.999836 + 0.0181123i \(0.994234\pi\)
\(678\) 0 0
\(679\) 20.4184i 0.783586i
\(680\) −10.6042 18.3670i −0.406653 0.704343i
\(681\) 0 0
\(682\) 8.31305 14.3986i 0.318323 0.551352i
\(683\) 13.1758 0.504159 0.252080 0.967706i \(-0.418886\pi\)
0.252080 + 0.967706i \(0.418886\pi\)
\(684\) 0 0
\(685\) 34.6565 1.32416
\(686\) 0.0747538 0.129477i 0.00285412 0.00494347i
\(687\) 0 0
\(688\) −2.29325 3.97203i −0.0874294 0.151432i
\(689\) 18.6089i 0.708941i
\(690\) 0 0
\(691\) 25.6729 + 44.4667i 0.976641 + 1.69159i 0.674409 + 0.738358i \(0.264399\pi\)
0.302233 + 0.953234i \(0.402268\pi\)
\(692\) 49.3369 1.87551
\(693\) 0 0
\(694\) 60.4452 + 34.8981i 2.29447 + 1.32471i
\(695\) 48.5276 28.0174i 1.84076 1.06276i
\(696\) 0 0
\(697\) −9.13477 + 5.27396i −0.346004 + 0.199766i
\(698\) −16.2614 −0.615502
\(699\) 0 0
\(700\) −20.3828 + 35.3041i −0.770398 + 1.33437i
\(701\) −25.4463 + 14.6914i −0.961092 + 0.554887i −0.896509 0.443025i \(-0.853905\pi\)
−0.0645833 + 0.997912i \(0.520572\pi\)
\(702\) 0 0
\(703\) 2.69695 19.6223i 0.101717 0.740071i
\(704\) 52.8766 30.5283i 1.99286 1.15058i
\(705\) 0 0
\(706\) 11.0700i 0.416626i
\(707\) 5.22378 3.01595i 0.196460 0.113426i
\(708\) 0 0
\(709\) 46.1959 1.73492 0.867462 0.497504i \(-0.165750\pi\)
0.867462 + 0.497504i \(0.165750\pi\)
\(710\) 34.9337i 1.31104i
\(711\) 0 0
\(712\) 2.00987 3.48119i 0.0753230 0.130463i
\(713\) 9.62684 0.360528
\(714\) 0 0
\(715\) −27.6493 15.9633i −1.03402 0.596994i
\(716\) 19.5311 + 33.8289i 0.729912 + 1.26424i
\(717\) 0 0
\(718\) 13.5688i 0.506382i
\(719\) 5.87831 3.39385i 0.219224 0.126569i −0.386367 0.922345i \(-0.626270\pi\)
0.605591 + 0.795776i \(0.292937\pi\)
\(720\) 0 0
\(721\) 39.3520i 1.46555i
\(722\) 29.2229 28.5655i 1.08756 1.06310i
\(723\) 0 0
\(724\) 11.6929i 0.434562i
\(725\) 6.69093 0.248495
\(726\) 0 0
\(727\) −1.33747 + 2.31657i −0.0496040 + 0.0859167i −0.889761 0.456426i \(-0.849129\pi\)
0.840157 + 0.542343i \(0.182463\pi\)
\(728\) −9.02663 5.21152i −0.334549 0.193152i
\(729\) 0 0
\(730\) 24.7681i 0.916707i
\(731\) 10.1361i 0.374896i
\(732\) 0 0
\(733\) 11.4965 19.9126i 0.424634 0.735488i −0.571752 0.820426i \(-0.693736\pi\)
0.996386 + 0.0849388i \(0.0270695\pi\)
\(734\) 7.98301 13.8270i 0.294658 0.510363i
\(735\) 0 0
\(736\) 42.6615 + 24.6307i 1.57253 + 0.907898i
\(737\) 1.67707 2.90477i 0.0617757 0.106999i
\(738\) 0 0
\(739\) −14.6521 25.3781i −0.538985 0.933550i −0.998959 0.0456175i \(-0.985474\pi\)
0.459974 0.887933i \(-0.347859\pi\)
\(740\) −18.0487 31.2613i −0.663485 1.14919i
\(741\) 0 0
\(742\) 36.1400 62.5962i 1.32674 2.29798i
\(743\) −13.5165 −0.495872 −0.247936 0.968776i \(-0.579752\pi\)
−0.247936 + 0.968776i \(0.579752\pi\)
\(744\) 0 0
\(745\) −22.0350 −0.807300
\(746\) 45.6011 26.3278i 1.66958 0.963930i
\(747\) 0 0
\(748\) 69.6986 2.54843
\(749\) −19.3010 33.4303i −0.705243 1.22152i
\(750\) 0 0
\(751\) −27.4491 + 15.8478i −1.00163 + 0.578293i −0.908731 0.417382i \(-0.862948\pi\)
−0.0929020 + 0.995675i \(0.529614\pi\)
\(752\) −6.99672 4.03956i −0.255144 0.147308i
\(753\) 0 0
\(754\) 7.17683i 0.261365i
\(755\) 3.33316 + 5.77321i 0.121306 + 0.210109i
\(756\) 0 0
\(757\) −2.36484 4.09603i −0.0859517 0.148873i 0.819845 0.572586i \(-0.194060\pi\)
−0.905796 + 0.423713i \(0.860726\pi\)
\(758\) −50.8668 29.3679i −1.84756 1.06669i
\(759\) 0 0
\(760\) 2.41729 17.5876i 0.0876843 0.637969i
\(761\) −0.577494 0.333416i −0.0209342 0.0120863i 0.489496 0.872005i \(-0.337181\pi\)
−0.510431 + 0.859919i \(0.670514\pi\)
\(762\) 0 0
\(763\) −19.0704 11.0103i −0.690393 0.398599i
\(764\) −52.9529 30.5724i −1.91577 1.10607i
\(765\) 0 0
\(766\) 1.21301 2.10100i 0.0438279 0.0759122i
\(767\) 12.9267 7.46324i 0.466757 0.269482i
\(768\) 0 0
\(769\) −11.9041 20.6185i −0.429273 0.743523i 0.567536 0.823349i \(-0.307897\pi\)
−0.996809 + 0.0798259i \(0.974564\pi\)
\(770\) −62.0041 107.394i −2.23447 3.87022i
\(771\) 0 0
\(772\) −51.3271 + 29.6337i −1.84730 + 1.06654i
\(773\) 5.80883 10.0612i 0.208929 0.361876i −0.742448 0.669903i \(-0.766336\pi\)
0.951377 + 0.308027i \(0.0996689\pi\)
\(774\) 0 0
\(775\) 5.45293 + 3.14825i 0.195875 + 0.113089i
\(776\) 6.36675 + 3.67585i 0.228553 + 0.131955i
\(777\) 0 0
\(778\) 3.65899 + 2.11252i 0.131181 + 0.0757375i
\(779\) −8.74712 1.20223i −0.313398 0.0430743i
\(780\) 0 0
\(781\) −23.6998 13.6831i −0.848046 0.489620i
\(782\) 35.5469 + 61.5691i 1.27116 + 2.20171i
\(783\) 0 0
\(784\) 8.22509 + 14.2463i 0.293753 + 0.508795i
\(785\) 41.0576i 1.46541i
\(786\) 0 0
\(787\) 8.15629 + 4.70904i 0.290740 + 0.167859i 0.638276 0.769808i \(-0.279648\pi\)
−0.347535 + 0.937667i \(0.612981\pi\)
\(788\) −4.77627 + 2.75758i −0.170148 + 0.0982348i
\(789\) 0 0
\(790\) 34.1241 + 59.1047i 1.21408 + 2.10285i
\(791\) 57.4619 2.04311
\(792\) 0 0
\(793\) −13.8975 + 8.02370i −0.493513 + 0.284930i
\(794\) 72.2395 2.56368
\(795\) 0 0
\(796\) 35.8035 1.26902
\(797\) −22.1959 + 38.4444i −0.786218 + 1.36177i 0.142051 + 0.989859i \(0.454630\pi\)
−0.928269 + 0.371910i \(0.878703\pi\)
\(798\) 0 0
\(799\) −8.92733 15.4626i −0.315826 0.547027i
\(800\) 16.1099 + 27.9031i 0.569569 + 0.986523i
\(801\) 0 0
\(802\) −6.61724 + 11.4614i −0.233663 + 0.404716i
\(803\) 16.8032 + 9.70134i 0.592972 + 0.342353i
\(804\) 0 0
\(805\) 35.9016 62.1835i 1.26537 2.19168i
\(806\) −3.37688 + 5.84893i −0.118946 + 0.206020i
\(807\) 0 0
\(808\) 2.17180i 0.0764036i
\(809\) 4.81244i 0.169196i −0.996415 0.0845982i \(-0.973039\pi\)
0.996415 0.0845982i \(-0.0269607\pi\)
\(810\) 0 0
\(811\) −17.1253 9.88731i −0.601351 0.347190i 0.168222 0.985749i \(-0.446198\pi\)
−0.769573 + 0.638559i \(0.779531\pi\)
\(812\) −7.91200 + 13.7040i −0.277657 + 0.480916i
\(813\) 0 0
\(814\) 49.8151 1.74602
\(815\) 9.07901i 0.318024i
\(816\) 0 0
\(817\) 5.20329 6.70180i 0.182040 0.234466i
\(818\) 8.05649i 0.281689i
\(819\) 0 0
\(820\) −13.9355 + 8.04565i −0.486648 + 0.280966i
\(821\) 6.25639i 0.218350i 0.994023 + 0.109175i \(0.0348208\pi\)
−0.994023 + 0.109175i \(0.965179\pi\)
\(822\) 0 0
\(823\) −7.11827 12.3292i −0.248127 0.429769i 0.714879 0.699248i \(-0.246482\pi\)
−0.963006 + 0.269479i \(0.913148\pi\)
\(824\) −12.2705 7.08439i −0.427464 0.246796i
\(825\) 0 0
\(826\) 57.9769 2.01728
\(827\) −6.98747 + 12.1027i −0.242978 + 0.420851i −0.961561 0.274590i \(-0.911458\pi\)
0.718583 + 0.695441i \(0.244791\pi\)
\(828\) 0 0
\(829\) 6.20264i 0.215427i −0.994182 0.107713i \(-0.965647\pi\)
0.994182 0.107713i \(-0.0343529\pi\)
\(830\) 30.5219 1.05943
\(831\) 0 0
\(832\) −21.4793 + 12.4011i −0.744659 + 0.429929i
\(833\) 36.3545i 1.25961i
\(834\) 0 0
\(835\) −15.6222 + 9.01946i −0.540628 + 0.312131i
\(836\) 46.0836 + 35.7794i 1.59383 + 1.23746i
\(837\) 0 0
\(838\) 6.81358 3.93382i 0.235371 0.135892i
\(839\) 11.2033 19.4047i 0.386781 0.669925i −0.605233 0.796048i \(-0.706920\pi\)
0.992015 + 0.126123i \(0.0402535\pi\)
\(840\) 0 0
\(841\) −26.4028 −0.910441
\(842\) −13.7777 + 7.95456i −0.474811 + 0.274132i
\(843\) 0 0
\(844\) 62.2808 35.9578i 2.14379 1.23772i
\(845\) −22.8270 13.1792i −0.785273 0.453378i
\(846\) 0 0
\(847\) 56.0141 1.92467
\(848\) −10.5886 18.3400i −0.363614 0.629798i
\(849\) 0 0
\(850\) 46.4994i 1.59492i
\(851\) 14.4220 + 24.9796i 0.494379 + 0.856289i
\(852\) 0 0
\(853\) −6.00853 + 10.4071i −0.205728 + 0.356332i −0.950365 0.311139i \(-0.899290\pi\)
0.744636 + 0.667471i \(0.232623\pi\)
\(854\) −62.3308 −2.13291
\(855\) 0 0
\(856\) 13.8987 0.475049
\(857\) −18.0738 + 31.3047i −0.617389 + 1.06935i 0.372571 + 0.928004i \(0.378476\pi\)
−0.989960 + 0.141346i \(0.954857\pi\)
\(858\) 0 0
\(859\) −17.8252 30.8741i −0.608187 1.05341i −0.991539 0.129809i \(-0.958564\pi\)
0.383352 0.923602i \(-0.374770\pi\)
\(860\) 15.4630i 0.527283i
\(861\) 0 0
\(862\) 12.4319 + 21.5326i 0.423431 + 0.733404i
\(863\) −21.0718 −0.717294 −0.358647 0.933473i \(-0.616762\pi\)
−0.358647 + 0.933473i \(0.616762\pi\)
\(864\) 0 0
\(865\) −49.2230 28.4189i −1.67363 0.966271i
\(866\) −6.36186 + 3.67302i −0.216185 + 0.124814i
\(867\) 0 0
\(868\) −12.8961 + 7.44560i −0.437724 + 0.252720i
\(869\) −53.4640 −1.81364
\(870\) 0 0
\(871\) −0.681251 + 1.17996i −0.0230833 + 0.0399815i
\(872\) 6.86633 3.96428i 0.232523 0.134247i
\(873\) 0 0
\(874\) −8.10312 + 58.9563i −0.274092 + 1.99423i
\(875\) −8.30955 + 4.79752i −0.280914 + 0.162186i
\(876\) 0 0
\(877\) 51.2369i 1.73015i 0.501645 + 0.865073i \(0.332728\pi\)
−0.501645 + 0.865073i \(0.667272\pi\)
\(878\) 45.4550 26.2434i 1.53403 0.885673i
\(879\) 0 0
\(880\) −36.3331 −1.22479
\(881\) 11.1100i 0.374304i 0.982331 + 0.187152i \(0.0599257\pi\)
−0.982331 + 0.187152i \(0.940074\pi\)
\(882\) 0 0
\(883\) 15.1216 26.1914i 0.508883 0.881411i −0.491064 0.871123i \(-0.663392\pi\)
0.999947 0.0102875i \(-0.00327469\pi\)
\(884\) −28.3126 −0.952256
\(885\) 0 0
\(886\) 72.6180 + 41.9260i 2.43965 + 1.40853i
\(887\) −0.648824 1.12380i −0.0217854 0.0377334i 0.854927 0.518748i \(-0.173602\pi\)
−0.876713 + 0.481015i \(0.840268\pi\)
\(888\) 0 0
\(889\) 7.32615i 0.245711i
\(890\) −16.8244 + 9.71358i −0.563956 + 0.325600i
\(891\) 0 0
\(892\) 6.06557i 0.203090i
\(893\) 2.03503 14.8064i 0.0680998 0.495478i
\(894\) 0 0
\(895\) 45.0010i 1.50422i
\(896\) −38.2999 −1.27951
\(897\) 0 0
\(898\) 28.0516 48.5869i 0.936096 1.62137i
\(899\) 2.11666 + 1.22206i 0.0705947 + 0.0407579i
\(900\) 0 0
\(901\) 46.8011i 1.55917i
\(902\) 22.2062i 0.739387i
\(903\) 0 0
\(904\) −10.3446 + 17.9174i −0.344058 + 0.595925i
\(905\) 6.73529 11.6659i 0.223889 0.387787i
\(906\) 0 0
\(907\) −31.1588 17.9895i −1.03461 0.597333i −0.116309 0.993213i \(-0.537106\pi\)
−0.918302 + 0.395880i \(0.870440\pi\)
\(908\) −15.4242 + 26.7155i −0.511871 + 0.886586i
\(909\) 0 0
\(910\) 25.1870 + 43.6252i 0.834941 + 1.44616i
\(911\) 6.18966 + 10.7208i 0.205073 + 0.355196i 0.950156 0.311775i \(-0.100924\pi\)
−0.745083 + 0.666972i \(0.767590\pi\)
\(912\) 0 0
\(913\) −11.9550 + 20.7067i −0.395654 + 0.685292i
\(914\) 38.3374 1.26809
\(915\) 0 0
\(916\) 17.4180 0.575508
\(917\) 42.2219 24.3768i 1.39429 0.804993i
\(918\) 0 0
\(919\) −10.1943 −0.336279 −0.168139 0.985763i \(-0.553776\pi\)
−0.168139 + 0.985763i \(0.553776\pi\)
\(920\) 12.9265 + 22.3893i 0.426173 + 0.738154i
\(921\) 0 0
\(922\) −66.3419 + 38.3025i −2.18485 + 1.26143i
\(923\) 9.62722 + 5.55828i 0.316884 + 0.182953i
\(924\) 0 0
\(925\) 18.8656i 0.620296i
\(926\) 11.8390 + 20.5058i 0.389055 + 0.673863i
\(927\) 0 0
\(928\) 6.25336 + 10.8311i 0.205277 + 0.355550i
\(929\) −0.786138 0.453877i −0.0257924 0.0148912i 0.487048 0.873375i \(-0.338074\pi\)
−0.512841 + 0.858484i \(0.671407\pi\)
\(930\) 0 0
\(931\) −18.6624 + 24.0370i −0.611635 + 0.787781i
\(932\) −8.24239 4.75875i −0.269989 0.155878i
\(933\) 0 0
\(934\) 44.2493 + 25.5474i 1.44788 + 0.835935i
\(935\) −69.5377 40.1476i −2.27413 1.31297i
\(936\) 0 0
\(937\) −23.0292 + 39.8878i −0.752332 + 1.30308i 0.194358 + 0.980931i \(0.437738\pi\)
−0.946690 + 0.322146i \(0.895596\pi\)
\(938\) −4.58317 + 2.64609i −0.149646 + 0.0863980i
\(939\) 0 0
\(940\) −13.6190 23.5888i −0.444203 0.769383i
\(941\) −26.4298 45.7778i −0.861587 1.49231i −0.870396 0.492352i \(-0.836137\pi\)
0.00880912 0.999961i \(-0.497196\pi\)
\(942\) 0 0
\(943\) 11.1352 6.42893i 0.362613 0.209355i
\(944\) 8.49330 14.7108i 0.276433 0.478797i
\(945\) 0 0
\(946\) 18.4803 + 10.6696i 0.600845 + 0.346898i
\(947\) −5.73555 3.31142i −0.186380 0.107607i 0.403907 0.914800i \(-0.367652\pi\)
−0.590287 + 0.807193i \(0.700985\pi\)
\(948\) 0 0
\(949\) −6.82571 3.94083i −0.221572 0.127925i
\(950\) −23.8702 + 30.7447i −0.774453 + 0.997488i
\(951\) 0 0
\(952\) −22.7019 13.1069i −0.735773 0.424799i
\(953\) 7.59011 + 13.1465i 0.245868 + 0.425855i 0.962375 0.271724i \(-0.0875938\pi\)
−0.716508 + 0.697579i \(0.754260\pi\)
\(954\) 0 0
\(955\) 35.2204 + 61.0035i 1.13971 + 1.97403i
\(956\) 39.8516i 1.28889i
\(957\) 0 0
\(958\) −77.1419 44.5379i −2.49234 1.43895i
\(959\) 37.0970 21.4180i 1.19793 0.691622i
\(960\) 0 0
\(961\) −14.3500 24.8549i −0.462903 0.801771i
\(962\) −20.2356 −0.652422
\(963\) 0 0
\(964\) −55.7696 + 32.1986i −1.79622 + 1.03705i
\(965\) 68.2781 2.19795
\(966\) 0 0
\(967\) 29.5659 0.950775 0.475387 0.879777i \(-0.342308\pi\)
0.475387 + 0.879777i \(0.342308\pi\)
\(968\) −10.0840 + 17.4660i −0.324112 + 0.561378i
\(969\) 0 0
\(970\) −17.7652 30.7702i −0.570405 0.987970i
\(971\) 17.8609 + 30.9360i 0.573184 + 0.992784i 0.996236 + 0.0866789i \(0.0276254\pi\)
−0.423052 + 0.906105i \(0.639041\pi\)
\(972\) 0 0
\(973\) 34.6299 59.9808i 1.11018 1.92290i
\(974\) 28.0803 + 16.2122i 0.899750 + 0.519471i
\(975\) 0 0
\(976\) −9.13111 + 15.8155i −0.292280 + 0.506243i
\(977\) −0.303010 + 0.524829i −0.00969416 + 0.0167908i −0.870832 0.491581i \(-0.836419\pi\)
0.861138 + 0.508372i \(0.169752\pi\)
\(978\) 0 0
\(979\) 15.2187i 0.486393i
\(980\) 55.4603i 1.77161i
\(981\) 0 0
\(982\) −78.8070 45.4993i −2.51483 1.45194i
\(983\) 14.1525 24.5129i 0.451395 0.781839i −0.547078 0.837082i \(-0.684260\pi\)
0.998473 + 0.0552427i \(0.0175933\pi\)
\(984\) 0 0
\(985\) 6.35366 0.202444
\(986\) 18.0497i 0.574819i
\(987\) 0 0
\(988\) −18.7198 14.5341i −0.595557 0.462392i
\(989\) 12.3558i 0.392892i
\(990\) 0 0
\(991\) 49.4706 28.5619i 1.57149 0.907298i 0.575498 0.817803i \(-0.304808\pi\)
0.995987 0.0894946i \(-0.0285252\pi\)
\(992\) 11.7695i 0.373681i
\(993\) 0 0
\(994\) 21.5893 + 37.3937i 0.684770 + 1.18606i
\(995\) −35.7208 20.6234i −1.13243 0.653806i
\(996\) 0 0
\(997\) −36.7425 −1.16365 −0.581823 0.813316i \(-0.697660\pi\)
−0.581823 + 0.813316i \(0.697660\pi\)
\(998\) 46.5207 80.5763i 1.47259 2.55060i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.k.a.449.16 36
3.2 odd 2 171.2.k.a.50.3 36
9.2 odd 6 513.2.t.a.278.16 36
9.7 even 3 171.2.t.a.164.3 yes 36
19.8 odd 6 513.2.t.a.179.16 36
57.8 even 6 171.2.t.a.122.3 yes 36
171.65 even 6 inner 513.2.k.a.8.16 36
171.160 odd 6 171.2.k.a.65.3 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.3 36 3.2 odd 2
171.2.k.a.65.3 yes 36 171.160 odd 6
171.2.t.a.122.3 yes 36 57.8 even 6
171.2.t.a.164.3 yes 36 9.7 even 3
513.2.k.a.8.16 36 171.65 even 6 inner
513.2.k.a.449.16 36 1.1 even 1 trivial
513.2.t.a.179.16 36 19.8 odd 6
513.2.t.a.278.16 36 9.2 odd 6