Properties

Label 513.2.t.a.179.11
Level $513$
Weight $2$
Character 513.179
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(179,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.11
Character \(\chi\) \(=\) 513.179
Dual form 513.2.t.a.278.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.691402 q^{2} -1.52196 q^{4} +(0.0926192 - 0.0534737i) q^{5} +(1.77987 + 3.08283i) q^{7} -2.43509 q^{8} +(0.0640371 - 0.0369718i) q^{10} +(-3.79750 + 2.19249i) q^{11} +0.416721i q^{13} +(1.23061 + 2.13148i) q^{14} +1.36030 q^{16} +(3.21900 + 1.85849i) q^{17} +(-4.10727 + 1.45956i) q^{19} +(-0.140963 + 0.0813850i) q^{20} +(-2.62560 + 1.51589i) q^{22} +5.41300i q^{23} +(-2.49428 + 4.32022i) q^{25} +0.288122i q^{26} +(-2.70890 - 4.69195i) q^{28} +(2.75398 - 4.77004i) q^{29} +(3.01840 + 1.74267i) q^{31} +5.81070 q^{32} +(2.22562 + 1.28496i) q^{34} +(0.329701 + 0.190353i) q^{35} -1.84627i q^{37} +(-2.83978 + 1.00914i) q^{38} +(-0.225536 + 0.130213i) q^{40} +(4.98642 + 8.63673i) q^{41} -10.8041 q^{43} +(5.77965 - 3.33688i) q^{44} +3.74256i q^{46} +(-0.217456 - 0.125549i) q^{47} +(-2.83590 + 4.91192i) q^{49} +(-1.72455 + 2.98701i) q^{50} -0.634234i q^{52} +(-1.44192 - 2.49748i) q^{53} +(-0.234481 + 0.406133i) q^{55} +(-4.33416 - 7.50698i) q^{56} +(1.90411 - 3.29802i) q^{58} +(1.18744 + 2.05671i) q^{59} +(6.42834 - 11.1342i) q^{61} +(2.08693 + 1.20489i) q^{62} +1.29694 q^{64} +(0.0222836 + 0.0385964i) q^{65} -10.5987i q^{67} +(-4.89919 - 2.82855i) q^{68} +(0.227956 + 0.131610i) q^{70} +(5.43426 - 9.41241i) q^{71} +(2.47284 - 4.28309i) q^{73} -1.27652i q^{74} +(6.25111 - 2.22140i) q^{76} +(-13.5181 - 7.80470i) q^{77} +1.09434i q^{79} +(0.125990 - 0.0727401i) q^{80} +(3.44762 + 5.97145i) q^{82} +(-7.21082 + 4.16317i) q^{83} +0.397521 q^{85} -7.46996 q^{86} +(9.24726 - 5.33891i) q^{88} +(-2.61637 - 4.53168i) q^{89} +(-1.28468 + 0.741711i) q^{91} -8.23838i q^{92} +(-0.150350 - 0.0868045i) q^{94} +(-0.302364 + 0.354814i) q^{95} +13.1177i q^{97} +(-1.96075 + 3.39611i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 30 q^{4} + 3 q^{5} - q^{7} + 12 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{14} + 18 q^{16} - 27 q^{17} + q^{19} - 9 q^{20} - 6 q^{22} + 11 q^{25} + 2 q^{28} + 12 q^{29} - 12 q^{31} + 30 q^{32}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.691402 0.488895 0.244448 0.969662i \(-0.421393\pi\)
0.244448 + 0.969662i \(0.421393\pi\)
\(3\) 0 0
\(4\) −1.52196 −0.760981
\(5\) 0.0926192 0.0534737i 0.0414206 0.0239142i −0.479147 0.877735i \(-0.659054\pi\)
0.520567 + 0.853821i \(0.325720\pi\)
\(6\) 0 0
\(7\) 1.77987 + 3.08283i 0.672729 + 1.16520i 0.977127 + 0.212656i \(0.0682113\pi\)
−0.304398 + 0.952545i \(0.598455\pi\)
\(8\) −2.43509 −0.860936
\(9\) 0 0
\(10\) 0.0640371 0.0369718i 0.0202503 0.0116915i
\(11\) −3.79750 + 2.19249i −1.14499 + 0.661060i −0.947661 0.319278i \(-0.896560\pi\)
−0.197328 + 0.980338i \(0.563226\pi\)
\(12\) 0 0
\(13\) 0.416721i 0.115578i 0.998329 + 0.0577888i \(0.0184050\pi\)
−0.998329 + 0.0577888i \(0.981595\pi\)
\(14\) 1.23061 + 2.13148i 0.328894 + 0.569661i
\(15\) 0 0
\(16\) 1.36030 0.340074
\(17\) 3.21900 + 1.85849i 0.780721 + 0.450749i 0.836686 0.547683i \(-0.184490\pi\)
−0.0559647 + 0.998433i \(0.517823\pi\)
\(18\) 0 0
\(19\) −4.10727 + 1.45956i −0.942273 + 0.334846i
\(20\) −0.140963 + 0.0813850i −0.0315203 + 0.0181982i
\(21\) 0 0
\(22\) −2.62560 + 1.51589i −0.559780 + 0.323189i
\(23\) 5.41300i 1.12869i 0.825540 + 0.564344i \(0.190871\pi\)
−0.825540 + 0.564344i \(0.809129\pi\)
\(24\) 0 0
\(25\) −2.49428 + 4.32022i −0.498856 + 0.864044i
\(26\) 0.288122i 0.0565054i
\(27\) 0 0
\(28\) −2.70890 4.69195i −0.511934 0.886696i
\(29\) 2.75398 4.77004i 0.511402 0.885774i −0.488511 0.872558i \(-0.662460\pi\)
0.999913 0.0132161i \(-0.00420693\pi\)
\(30\) 0 0
\(31\) 3.01840 + 1.74267i 0.542120 + 0.312993i 0.745938 0.666016i \(-0.232002\pi\)
−0.203817 + 0.979009i \(0.565335\pi\)
\(32\) 5.81070 1.02720
\(33\) 0 0
\(34\) 2.22562 + 1.28496i 0.381691 + 0.220369i
\(35\) 0.329701 + 0.190353i 0.0557296 + 0.0321755i
\(36\) 0 0
\(37\) 1.84627i 0.303525i −0.988417 0.151763i \(-0.951505\pi\)
0.988417 0.151763i \(-0.0484949\pi\)
\(38\) −2.83978 + 1.00914i −0.460673 + 0.163705i
\(39\) 0 0
\(40\) −0.225536 + 0.130213i −0.0356604 + 0.0205886i
\(41\) 4.98642 + 8.63673i 0.778747 + 1.34883i 0.932664 + 0.360746i \(0.117478\pi\)
−0.153917 + 0.988084i \(0.549189\pi\)
\(42\) 0 0
\(43\) −10.8041 −1.64761 −0.823803 0.566877i \(-0.808152\pi\)
−0.823803 + 0.566877i \(0.808152\pi\)
\(44\) 5.77965 3.33688i 0.871315 0.503054i
\(45\) 0 0
\(46\) 3.74256i 0.551810i
\(47\) −0.217456 0.125549i −0.0317193 0.0183131i 0.484057 0.875037i \(-0.339163\pi\)
−0.515776 + 0.856724i \(0.672496\pi\)
\(48\) 0 0
\(49\) −2.83590 + 4.91192i −0.405128 + 0.701703i
\(50\) −1.72455 + 2.98701i −0.243888 + 0.422427i
\(51\) 0 0
\(52\) 0.634234i 0.0879524i
\(53\) −1.44192 2.49748i −0.198063 0.343055i 0.749837 0.661622i \(-0.230132\pi\)
−0.947900 + 0.318567i \(0.896798\pi\)
\(54\) 0 0
\(55\) −0.234481 + 0.406133i −0.0316174 + 0.0547629i
\(56\) −4.33416 7.50698i −0.579176 1.00316i
\(57\) 0 0
\(58\) 1.90411 3.29802i 0.250022 0.433051i
\(59\) 1.18744 + 2.05671i 0.154592 + 0.267761i 0.932910 0.360109i \(-0.117260\pi\)
−0.778318 + 0.627870i \(0.783927\pi\)
\(60\) 0 0
\(61\) 6.42834 11.1342i 0.823064 1.42559i −0.0803253 0.996769i \(-0.525596\pi\)
0.903390 0.428821i \(-0.141071\pi\)
\(62\) 2.08693 + 1.20489i 0.265040 + 0.153021i
\(63\) 0 0
\(64\) 1.29694 0.162117
\(65\) 0.0222836 + 0.0385964i 0.00276394 + 0.00478729i
\(66\) 0 0
\(67\) 10.5987i 1.29484i −0.762134 0.647419i \(-0.775848\pi\)
0.762134 0.647419i \(-0.224152\pi\)
\(68\) −4.89919 2.82855i −0.594114 0.343012i
\(69\) 0 0
\(70\) 0.227956 + 0.131610i 0.0272459 + 0.0157305i
\(71\) 5.43426 9.41241i 0.644928 1.11705i −0.339390 0.940646i \(-0.610221\pi\)
0.984318 0.176402i \(-0.0564459\pi\)
\(72\) 0 0
\(73\) 2.47284 4.28309i 0.289424 0.501297i −0.684248 0.729249i \(-0.739870\pi\)
0.973672 + 0.227952i \(0.0732029\pi\)
\(74\) 1.27652i 0.148392i
\(75\) 0 0
\(76\) 6.25111 2.22140i 0.717052 0.254812i
\(77\) −13.5181 7.80470i −1.54053 0.889428i
\(78\) 0 0
\(79\) 1.09434i 0.123123i 0.998103 + 0.0615614i \(0.0196080\pi\)
−0.998103 + 0.0615614i \(0.980392\pi\)
\(80\) 0.125990 0.0727401i 0.0140861 0.00813259i
\(81\) 0 0
\(82\) 3.44762 + 5.97145i 0.380726 + 0.659437i
\(83\) −7.21082 + 4.16317i −0.791490 + 0.456967i −0.840487 0.541832i \(-0.817731\pi\)
0.0489969 + 0.998799i \(0.484398\pi\)
\(84\) 0 0
\(85\) 0.397521 0.0431172
\(86\) −7.46996 −0.805507
\(87\) 0 0
\(88\) 9.24726 5.33891i 0.985761 0.569130i
\(89\) −2.61637 4.53168i −0.277335 0.480358i 0.693387 0.720565i \(-0.256118\pi\)
−0.970721 + 0.240208i \(0.922784\pi\)
\(90\) 0 0
\(91\) −1.28468 + 0.741711i −0.134671 + 0.0777524i
\(92\) 8.23838i 0.858910i
\(93\) 0 0
\(94\) −0.150350 0.0868045i −0.0155074 0.00895320i
\(95\) −0.302364 + 0.354814i −0.0310219 + 0.0364032i
\(96\) 0 0
\(97\) 13.1177i 1.33190i 0.745998 + 0.665948i \(0.231973\pi\)
−0.745998 + 0.665948i \(0.768027\pi\)
\(98\) −1.96075 + 3.39611i −0.198065 + 0.343059i
\(99\) 0 0
\(100\) 3.79620 6.57522i 0.379620 0.657522i
\(101\) 1.53229 + 0.884667i 0.152468 + 0.0880276i 0.574293 0.818650i \(-0.305277\pi\)
−0.421825 + 0.906677i \(0.638610\pi\)
\(102\) 0 0
\(103\) −1.56658 0.904463i −0.154359 0.0891194i 0.420831 0.907139i \(-0.361739\pi\)
−0.575190 + 0.818020i \(0.695072\pi\)
\(104\) 1.01475i 0.0995049i
\(105\) 0 0
\(106\) −0.996947 1.72676i −0.0968320 0.167718i
\(107\) 13.6046 1.31520 0.657601 0.753366i \(-0.271571\pi\)
0.657601 + 0.753366i \(0.271571\pi\)
\(108\) 0 0
\(109\) 10.9897 + 6.34490i 1.05262 + 0.607731i 0.923382 0.383883i \(-0.125413\pi\)
0.129239 + 0.991613i \(0.458747\pi\)
\(110\) −0.162121 + 0.280801i −0.0154576 + 0.0267733i
\(111\) 0 0
\(112\) 2.42115 + 4.19356i 0.228778 + 0.396255i
\(113\) 2.83696 4.91376i 0.266879 0.462247i −0.701175 0.712989i \(-0.747341\pi\)
0.968054 + 0.250741i \(0.0806744\pi\)
\(114\) 0 0
\(115\) 0.289453 + 0.501347i 0.0269916 + 0.0467509i
\(116\) −4.19146 + 7.25982i −0.389167 + 0.674057i
\(117\) 0 0
\(118\) 0.821001 + 1.42202i 0.0755793 + 0.130907i
\(119\) 13.2315i 1.21293i
\(120\) 0 0
\(121\) 4.11399 7.12565i 0.374000 0.647786i
\(122\) 4.44457 7.69822i 0.402392 0.696964i
\(123\) 0 0
\(124\) −4.59389 2.65228i −0.412543 0.238182i
\(125\) 1.06825i 0.0955473i
\(126\) 0 0
\(127\) −14.2508 + 8.22768i −1.26455 + 0.730089i −0.973951 0.226756i \(-0.927188\pi\)
−0.290599 + 0.956845i \(0.593855\pi\)
\(128\) −10.7247 −0.947938
\(129\) 0 0
\(130\) 0.0154069 + 0.0266856i 0.00135128 + 0.00234048i
\(131\) 8.36952 4.83215i 0.731249 0.422187i −0.0876301 0.996153i \(-0.527929\pi\)
0.818879 + 0.573966i \(0.194596\pi\)
\(132\) 0 0
\(133\) −11.8100 10.0642i −1.02406 0.872676i
\(134\) 7.32797i 0.633040i
\(135\) 0 0
\(136\) −7.83855 4.52559i −0.672150 0.388066i
\(137\) 10.9082 + 6.29788i 0.931954 + 0.538064i 0.887429 0.460944i \(-0.152489\pi\)
0.0445252 + 0.999008i \(0.485823\pi\)
\(138\) 0 0
\(139\) 10.1589 0.861666 0.430833 0.902432i \(-0.358220\pi\)
0.430833 + 0.902432i \(0.358220\pi\)
\(140\) −0.501792 0.289710i −0.0424092 0.0244850i
\(141\) 0 0
\(142\) 3.75726 6.50776i 0.315302 0.546119i
\(143\) −0.913655 1.58250i −0.0764037 0.132335i
\(144\) 0 0
\(145\) 0.589063i 0.0489190i
\(146\) 1.70973 2.96134i 0.141498 0.245082i
\(147\) 0 0
\(148\) 2.80996i 0.230977i
\(149\) −14.8285 + 8.56125i −1.21480 + 0.701365i −0.963801 0.266622i \(-0.914092\pi\)
−0.250999 + 0.967987i \(0.580759\pi\)
\(150\) 0 0
\(151\) −0.724901 + 0.418522i −0.0589916 + 0.0340588i −0.529206 0.848494i \(-0.677510\pi\)
0.470214 + 0.882552i \(0.344177\pi\)
\(152\) 10.0016 3.55417i 0.811236 0.288281i
\(153\) 0 0
\(154\) −9.34647 5.39619i −0.753160 0.434837i
\(155\) 0.372749 0.0299399
\(156\) 0 0
\(157\) 7.46395 + 12.9279i 0.595688 + 1.03176i 0.993449 + 0.114273i \(0.0364539\pi\)
−0.397761 + 0.917489i \(0.630213\pi\)
\(158\) 0.756629i 0.0601942i
\(159\) 0 0
\(160\) 0.538182 0.310720i 0.0425470 0.0245645i
\(161\) −16.6874 + 9.63445i −1.31515 + 0.759301i
\(162\) 0 0
\(163\) 3.88920 0.304626 0.152313 0.988332i \(-0.451328\pi\)
0.152313 + 0.988332i \(0.451328\pi\)
\(164\) −7.58914 13.1448i −0.592612 1.02643i
\(165\) 0 0
\(166\) −4.98558 + 2.87842i −0.386956 + 0.223409i
\(167\) 9.57355 0.740823 0.370412 0.928868i \(-0.379217\pi\)
0.370412 + 0.928868i \(0.379217\pi\)
\(168\) 0 0
\(169\) 12.8263 0.986642
\(170\) 0.274847 0.0210798
\(171\) 0 0
\(172\) 16.4434 1.25380
\(173\) −4.48553 −0.341028 −0.170514 0.985355i \(-0.554543\pi\)
−0.170514 + 0.985355i \(0.554543\pi\)
\(174\) 0 0
\(175\) −17.7580 −1.34238
\(176\) −5.16572 + 2.98243i −0.389381 + 0.224809i
\(177\) 0 0
\(178\) −1.80896 3.13322i −0.135588 0.234845i
\(179\) 5.02157 0.375330 0.187665 0.982233i \(-0.439908\pi\)
0.187665 + 0.982233i \(0.439908\pi\)
\(180\) 0 0
\(181\) 10.9563 6.32561i 0.814374 0.470179i −0.0340985 0.999418i \(-0.510856\pi\)
0.848473 + 0.529239i \(0.177523\pi\)
\(182\) −0.888231 + 0.512821i −0.0658401 + 0.0380128i
\(183\) 0 0
\(184\) 13.1812i 0.971727i
\(185\) −0.0987270 0.171000i −0.00725855 0.0125722i
\(186\) 0 0
\(187\) −16.2988 −1.19189
\(188\) 0.330961 + 0.191080i 0.0241378 + 0.0139360i
\(189\) 0 0
\(190\) −0.209055 + 0.245320i −0.0151665 + 0.0177973i
\(191\) −12.8859 + 7.43970i −0.932394 + 0.538318i −0.887568 0.460677i \(-0.847607\pi\)
−0.0448259 + 0.998995i \(0.514273\pi\)
\(192\) 0 0
\(193\) −11.5602 + 6.67430i −0.832123 + 0.480426i −0.854579 0.519321i \(-0.826185\pi\)
0.0224561 + 0.999748i \(0.492851\pi\)
\(194\) 9.06958i 0.651158i
\(195\) 0 0
\(196\) 4.31613 7.47576i 0.308295 0.533983i
\(197\) 21.4163i 1.52585i −0.646488 0.762925i \(-0.723763\pi\)
0.646488 0.762925i \(-0.276237\pi\)
\(198\) 0 0
\(199\) 2.50917 + 4.34600i 0.177870 + 0.308080i 0.941151 0.337987i \(-0.109746\pi\)
−0.763281 + 0.646067i \(0.776413\pi\)
\(200\) 6.07381 10.5201i 0.429483 0.743886i
\(201\) 0 0
\(202\) 1.05943 + 0.611661i 0.0745411 + 0.0430363i
\(203\) 19.6070 1.37614
\(204\) 0 0
\(205\) 0.923675 + 0.533284i 0.0645123 + 0.0372462i
\(206\) −1.08313 0.625348i −0.0754655 0.0435700i
\(207\) 0 0
\(208\) 0.566864i 0.0393050i
\(209\) 12.3973 14.5478i 0.857538 1.00629i
\(210\) 0 0
\(211\) −13.8645 + 8.00470i −0.954474 + 0.551066i −0.894468 0.447132i \(-0.852445\pi\)
−0.0600064 + 0.998198i \(0.519112\pi\)
\(212\) 2.19455 + 3.80107i 0.150722 + 0.261059i
\(213\) 0 0
\(214\) 9.40622 0.642996
\(215\) −1.00066 + 0.577734i −0.0682447 + 0.0394011i
\(216\) 0 0
\(217\) 12.4069i 0.842239i
\(218\) 7.59829 + 4.38688i 0.514621 + 0.297117i
\(219\) 0 0
\(220\) 0.356871 0.618119i 0.0240602 0.0416736i
\(221\) −0.774471 + 1.34142i −0.0520966 + 0.0902339i
\(222\) 0 0
\(223\) 8.20407i 0.549385i 0.961532 + 0.274693i \(0.0885761\pi\)
−0.961532 + 0.274693i \(0.911424\pi\)
\(224\) 10.3423 + 17.9134i 0.691024 + 1.19689i
\(225\) 0 0
\(226\) 1.96148 3.39738i 0.130476 0.225991i
\(227\) 14.4019 + 24.9448i 0.955888 + 1.65565i 0.732322 + 0.680958i \(0.238437\pi\)
0.223566 + 0.974689i \(0.428230\pi\)
\(228\) 0 0
\(229\) 9.25025 16.0219i 0.611274 1.05876i −0.379753 0.925088i \(-0.623991\pi\)
0.991026 0.133669i \(-0.0426758\pi\)
\(230\) 0.200128 + 0.346633i 0.0131961 + 0.0228563i
\(231\) 0 0
\(232\) −6.70621 + 11.6155i −0.440284 + 0.762594i
\(233\) −17.8445 10.3025i −1.16903 0.674941i −0.215580 0.976486i \(-0.569164\pi\)
−0.953452 + 0.301545i \(0.902498\pi\)
\(234\) 0 0
\(235\) −0.0268542 −0.00175177
\(236\) −1.80725 3.13024i −0.117642 0.203761i
\(237\) 0 0
\(238\) 9.14828i 0.592995i
\(239\) 25.5747 + 14.7655i 1.65429 + 0.955104i 0.975280 + 0.220972i \(0.0709231\pi\)
0.679008 + 0.734131i \(0.262410\pi\)
\(240\) 0 0
\(241\) −3.73128 2.15426i −0.240353 0.138768i 0.374986 0.927030i \(-0.377648\pi\)
−0.615339 + 0.788263i \(0.710981\pi\)
\(242\) 2.84443 4.92669i 0.182847 0.316700i
\(243\) 0 0
\(244\) −9.78369 + 16.9459i −0.626337 + 1.08485i
\(245\) 0.606584i 0.0387532i
\(246\) 0 0
\(247\) −0.608230 1.71159i −0.0387008 0.108906i
\(248\) −7.35008 4.24357i −0.466731 0.269467i
\(249\) 0 0
\(250\) 0.738591i 0.0467126i
\(251\) −10.3715 + 5.98796i −0.654640 + 0.377957i −0.790232 0.612808i \(-0.790040\pi\)
0.135592 + 0.990765i \(0.456707\pi\)
\(252\) 0 0
\(253\) −11.8679 20.5558i −0.746130 1.29233i
\(254\) −9.85301 + 5.68864i −0.618233 + 0.356937i
\(255\) 0 0
\(256\) −10.0090 −0.625560
\(257\) −19.9740 −1.24594 −0.622972 0.782245i \(-0.714075\pi\)
−0.622972 + 0.782245i \(0.714075\pi\)
\(258\) 0 0
\(259\) 5.69174 3.28613i 0.353668 0.204190i
\(260\) −0.0339148 0.0587422i −0.00210331 0.00364304i
\(261\) 0 0
\(262\) 5.78671 3.34096i 0.357504 0.206405i
\(263\) 8.43192i 0.519935i 0.965617 + 0.259967i \(0.0837118\pi\)
−0.965617 + 0.259967i \(0.916288\pi\)
\(264\) 0 0
\(265\) −0.267099 0.154210i −0.0164078 0.00947302i
\(266\) −8.16546 6.95840i −0.500657 0.426647i
\(267\) 0 0
\(268\) 16.1308i 0.985348i
\(269\) −10.9044 + 18.8870i −0.664856 + 1.15156i 0.314469 + 0.949268i \(0.398174\pi\)
−0.979324 + 0.202296i \(0.935160\pi\)
\(270\) 0 0
\(271\) 2.11392 3.66142i 0.128412 0.222416i −0.794650 0.607068i \(-0.792345\pi\)
0.923061 + 0.384653i \(0.125679\pi\)
\(272\) 4.37879 + 2.52809i 0.265503 + 0.153288i
\(273\) 0 0
\(274\) 7.54199 + 4.35437i 0.455628 + 0.263057i
\(275\) 21.8747i 1.31909i
\(276\) 0 0
\(277\) 8.28717 + 14.3538i 0.497928 + 0.862436i 0.999997 0.00239145i \(-0.000761224\pi\)
−0.502070 + 0.864827i \(0.667428\pi\)
\(278\) 7.02389 0.421265
\(279\) 0 0
\(280\) −0.802852 0.463527i −0.0479796 0.0277010i
\(281\) 8.80430 15.2495i 0.525220 0.909708i −0.474348 0.880337i \(-0.657316\pi\)
0.999569 0.0293711i \(-0.00935045\pi\)
\(282\) 0 0
\(283\) 15.9644 + 27.6511i 0.948983 + 1.64369i 0.747574 + 0.664179i \(0.231219\pi\)
0.201409 + 0.979507i \(0.435448\pi\)
\(284\) −8.27074 + 14.3253i −0.490778 + 0.850053i
\(285\) 0 0
\(286\) −0.631703 1.09414i −0.0373534 0.0646980i
\(287\) −17.7504 + 30.7446i −1.04777 + 1.81479i
\(288\) 0 0
\(289\) −1.59205 2.75751i −0.0936498 0.162206i
\(290\) 0.407279i 0.0239163i
\(291\) 0 0
\(292\) −3.76357 + 6.51870i −0.220246 + 0.381478i
\(293\) 14.0550 24.3440i 0.821101 1.42219i −0.0837616 0.996486i \(-0.526693\pi\)
0.904863 0.425703i \(-0.139973\pi\)
\(294\) 0 0
\(295\) 0.219960 + 0.126994i 0.0128066 + 0.00739388i
\(296\) 4.49584i 0.261316i
\(297\) 0 0
\(298\) −10.2525 + 5.91927i −0.593910 + 0.342894i
\(299\) −2.25571 −0.130451
\(300\) 0 0
\(301\) −19.2299 33.3071i −1.10839 1.91979i
\(302\) −0.501198 + 0.289367i −0.0288407 + 0.0166512i
\(303\) 0 0
\(304\) −5.58711 + 1.98544i −0.320443 + 0.113873i
\(305\) 1.37499i 0.0787316i
\(306\) 0 0
\(307\) −8.38574 4.84151i −0.478599 0.276319i 0.241233 0.970467i \(-0.422448\pi\)
−0.719833 + 0.694148i \(0.755781\pi\)
\(308\) 20.5741 + 11.8785i 1.17232 + 0.676838i
\(309\) 0 0
\(310\) 0.257719 0.0146375
\(311\) −0.0989162 0.0571093i −0.00560902 0.00323837i 0.497193 0.867640i \(-0.334364\pi\)
−0.502802 + 0.864402i \(0.667697\pi\)
\(312\) 0 0
\(313\) 1.13376 1.96374i 0.0640841 0.110997i −0.832203 0.554471i \(-0.812921\pi\)
0.896287 + 0.443474i \(0.146254\pi\)
\(314\) 5.16059 + 8.93841i 0.291229 + 0.504424i
\(315\) 0 0
\(316\) 1.66554i 0.0936942i
\(317\) −4.93192 + 8.54234i −0.277004 + 0.479786i −0.970639 0.240541i \(-0.922675\pi\)
0.693634 + 0.720327i \(0.256008\pi\)
\(318\) 0 0
\(319\) 24.1523i 1.35227i
\(320\) 0.120121 0.0693521i 0.00671499 0.00387690i
\(321\) 0 0
\(322\) −11.5377 + 6.66128i −0.642969 + 0.371219i
\(323\) −15.9339 2.93499i −0.886584 0.163307i
\(324\) 0 0
\(325\) −1.80033 1.03942i −0.0998642 0.0576566i
\(326\) 2.68900 0.148930
\(327\) 0 0
\(328\) −12.1424 21.0312i −0.670451 1.16126i
\(329\) 0.893842i 0.0492791i
\(330\) 0 0
\(331\) 6.56652 3.79118i 0.360929 0.208382i −0.308559 0.951205i \(-0.599847\pi\)
0.669488 + 0.742823i \(0.266514\pi\)
\(332\) 10.9746 6.33618i 0.602309 0.347743i
\(333\) 0 0
\(334\) 6.61917 0.362185
\(335\) −0.566752 0.981643i −0.0309650 0.0536329i
\(336\) 0 0
\(337\) 12.2220 7.05635i 0.665773 0.384384i −0.128700 0.991684i \(-0.541080\pi\)
0.794473 + 0.607299i \(0.207747\pi\)
\(338\) 8.86816 0.482365
\(339\) 0 0
\(340\) −0.605012 −0.0328114
\(341\) −15.2831 −0.827629
\(342\) 0 0
\(343\) 4.72808 0.255292
\(344\) 26.3089 1.41848
\(345\) 0 0
\(346\) −3.10131 −0.166727
\(347\) 5.94283 3.43109i 0.319028 0.184191i −0.331931 0.943304i \(-0.607700\pi\)
0.650959 + 0.759113i \(0.274367\pi\)
\(348\) 0 0
\(349\) 3.10669 + 5.38094i 0.166297 + 0.288035i 0.937115 0.349020i \(-0.113486\pi\)
−0.770818 + 0.637056i \(0.780152\pi\)
\(350\) −12.2779 −0.656283
\(351\) 0 0
\(352\) −22.0661 + 12.7399i −1.17613 + 0.679038i
\(353\) 11.0335 6.37017i 0.587252 0.339050i −0.176758 0.984254i \(-0.556561\pi\)
0.764010 + 0.645204i \(0.223228\pi\)
\(354\) 0 0
\(355\) 1.16236i 0.0616916i
\(356\) 3.98202 + 6.89705i 0.211046 + 0.365543i
\(357\) 0 0
\(358\) 3.47193 0.183497
\(359\) 13.1829 + 7.61116i 0.695767 + 0.401701i 0.805769 0.592230i \(-0.201752\pi\)
−0.110002 + 0.993931i \(0.535086\pi\)
\(360\) 0 0
\(361\) 14.7394 11.9896i 0.775756 0.631033i
\(362\) 7.57520 4.37354i 0.398144 0.229868i
\(363\) 0 0
\(364\) 1.95524 1.12886i 0.102482 0.0591681i
\(365\) 0.528928i 0.0276853i
\(366\) 0 0
\(367\) 3.83282 6.63863i 0.200071 0.346534i −0.748480 0.663158i \(-0.769216\pi\)
0.948551 + 0.316624i \(0.102549\pi\)
\(368\) 7.36328i 0.383837i
\(369\) 0 0
\(370\) −0.0682601 0.118230i −0.00354867 0.00614648i
\(371\) 5.13287 8.89039i 0.266485 0.461566i
\(372\) 0 0
\(373\) 16.3704 + 9.45148i 0.847629 + 0.489379i 0.859850 0.510546i \(-0.170557\pi\)
−0.0122211 + 0.999925i \(0.503890\pi\)
\(374\) −11.2691 −0.582709
\(375\) 0 0
\(376\) 0.529527 + 0.305722i 0.0273083 + 0.0157664i
\(377\) 1.98778 + 1.14764i 0.102376 + 0.0591066i
\(378\) 0 0
\(379\) 24.7158i 1.26957i 0.772690 + 0.634784i \(0.218911\pi\)
−0.772690 + 0.634784i \(0.781089\pi\)
\(380\) 0.460187 0.540014i 0.0236071 0.0277022i
\(381\) 0 0
\(382\) −8.90937 + 5.14383i −0.455843 + 0.263181i
\(383\) −11.4456 19.8244i −0.584845 1.01298i −0.994895 0.100918i \(-0.967822\pi\)
0.410050 0.912063i \(-0.365511\pi\)
\(384\) 0 0
\(385\) −1.66938 −0.0850797
\(386\) −7.99276 + 4.61462i −0.406821 + 0.234878i
\(387\) 0 0
\(388\) 19.9646i 1.01355i
\(389\) −3.28308 1.89549i −0.166459 0.0961049i 0.414456 0.910069i \(-0.363972\pi\)
−0.580915 + 0.813964i \(0.697305\pi\)
\(390\) 0 0
\(391\) −10.0600 + 17.4244i −0.508755 + 0.881190i
\(392\) 6.90567 11.9610i 0.348789 0.604121i
\(393\) 0 0
\(394\) 14.8073i 0.745980i
\(395\) 0.0585184 + 0.101357i 0.00294438 + 0.00509982i
\(396\) 0 0
\(397\) 3.53802 6.12804i 0.177568 0.307557i −0.763479 0.645833i \(-0.776510\pi\)
0.941047 + 0.338276i \(0.109844\pi\)
\(398\) 1.73484 + 3.00484i 0.0869598 + 0.150619i
\(399\) 0 0
\(400\) −3.39296 + 5.87678i −0.169648 + 0.293839i
\(401\) 6.32826 + 10.9609i 0.316018 + 0.547360i 0.979653 0.200697i \(-0.0643206\pi\)
−0.663635 + 0.748056i \(0.730987\pi\)
\(402\) 0 0
\(403\) −0.726209 + 1.25783i −0.0361750 + 0.0626570i
\(404\) −2.33209 1.34643i −0.116026 0.0669874i
\(405\) 0 0
\(406\) 13.5563 0.672788
\(407\) 4.04793 + 7.01121i 0.200648 + 0.347533i
\(408\) 0 0
\(409\) 24.1720i 1.19523i −0.801783 0.597615i \(-0.796115\pi\)
0.801783 0.597615i \(-0.203885\pi\)
\(410\) 0.638631 + 0.368714i 0.0315398 + 0.0182095i
\(411\) 0 0
\(412\) 2.38427 + 1.37656i 0.117465 + 0.0678182i
\(413\) −4.22700 + 7.32138i −0.207997 + 0.360261i
\(414\) 0 0
\(415\) −0.445240 + 0.771178i −0.0218560 + 0.0378556i
\(416\) 2.42144i 0.118721i
\(417\) 0 0
\(418\) 8.57151 10.0584i 0.419246 0.491972i
\(419\) −23.3582 13.4859i −1.14112 0.658828i −0.194415 0.980919i \(-0.562281\pi\)
−0.946709 + 0.322091i \(0.895614\pi\)
\(420\) 0 0
\(421\) 26.5459i 1.29377i 0.762588 + 0.646885i \(0.223929\pi\)
−0.762588 + 0.646885i \(0.776071\pi\)
\(422\) −9.58598 + 5.53447i −0.466638 + 0.269414i
\(423\) 0 0
\(424\) 3.51121 + 6.08159i 0.170519 + 0.295348i
\(425\) −16.0582 + 9.27118i −0.778935 + 0.449718i
\(426\) 0 0
\(427\) 45.7665 2.21480
\(428\) −20.7056 −1.00084
\(429\) 0 0
\(430\) −0.691862 + 0.399446i −0.0333645 + 0.0192630i
\(431\) −8.45285 14.6408i −0.407159 0.705221i 0.587411 0.809289i \(-0.300147\pi\)
−0.994570 + 0.104068i \(0.966814\pi\)
\(432\) 0 0
\(433\) −13.0398 + 7.52854i −0.626653 + 0.361799i −0.779455 0.626458i \(-0.784504\pi\)
0.152801 + 0.988257i \(0.451171\pi\)
\(434\) 8.57819i 0.411766i
\(435\) 0 0
\(436\) −16.7259 9.65670i −0.801025 0.462472i
\(437\) −7.90060 22.2326i −0.377937 1.06353i
\(438\) 0 0
\(439\) 14.9731i 0.714626i −0.933985 0.357313i \(-0.883693\pi\)
0.933985 0.357313i \(-0.116307\pi\)
\(440\) 0.570983 0.988971i 0.0272205 0.0471473i
\(441\) 0 0
\(442\) −0.535471 + 0.927463i −0.0254698 + 0.0441149i
\(443\) −12.0457 6.95458i −0.572308 0.330422i 0.185763 0.982595i \(-0.440524\pi\)
−0.758071 + 0.652172i \(0.773858\pi\)
\(444\) 0 0
\(445\) −0.484652 0.279814i −0.0229747 0.0132644i
\(446\) 5.67231i 0.268592i
\(447\) 0 0
\(448\) 2.30839 + 3.99824i 0.109061 + 0.188899i
\(449\) 33.9028 1.59997 0.799986 0.600018i \(-0.204840\pi\)
0.799986 + 0.600018i \(0.204840\pi\)
\(450\) 0 0
\(451\) −37.8718 21.8653i −1.78331 1.02960i
\(452\) −4.31775 + 7.47855i −0.203090 + 0.351762i
\(453\) 0 0
\(454\) 9.95751 + 17.2469i 0.467329 + 0.809438i
\(455\) −0.0793240 + 0.137393i −0.00371877 + 0.00644110i
\(456\) 0 0
\(457\) −17.4349 30.1981i −0.815569 1.41261i −0.908919 0.416973i \(-0.863091\pi\)
0.0933501 0.995633i \(-0.470242\pi\)
\(458\) 6.39564 11.0776i 0.298849 0.517621i
\(459\) 0 0
\(460\) −0.440537 0.763032i −0.0205401 0.0355765i
\(461\) 12.2003i 0.568223i −0.958791 0.284112i \(-0.908301\pi\)
0.958791 0.284112i \(-0.0916986\pi\)
\(462\) 0 0
\(463\) 7.89622 13.6766i 0.366968 0.635608i −0.622122 0.782921i \(-0.713729\pi\)
0.989090 + 0.147313i \(0.0470624\pi\)
\(464\) 3.74623 6.48867i 0.173914 0.301229i
\(465\) 0 0
\(466\) −12.3377 7.12319i −0.571534 0.329976i
\(467\) 1.00890i 0.0466861i 0.999728 + 0.0233430i \(0.00743100\pi\)
−0.999728 + 0.0233430i \(0.992569\pi\)
\(468\) 0 0
\(469\) 32.6740 18.8644i 1.50875 0.871075i
\(470\) −0.0185670 −0.000856434
\(471\) 0 0
\(472\) −2.89154 5.00829i −0.133094 0.230525i
\(473\) 41.0284 23.6878i 1.88649 1.08917i
\(474\) 0 0
\(475\) 3.93906 21.3849i 0.180737 0.981206i
\(476\) 20.1378i 0.923016i
\(477\) 0 0
\(478\) 17.6824 + 10.2089i 0.808774 + 0.466946i
\(479\) −37.7575 21.7993i −1.72518 0.996036i −0.907068 0.420984i \(-0.861685\pi\)
−0.818117 0.575052i \(-0.804982\pi\)
\(480\) 0 0
\(481\) 0.769380 0.0350807
\(482\) −2.57982 1.48946i −0.117507 0.0678429i
\(483\) 0 0
\(484\) −6.26135 + 10.8450i −0.284607 + 0.492953i
\(485\) 0.701450 + 1.21495i 0.0318512 + 0.0551679i
\(486\) 0 0
\(487\) 18.8798i 0.855523i 0.903892 + 0.427762i \(0.140698\pi\)
−0.903892 + 0.427762i \(0.859302\pi\)
\(488\) −15.6536 + 27.1128i −0.708605 + 1.22734i
\(489\) 0 0
\(490\) 0.419393i 0.0189463i
\(491\) −24.0044 + 13.8589i −1.08330 + 0.625445i −0.931785 0.363010i \(-0.881749\pi\)
−0.151517 + 0.988455i \(0.548416\pi\)
\(492\) 0 0
\(493\) 17.7301 10.2365i 0.798524 0.461028i
\(494\) −0.420532 1.18340i −0.0189206 0.0532435i
\(495\) 0 0
\(496\) 4.10592 + 2.37055i 0.184361 + 0.106441i
\(497\) 38.6892 1.73545
\(498\) 0 0
\(499\) −8.59319 14.8838i −0.384684 0.666292i 0.607041 0.794670i \(-0.292356\pi\)
−0.991725 + 0.128378i \(0.959023\pi\)
\(500\) 1.62584i 0.0727097i
\(501\) 0 0
\(502\) −7.17085 + 4.14009i −0.320050 + 0.184781i
\(503\) 30.9064 17.8438i 1.37805 0.795617i 0.386124 0.922447i \(-0.373814\pi\)
0.991924 + 0.126830i \(0.0404804\pi\)
\(504\) 0 0
\(505\) 0.189226 0.00842043
\(506\) −8.20551 14.2124i −0.364779 0.631816i
\(507\) 0 0
\(508\) 21.6891 12.5222i 0.962299 0.555584i
\(509\) −28.6898 −1.27165 −0.635826 0.771832i \(-0.719341\pi\)
−0.635826 + 0.771832i \(0.719341\pi\)
\(510\) 0 0
\(511\) 17.6054 0.778816
\(512\) 14.5292 0.642105
\(513\) 0 0
\(514\) −13.8101 −0.609136
\(515\) −0.193460 −0.00852486
\(516\) 0 0
\(517\) 1.10105 0.0484243
\(518\) 3.93529 2.27204i 0.172907 0.0998276i
\(519\) 0 0
\(520\) −0.0542627 0.0939857i −0.00237958 0.00412155i
\(521\) −19.0866 −0.836198 −0.418099 0.908402i \(-0.637303\pi\)
−0.418099 + 0.908402i \(0.637303\pi\)
\(522\) 0 0
\(523\) 6.44315 3.71996i 0.281739 0.162662i −0.352471 0.935823i \(-0.614659\pi\)
0.634211 + 0.773160i \(0.281325\pi\)
\(524\) −12.7381 + 7.35435i −0.556467 + 0.321276i
\(525\) 0 0
\(526\) 5.82985i 0.254194i
\(527\) 6.47747 + 11.2193i 0.282163 + 0.488721i
\(528\) 0 0
\(529\) −6.30053 −0.273936
\(530\) −0.184673 0.106621i −0.00802167 0.00463132i
\(531\) 0 0
\(532\) 17.9744 + 15.3173i 0.779288 + 0.664090i
\(533\) −3.59911 + 2.07794i −0.155895 + 0.0900058i
\(534\) 0 0
\(535\) 1.26004 0.727486i 0.0544764 0.0314520i
\(536\) 25.8088i 1.11477i
\(537\) 0 0
\(538\) −7.53936 + 13.0585i −0.325045 + 0.562994i
\(539\) 24.8707i 1.07126i
\(540\) 0 0
\(541\) 5.10236 + 8.83755i 0.219368 + 0.379956i 0.954615 0.297843i \(-0.0962672\pi\)
−0.735247 + 0.677799i \(0.762934\pi\)
\(542\) 1.46157 2.53152i 0.0627799 0.108738i
\(543\) 0 0
\(544\) 18.7046 + 10.7991i 0.801954 + 0.463008i
\(545\) 1.35714 0.0581335
\(546\) 0 0
\(547\) 28.7808 + 16.6166i 1.23058 + 0.710474i 0.967150 0.254206i \(-0.0818141\pi\)
0.263426 + 0.964680i \(0.415147\pi\)
\(548\) −16.6019 9.58514i −0.709200 0.409457i
\(549\) 0 0
\(550\) 15.1242i 0.644899i
\(551\) −4.34919 + 23.6115i −0.185282 + 1.00588i
\(552\) 0 0
\(553\) −3.37366 + 1.94779i −0.143463 + 0.0828283i
\(554\) 5.72977 + 9.92425i 0.243434 + 0.421641i
\(555\) 0 0
\(556\) −15.4615 −0.655712
\(557\) 22.7991 13.1631i 0.966030 0.557738i 0.0680066 0.997685i \(-0.478336\pi\)
0.898024 + 0.439947i \(0.145003\pi\)
\(558\) 0 0
\(559\) 4.50228i 0.190426i
\(560\) 0.448491 + 0.258936i 0.0189522 + 0.0109421i
\(561\) 0 0
\(562\) 6.08731 10.5435i 0.256778 0.444752i
\(563\) 5.84768 10.1285i 0.246450 0.426864i −0.716088 0.698010i \(-0.754069\pi\)
0.962538 + 0.271146i \(0.0874025\pi\)
\(564\) 0 0
\(565\) 0.606811i 0.0255287i
\(566\) 11.0378 + 19.1180i 0.463953 + 0.803590i
\(567\) 0 0
\(568\) −13.2329 + 22.9201i −0.555241 + 0.961706i
\(569\) −9.05101 15.6768i −0.379438 0.657206i 0.611543 0.791211i \(-0.290549\pi\)
−0.990981 + 0.134006i \(0.957216\pi\)
\(570\) 0 0
\(571\) 4.87651 8.44636i 0.204076 0.353469i −0.745762 0.666212i \(-0.767914\pi\)
0.949838 + 0.312743i \(0.101248\pi\)
\(572\) 1.39055 + 2.40850i 0.0581418 + 0.100705i
\(573\) 0 0
\(574\) −12.2727 + 21.2569i −0.512251 + 0.887244i
\(575\) −23.3853 13.5015i −0.975236 0.563053i
\(576\) 0 0
\(577\) −25.3878 −1.05691 −0.528454 0.848962i \(-0.677228\pi\)
−0.528454 + 0.848962i \(0.677228\pi\)
\(578\) −1.10074 1.90655i −0.0457850 0.0793019i
\(579\) 0 0
\(580\) 0.896531i 0.0372264i
\(581\) −25.6687 14.8198i −1.06492 0.614830i
\(582\) 0 0
\(583\) 10.9514 + 6.32278i 0.453560 + 0.261863i
\(584\) −6.02160 + 10.4297i −0.249176 + 0.431585i
\(585\) 0 0
\(586\) 9.71765 16.8315i 0.401433 0.695302i
\(587\) 19.1724i 0.791331i 0.918395 + 0.395666i \(0.129486\pi\)
−0.918395 + 0.395666i \(0.870514\pi\)
\(588\) 0 0
\(589\) −14.9409 2.75209i −0.615630 0.113398i
\(590\) 0.152081 + 0.0878040i 0.00626107 + 0.00361483i
\(591\) 0 0
\(592\) 2.51148i 0.103221i
\(593\) 2.09357 1.20873i 0.0859728 0.0496364i −0.456397 0.889776i \(-0.650860\pi\)
0.542370 + 0.840140i \(0.317527\pi\)
\(594\) 0 0
\(595\) 0.707537 + 1.22549i 0.0290062 + 0.0502402i
\(596\) 22.5685 13.0299i 0.924440 0.533726i
\(597\) 0 0
\(598\) −1.55960 −0.0637769
\(599\) 32.1864 1.31510 0.657550 0.753411i \(-0.271593\pi\)
0.657550 + 0.753411i \(0.271593\pi\)
\(600\) 0 0
\(601\) 23.2325 13.4133i 0.947675 0.547140i 0.0553168 0.998469i \(-0.482383\pi\)
0.892358 + 0.451329i \(0.149050\pi\)
\(602\) −13.2956 23.0286i −0.541887 0.938577i
\(603\) 0 0
\(604\) 1.10327 0.636974i 0.0448915 0.0259181i
\(605\) 0.879962i 0.0357755i
\(606\) 0 0
\(607\) −21.3827 12.3453i −0.867897 0.501081i −0.00124816 0.999999i \(-0.500397\pi\)
−0.866649 + 0.498919i \(0.833731\pi\)
\(608\) −23.8661 + 8.48107i −0.967899 + 0.343953i
\(609\) 0 0
\(610\) 0.950670i 0.0384915i
\(611\) 0.0523187 0.0906187i 0.00211659 0.00366604i
\(612\) 0 0
\(613\) −1.93026 + 3.34330i −0.0779624 + 0.135035i −0.902371 0.430961i \(-0.858175\pi\)
0.824408 + 0.565996i \(0.191508\pi\)
\(614\) −5.79792 3.34743i −0.233985 0.135091i
\(615\) 0 0
\(616\) 32.9179 + 19.0052i 1.32630 + 0.765740i
\(617\) 21.4855i 0.864972i −0.901641 0.432486i \(-0.857636\pi\)
0.901641 0.432486i \(-0.142364\pi\)
\(618\) 0 0
\(619\) −16.6647 28.8640i −0.669809 1.16014i −0.977957 0.208805i \(-0.933042\pi\)
0.308148 0.951339i \(-0.400291\pi\)
\(620\) −0.567310 −0.0227837
\(621\) 0 0
\(622\) −0.0683909 0.0394855i −0.00274223 0.00158322i
\(623\) 9.31361 16.1316i 0.373142 0.646301i
\(624\) 0 0
\(625\) −12.4143 21.5022i −0.496571 0.860087i
\(626\) 0.783887 1.35773i 0.0313304 0.0542659i
\(627\) 0 0
\(628\) −11.3599 19.6758i −0.453308 0.785152i
\(629\) 3.43127 5.94314i 0.136814 0.236969i
\(630\) 0 0
\(631\) −10.5833 18.3308i −0.421313 0.729736i 0.574755 0.818325i \(-0.305097\pi\)
−0.996068 + 0.0885897i \(0.971764\pi\)
\(632\) 2.66482i 0.106001i
\(633\) 0 0
\(634\) −3.40994 + 5.90620i −0.135426 + 0.234565i
\(635\) −0.879929 + 1.52408i −0.0349189 + 0.0604813i
\(636\) 0 0
\(637\) −2.04690 1.18178i −0.0811011 0.0468238i
\(638\) 16.6989i 0.661118i
\(639\) 0 0
\(640\) −0.993312 + 0.573489i −0.0392641 + 0.0226691i
\(641\) 30.3002 1.19679 0.598393 0.801203i \(-0.295806\pi\)
0.598393 + 0.801203i \(0.295806\pi\)
\(642\) 0 0
\(643\) −4.26242 7.38272i −0.168093 0.291146i 0.769656 0.638459i \(-0.220428\pi\)
−0.937749 + 0.347313i \(0.887094\pi\)
\(644\) 25.3975 14.6633i 1.00080 0.577814i
\(645\) 0 0
\(646\) −11.0167 2.02926i −0.433447 0.0798402i
\(647\) 30.0725i 1.18227i 0.806572 + 0.591135i \(0.201320\pi\)
−0.806572 + 0.591135i \(0.798680\pi\)
\(648\) 0 0
\(649\) −9.01863 5.20691i −0.354012 0.204389i
\(650\) −1.24475 0.718657i −0.0488231 0.0281881i
\(651\) 0 0
\(652\) −5.91922 −0.231814
\(653\) 38.8242 + 22.4151i 1.51931 + 0.877173i 0.999741 + 0.0227422i \(0.00723970\pi\)
0.519566 + 0.854430i \(0.326094\pi\)
\(654\) 0 0
\(655\) 0.516786 0.895099i 0.0201925 0.0349744i
\(656\) 6.78300 + 11.7485i 0.264832 + 0.458702i
\(657\) 0 0
\(658\) 0.618004i 0.0240923i
\(659\) −3.85903 + 6.68403i −0.150326 + 0.260373i −0.931347 0.364132i \(-0.881366\pi\)
0.781021 + 0.624505i \(0.214699\pi\)
\(660\) 0 0
\(661\) 5.46052i 0.212389i −0.994345 0.106195i \(-0.966133\pi\)
0.994345 0.106195i \(-0.0338667\pi\)
\(662\) 4.54011 2.62123i 0.176456 0.101877i
\(663\) 0 0
\(664\) 17.5590 10.1377i 0.681422 0.393419i
\(665\) −1.63200 0.300612i −0.0632863 0.0116572i
\(666\) 0 0
\(667\) 25.8202 + 14.9073i 0.999762 + 0.577213i
\(668\) −14.5706 −0.563753
\(669\) 0 0
\(670\) −0.391854 0.678711i −0.0151386 0.0262209i
\(671\) 56.3762i 2.17638i
\(672\) 0 0
\(673\) −7.25030 + 4.18596i −0.279478 + 0.161357i −0.633187 0.773999i \(-0.718254\pi\)
0.353709 + 0.935356i \(0.384920\pi\)
\(674\) 8.45029 4.87878i 0.325493 0.187924i
\(675\) 0 0
\(676\) −19.5212 −0.750816
\(677\) −18.8962 32.7292i −0.726241 1.25789i −0.958461 0.285223i \(-0.907932\pi\)
0.232220 0.972663i \(-0.425401\pi\)
\(678\) 0 0
\(679\) −40.4395 + 23.3478i −1.55193 + 0.896005i
\(680\) −0.968000 −0.0371211
\(681\) 0 0
\(682\) −10.5668 −0.404624
\(683\) −6.09850 −0.233352 −0.116676 0.993170i \(-0.537224\pi\)
−0.116676 + 0.993170i \(0.537224\pi\)
\(684\) 0 0
\(685\) 1.34708 0.0514694
\(686\) 3.26900 0.124811
\(687\) 0 0
\(688\) −14.6967 −0.560308
\(689\) 1.04075 0.600879i 0.0396495 0.0228916i
\(690\) 0 0
\(691\) −16.5151 28.6050i −0.628265 1.08819i −0.987900 0.155094i \(-0.950432\pi\)
0.359635 0.933093i \(-0.382901\pi\)
\(692\) 6.82681 0.259516
\(693\) 0 0
\(694\) 4.10889 2.37227i 0.155971 0.0900500i
\(695\) 0.940909 0.543234i 0.0356907 0.0206060i
\(696\) 0 0
\(697\) 37.0688i 1.40408i
\(698\) 2.14797 + 3.72040i 0.0813020 + 0.140819i
\(699\) 0 0
\(700\) 27.0270 1.02153
\(701\) −5.80129 3.34938i −0.219112 0.126504i 0.386427 0.922320i \(-0.373709\pi\)
−0.605539 + 0.795816i \(0.707042\pi\)
\(702\) 0 0
\(703\) 2.69475 + 7.58314i 0.101634 + 0.286004i
\(704\) −4.92512 + 2.84352i −0.185622 + 0.107169i
\(705\) 0 0
\(706\) 7.62856 4.40435i 0.287105 0.165760i
\(707\) 6.29838i 0.236875i
\(708\) 0 0
\(709\) −10.9246 + 18.9219i −0.410280 + 0.710627i −0.994920 0.100666i \(-0.967903\pi\)
0.584640 + 0.811293i \(0.301236\pi\)
\(710\) 0.803658i 0.0301608i
\(711\) 0 0
\(712\) 6.37110 + 11.0351i 0.238767 + 0.413557i
\(713\) −9.43308 + 16.3386i −0.353272 + 0.611885i
\(714\) 0 0
\(715\) −0.169244 0.0977131i −0.00632937 0.00365426i
\(716\) −7.64264 −0.285619
\(717\) 0 0
\(718\) 9.11469 + 5.26237i 0.340157 + 0.196390i
\(719\) −20.5211 11.8479i −0.765309 0.441851i 0.0658895 0.997827i \(-0.479012\pi\)
−0.831199 + 0.555975i \(0.812345\pi\)
\(720\) 0 0
\(721\) 6.43932i 0.239813i
\(722\) 10.1908 8.28966i 0.379263 0.308509i
\(723\) 0 0
\(724\) −16.6751 + 9.62735i −0.619723 + 0.357798i
\(725\) 13.7384 + 23.7956i 0.510232 + 0.883748i
\(726\) 0 0
\(727\) −18.4719 −0.685085 −0.342542 0.939502i \(-0.611288\pi\)
−0.342542 + 0.939502i \(0.611288\pi\)
\(728\) 3.12832 1.80613i 0.115943 0.0669398i
\(729\) 0 0
\(730\) 0.365702i 0.0135352i
\(731\) −34.7783 20.0792i −1.28632 0.742657i
\(732\) 0 0
\(733\) −20.4287 + 35.3835i −0.754550 + 1.30692i 0.191048 + 0.981581i \(0.438811\pi\)
−0.945598 + 0.325338i \(0.894522\pi\)
\(734\) 2.65002 4.58997i 0.0978140 0.169419i
\(735\) 0 0
\(736\) 31.4533i 1.15938i
\(737\) 23.2375 + 40.2486i 0.855965 + 1.48257i
\(738\) 0 0
\(739\) 1.64367 2.84692i 0.0604633 0.104726i −0.834209 0.551448i \(-0.814076\pi\)
0.894673 + 0.446722i \(0.147409\pi\)
\(740\) 0.150259 + 0.260256i 0.00552362 + 0.00956720i
\(741\) 0 0
\(742\) 3.54888 6.14684i 0.130283 0.225658i
\(743\) 16.8680 + 29.2162i 0.618826 + 1.07184i 0.989700 + 0.143156i \(0.0457249\pi\)
−0.370874 + 0.928683i \(0.620942\pi\)
\(744\) 0 0
\(745\) −0.915604 + 1.58587i −0.0335451 + 0.0581018i
\(746\) 11.3186 + 6.53477i 0.414402 + 0.239255i
\(747\) 0 0
\(748\) 24.8062 0.907005
\(749\) 24.2144 + 41.9405i 0.884774 + 1.53247i
\(750\) 0 0
\(751\) 39.6120i 1.44546i 0.691129 + 0.722731i \(0.257114\pi\)
−0.691129 + 0.722731i \(0.742886\pi\)
\(752\) −0.295805 0.170783i −0.0107869 0.00622782i
\(753\) 0 0
\(754\) 1.37435 + 0.793483i 0.0500510 + 0.0288969i
\(755\) −0.0447598 + 0.0775263i −0.00162898 + 0.00282147i
\(756\) 0 0
\(757\) 2.10833 3.65174i 0.0766287 0.132725i −0.825165 0.564892i \(-0.808918\pi\)
0.901793 + 0.432167i \(0.142251\pi\)
\(758\) 17.0886i 0.620686i
\(759\) 0 0
\(760\) 0.736284 0.864006i 0.0267078 0.0313408i
\(761\) 6.65646 + 3.84311i 0.241297 + 0.139313i 0.615773 0.787924i \(-0.288844\pi\)
−0.374476 + 0.927237i \(0.622177\pi\)
\(762\) 0 0
\(763\) 45.1724i 1.63535i
\(764\) 19.6119 11.3229i 0.709534 0.409650i
\(765\) 0 0
\(766\) −7.91354 13.7067i −0.285928 0.495242i
\(767\) −0.857076 + 0.494833i −0.0309472 + 0.0178674i
\(768\) 0 0
\(769\) −17.6975 −0.638190 −0.319095 0.947723i \(-0.603379\pi\)
−0.319095 + 0.947723i \(0.603379\pi\)
\(770\) −1.15422 −0.0415951
\(771\) 0 0
\(772\) 17.5942 10.1580i 0.633230 0.365596i
\(773\) 0.137641 + 0.238402i 0.00495061 + 0.00857471i 0.868490 0.495707i \(-0.165091\pi\)
−0.863539 + 0.504281i \(0.831757\pi\)
\(774\) 0 0
\(775\) −15.0575 + 8.69343i −0.540880 + 0.312277i
\(776\) 31.9427i 1.14668i
\(777\) 0 0
\(778\) −2.26993 1.31054i −0.0813808 0.0469852i
\(779\) −33.0864 28.1954i −1.18544 1.01020i
\(780\) 0 0
\(781\) 47.6582i 1.70534i
\(782\) −6.95550 + 12.0473i −0.248728 + 0.430810i
\(783\) 0 0
\(784\) −3.85766 + 6.68166i −0.137774 + 0.238631i
\(785\) 1.38261 + 0.798250i 0.0493475 + 0.0284908i
\(786\) 0 0
\(787\) 11.1612 + 6.44390i 0.397853 + 0.229700i 0.685557 0.728019i \(-0.259559\pi\)
−0.287704 + 0.957719i \(0.592892\pi\)
\(788\) 32.5948i 1.16114i
\(789\) 0 0
\(790\) 0.0404598 + 0.0700783i 0.00143949 + 0.00249328i
\(791\) 20.1977 0.718148
\(792\) 0 0
\(793\) 4.63986 + 2.67882i 0.164766 + 0.0951278i
\(794\) 2.44620 4.23694i 0.0868123 0.150363i
\(795\) 0 0
\(796\) −3.81886 6.61445i −0.135356 0.234443i
\(797\) −24.8067 + 42.9665i −0.878699 + 1.52195i −0.0259298 + 0.999664i \(0.508255\pi\)
−0.852769 + 0.522288i \(0.825079\pi\)
\(798\) 0 0
\(799\) −0.466661 0.808280i −0.0165093 0.0285949i
\(800\) −14.4935 + 25.1035i −0.512423 + 0.887543i
\(801\) 0 0
\(802\) 4.37537 + 7.57837i 0.154500 + 0.267602i
\(803\) 21.6867i 0.765306i
\(804\) 0 0
\(805\) −1.03038 + 1.78467i −0.0363161 + 0.0629013i
\(806\) −0.502102 + 0.869667i −0.0176858 + 0.0306327i
\(807\) 0 0
\(808\) −3.73126 2.15425i −0.131265 0.0757861i
\(809\) 23.6970i 0.833142i −0.909103 0.416571i \(-0.863232\pi\)
0.909103 0.416571i \(-0.136768\pi\)
\(810\) 0 0
\(811\) 35.4486 20.4662i 1.24477 0.718667i 0.274707 0.961528i \(-0.411419\pi\)
0.970061 + 0.242861i \(0.0780860\pi\)
\(812\) −29.8411 −1.04722
\(813\) 0 0
\(814\) 2.79875 + 4.84757i 0.0980960 + 0.169907i
\(815\) 0.360215 0.207970i 0.0126178 0.00728487i
\(816\) 0 0
\(817\) 44.3753 15.7692i 1.55249 0.551695i
\(818\) 16.7126i 0.584342i
\(819\) 0 0
\(820\) −1.40580 0.811639i −0.0490927 0.0283437i
\(821\) −45.2151 26.1049i −1.57802 0.911068i −0.995136 0.0985109i \(-0.968592\pi\)
−0.582881 0.812558i \(-0.698075\pi\)
\(822\) 0 0
\(823\) −13.7069 −0.477794 −0.238897 0.971045i \(-0.576786\pi\)
−0.238897 + 0.971045i \(0.576786\pi\)
\(824\) 3.81476 + 2.20245i 0.132893 + 0.0767260i
\(825\) 0 0
\(826\) −2.92256 + 5.06202i −0.101689 + 0.176130i
\(827\) 5.42239 + 9.39185i 0.188555 + 0.326587i 0.944769 0.327738i \(-0.106286\pi\)
−0.756214 + 0.654325i \(0.772953\pi\)
\(828\) 0 0
\(829\) 44.0349i 1.52939i 0.644390 + 0.764697i \(0.277111\pi\)
−0.644390 + 0.764697i \(0.722889\pi\)
\(830\) −0.307840 + 0.533194i −0.0106853 + 0.0185074i
\(831\) 0 0
\(832\) 0.540461i 0.0187371i
\(833\) −18.2575 + 10.5410i −0.632584 + 0.365223i
\(834\) 0 0
\(835\) 0.886694 0.511933i 0.0306853 0.0177162i
\(836\) −18.8682 + 22.1412i −0.652571 + 0.765771i
\(837\) 0 0
\(838\) −16.1499 9.32416i −0.557890 0.322098i
\(839\) 41.1382 1.42025 0.710124 0.704077i \(-0.248639\pi\)
0.710124 + 0.704077i \(0.248639\pi\)
\(840\) 0 0
\(841\) −0.668844 1.15847i −0.0230636 0.0399473i
\(842\) 18.3539i 0.632518i
\(843\) 0 0
\(844\) 21.1013 12.1829i 0.726337 0.419351i
\(845\) 1.18797 0.685872i 0.0408672 0.0235947i
\(846\) 0 0
\(847\) 29.2896 1.00640
\(848\) −1.96144 3.39731i −0.0673561 0.116664i
\(849\) 0 0
\(850\) −11.1026 + 6.41012i −0.380818 + 0.219865i
\(851\) 9.99386 0.342585
\(852\) 0 0
\(853\) −12.4985 −0.427942 −0.213971 0.976840i \(-0.568640\pi\)
−0.213971 + 0.976840i \(0.568640\pi\)
\(854\) 31.6431 1.08280
\(855\) 0 0
\(856\) −33.1284 −1.13230
\(857\) −4.84208 −0.165402 −0.0827012 0.996574i \(-0.526355\pi\)
−0.0827012 + 0.996574i \(0.526355\pi\)
\(858\) 0 0
\(859\) 14.1040 0.481222 0.240611 0.970622i \(-0.422652\pi\)
0.240611 + 0.970622i \(0.422652\pi\)
\(860\) 1.52297 0.879289i 0.0519330 0.0299835i
\(861\) 0 0
\(862\) −5.84432 10.1227i −0.199058 0.344779i
\(863\) 37.3291 1.27070 0.635348 0.772226i \(-0.280857\pi\)
0.635348 + 0.772226i \(0.280857\pi\)
\(864\) 0 0
\(865\) −0.415446 + 0.239858i −0.0141256 + 0.00815541i
\(866\) −9.01576 + 5.20525i −0.306368 + 0.176882i
\(867\) 0 0
\(868\) 18.8829i 0.640928i
\(869\) −2.39932 4.15575i −0.0813915 0.140974i
\(870\) 0 0
\(871\) 4.41670 0.149654
\(872\) −26.7609 15.4504i −0.906239 0.523217i
\(873\) 0 0
\(874\) −5.46249 15.3717i −0.184772 0.519956i
\(875\) −3.29324 + 1.90135i −0.111332 + 0.0642774i
\(876\) 0 0
\(877\) 14.6584 8.46303i 0.494979 0.285776i −0.231659 0.972797i \(-0.574415\pi\)
0.726638 + 0.687021i \(0.241082\pi\)
\(878\) 10.3524i 0.349377i
\(879\) 0 0
\(880\) −0.318963 + 0.552461i −0.0107523 + 0.0186234i
\(881\) 11.2468i 0.378913i 0.981889 + 0.189457i \(0.0606727\pi\)
−0.981889 + 0.189457i \(0.939327\pi\)
\(882\) 0 0
\(883\) −2.49791 4.32650i −0.0840613 0.145598i 0.820930 0.571030i \(-0.193456\pi\)
−0.904991 + 0.425431i \(0.860122\pi\)
\(884\) 1.17872 2.04160i 0.0396445 0.0686663i
\(885\) 0 0
\(886\) −8.32842 4.80841i −0.279799 0.161542i
\(887\) 28.6123 0.960708 0.480354 0.877075i \(-0.340508\pi\)
0.480354 + 0.877075i \(0.340508\pi\)
\(888\) 0 0
\(889\) −50.7291 29.2885i −1.70140 0.982303i
\(890\) −0.335089 0.193464i −0.0112322 0.00648493i
\(891\) 0 0
\(892\) 12.4863i 0.418072i
\(893\) 1.07640 + 0.198271i 0.0360203 + 0.00663488i
\(894\) 0 0
\(895\) 0.465094 0.268522i 0.0155464 0.00897570i
\(896\) −19.0886 33.0624i −0.637705 1.10454i
\(897\) 0 0
\(898\) 23.4405 0.782219
\(899\) 16.6252 9.59858i 0.554483 0.320131i
\(900\) 0 0
\(901\) 10.7192i 0.357107i
\(902\) −26.1847 15.1177i −0.871854 0.503365i
\(903\) 0 0
\(904\) −6.90826 + 11.9655i −0.229765 + 0.397965i
\(905\) 0.676508 1.17175i 0.0224879 0.0389502i
\(906\) 0 0
\(907\) 23.8243i 0.791074i 0.918450 + 0.395537i \(0.129442\pi\)
−0.918450 + 0.395537i \(0.870558\pi\)
\(908\) −21.9192 37.9651i −0.727413 1.25992i
\(909\) 0 0
\(910\) −0.0548448 + 0.0949940i −0.00181809 + 0.00314902i
\(911\) −20.4314 35.3881i −0.676921 1.17246i −0.975903 0.218203i \(-0.929981\pi\)
0.298982 0.954259i \(-0.403353\pi\)
\(912\) 0 0
\(913\) 18.2554 31.6192i 0.604165 1.04644i
\(914\) −12.0545 20.8790i −0.398728 0.690617i
\(915\) 0 0
\(916\) −14.0785 + 24.3847i −0.465168 + 0.805694i
\(917\) 29.7934 + 17.2012i 0.983864 + 0.568034i
\(918\) 0 0
\(919\) −48.0310 −1.58440 −0.792198 0.610264i \(-0.791063\pi\)
−0.792198 + 0.610264i \(0.791063\pi\)
\(920\) −0.704845 1.22083i −0.0232381 0.0402495i
\(921\) 0 0
\(922\) 8.43530i 0.277802i
\(923\) 3.92235 + 2.26457i 0.129106 + 0.0745392i
\(924\) 0 0
\(925\) 7.97630 + 4.60512i 0.262259 + 0.151415i
\(926\) 5.45946 9.45606i 0.179409 0.310746i
\(927\) 0 0
\(928\) 16.0026 27.7173i 0.525310 0.909864i
\(929\) 13.4620i 0.441675i −0.975311 0.220838i \(-0.929121\pi\)
0.975311 0.220838i \(-0.0708791\pi\)
\(930\) 0 0
\(931\) 4.47855 24.3137i 0.146779 0.796851i
\(932\) 27.1587 + 15.6801i 0.889612 + 0.513618i
\(933\) 0 0
\(934\) 0.697552i 0.0228246i
\(935\) −1.50958 + 0.871559i −0.0493687 + 0.0285030i
\(936\) 0 0
\(937\) 7.39153 + 12.8025i 0.241471 + 0.418240i 0.961133 0.276084i \(-0.0890369\pi\)
−0.719663 + 0.694324i \(0.755704\pi\)
\(938\) 22.5909 13.0429i 0.737619 0.425864i
\(939\) 0 0
\(940\) 0.0408711 0.00133307
\(941\) −19.7804 −0.644823 −0.322412 0.946600i \(-0.604494\pi\)
−0.322412 + 0.946600i \(0.604494\pi\)
\(942\) 0 0
\(943\) −46.7506 + 26.9915i −1.52241 + 0.878963i
\(944\) 1.61528 + 2.79774i 0.0525727 + 0.0910587i
\(945\) 0 0
\(946\) 28.3672 16.3778i 0.922296 0.532488i
\(947\) 30.6712i 0.996680i 0.866982 + 0.498340i \(0.166057\pi\)
−0.866982 + 0.498340i \(0.833943\pi\)
\(948\) 0 0
\(949\) 1.78485 + 1.03048i 0.0579388 + 0.0334510i
\(950\) 2.72348 14.7856i 0.0883612 0.479707i
\(951\) 0 0
\(952\) 32.2199i 1.04425i
\(953\) −20.9938 + 36.3623i −0.680055 + 1.17789i 0.294908 + 0.955526i \(0.404711\pi\)
−0.974964 + 0.222365i \(0.928622\pi\)
\(954\) 0 0
\(955\) −0.795657 + 1.37812i −0.0257468 + 0.0445948i
\(956\) −38.9237 22.4726i −1.25888 0.726816i
\(957\) 0 0
\(958\) −26.1056 15.0721i −0.843435 0.486957i
\(959\) 44.8377i 1.44788i
\(960\) 0 0
\(961\) −9.42618 16.3266i −0.304070 0.526665i
\(962\) 0.531951 0.0171508
\(963\) 0 0
\(964\) 5.67887 + 3.27870i 0.182904 + 0.105600i
\(965\) −0.713799 + 1.23634i −0.0229780 + 0.0397991i
\(966\) 0 0
\(967\) 16.7605 + 29.0301i 0.538982 + 0.933545i 0.998959 + 0.0456140i \(0.0145244\pi\)
−0.459977 + 0.887931i \(0.652142\pi\)
\(968\) −10.0180 + 17.3516i −0.321989 + 0.557702i
\(969\) 0 0
\(970\) 0.484984 + 0.840017i 0.0155719 + 0.0269713i
\(971\) 15.4529 26.7652i 0.495907 0.858936i −0.504082 0.863656i \(-0.668169\pi\)
0.999989 + 0.00471955i \(0.00150229\pi\)
\(972\) 0 0
\(973\) 18.0816 + 31.3182i 0.579668 + 1.00401i
\(974\) 13.0535i 0.418261i
\(975\) 0 0
\(976\) 8.74444 15.1458i 0.279903 0.484806i
\(977\) −18.1095 + 31.3666i −0.579375 + 1.00351i 0.416176 + 0.909284i \(0.363370\pi\)
−0.995551 + 0.0942233i \(0.969963\pi\)
\(978\) 0 0
\(979\) 19.8713 + 11.4727i 0.635090 + 0.366669i
\(980\) 0.923198i 0.0294905i
\(981\) 0 0
\(982\) −16.5967 + 9.58210i −0.529621 + 0.305777i
\(983\) 15.5150 0.494852 0.247426 0.968907i \(-0.420415\pi\)
0.247426 + 0.968907i \(0.420415\pi\)
\(984\) 0 0
\(985\) −1.14521 1.98356i −0.0364894 0.0632015i
\(986\) 12.2586 7.07753i 0.390395 0.225395i
\(987\) 0 0
\(988\) 0.925704 + 2.60497i 0.0294506 + 0.0828752i
\(989\) 58.4824i 1.85963i
\(990\) 0 0
\(991\) −3.23093 1.86538i −0.102634 0.0592558i 0.447804 0.894132i \(-0.352206\pi\)
−0.550438 + 0.834876i \(0.685539\pi\)
\(992\) 17.5390 + 10.1261i 0.556864 + 0.321506i
\(993\) 0 0
\(994\) 26.7498 0.848451
\(995\) 0.464794 + 0.268349i 0.0147350 + 0.00850723i
\(996\) 0 0
\(997\) 20.3507 35.2484i 0.644512 1.11633i −0.339903 0.940461i \(-0.610394\pi\)
0.984414 0.175866i \(-0.0562726\pi\)
\(998\) −5.94135 10.2907i −0.188070 0.325747i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.t.a.179.11 36
3.2 odd 2 171.2.t.a.122.8 yes 36
9.2 odd 6 513.2.k.a.8.11 36
9.7 even 3 171.2.k.a.65.8 yes 36
19.12 odd 6 513.2.k.a.449.11 36
57.50 even 6 171.2.k.a.50.8 36
171.88 odd 6 171.2.t.a.164.8 yes 36
171.164 even 6 inner 513.2.t.a.278.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.8 36 57.50 even 6
171.2.k.a.65.8 yes 36 9.7 even 3
171.2.t.a.122.8 yes 36 3.2 odd 2
171.2.t.a.164.8 yes 36 171.88 odd 6
513.2.k.a.8.11 36 9.2 odd 6
513.2.k.a.449.11 36 19.12 odd 6
513.2.t.a.179.11 36 1.1 even 1 trivial
513.2.t.a.278.11 36 171.164 even 6 inner