Properties

Label 171.2.k.a.50.8
Level $171$
Weight $2$
Character 171.50
Analytic conductor $1.365$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,2,Mod(50,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.50"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.8
Character \(\chi\) \(=\) 171.50
Dual form 171.2.k.a.65.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.345701 + 0.598772i) q^{2} +(0.763607 - 1.55464i) q^{3} +(0.760981 + 1.31806i) q^{4} -0.106947i q^{5} +(0.666895 + 0.994667i) q^{6} +(1.77987 + 3.08283i) q^{7} -2.43509 q^{8} +(-1.83381 - 2.37427i) q^{9} +(0.0640371 + 0.0369718i) q^{10} +(3.79750 - 2.19249i) q^{11} +(2.63020 - 0.176573i) q^{12} +(-0.360891 + 0.208361i) q^{13} -2.46122 q^{14} +(-0.166265 - 0.0816658i) q^{15} +(-0.680148 + 1.17805i) q^{16} +(3.21900 - 1.85849i) q^{17} +(2.05559 - 0.277246i) q^{18} +(-4.10727 - 1.45956i) q^{19} +(0.140963 - 0.0813850i) q^{20} +(6.15181 - 0.412990i) q^{21} +3.03178i q^{22} +(-4.68779 + 2.70650i) q^{23} +(-1.85945 + 3.78569i) q^{24} +4.98856 q^{25} -0.288122i q^{26} +(-5.09144 + 1.03790i) q^{27} +(-2.70890 + 4.69195i) q^{28} -5.50797 q^{29} +(0.106377 - 0.0713227i) q^{30} +(-3.01840 - 1.74267i) q^{31} +(-2.90535 - 5.03221i) q^{32} +(-0.508730 - 7.57794i) q^{33} +2.56993i q^{34} +(0.329701 - 0.190353i) q^{35} +(1.73393 - 4.22384i) q^{36} +1.84627i q^{37} +(2.29383 - 1.95475i) q^{38} +(0.0483466 + 0.720161i) q^{39} +0.260427i q^{40} -9.97283 q^{41} +(-1.87940 + 3.82631i) q^{42} +(5.40204 - 9.35660i) q^{43} +(5.77965 + 3.33688i) q^{44} +(-0.253922 + 0.196121i) q^{45} -3.74256i q^{46} -0.251097i q^{47} +(1.31208 + 1.95695i) q^{48} +(-2.83590 + 4.91192i) q^{49} +(-1.72455 + 2.98701i) q^{50} +(-0.431231 - 6.42353i) q^{51} +(-0.549263 - 0.317117i) q^{52} +(-1.44192 + 2.49748i) q^{53} +(1.13865 - 3.40742i) q^{54} +(-0.234481 - 0.406133i) q^{55} +(-4.33416 - 7.50698i) q^{56} +(-5.40543 + 5.27080i) q^{57} +(1.90411 - 3.29802i) q^{58} -2.37489 q^{59} +(-0.0188840 - 0.281293i) q^{60} -12.8567 q^{61} +(2.08693 - 1.20489i) q^{62} +(4.05552 - 9.87922i) q^{63} +1.29694 q^{64} +(0.0222836 + 0.0385964i) q^{65} +(4.71333 + 2.31509i) q^{66} +(9.17875 - 5.29935i) q^{67} +(4.89919 + 2.82855i) q^{68} +(0.627998 + 9.35453i) q^{69} +0.263221i q^{70} +(5.43426 + 9.41241i) q^{71} +(4.46550 + 5.78156i) q^{72} +(2.47284 + 4.28309i) q^{73} +(-1.10550 - 0.638258i) q^{74} +(3.80930 - 7.75542i) q^{75} +(-1.20177 - 6.52432i) q^{76} +(13.5181 + 7.80470i) q^{77} +(-0.447926 - 0.220012i) q^{78} +(0.947726 + 0.547170i) q^{79} +(0.125990 + 0.0727401i) q^{80} +(-2.27429 + 8.70790i) q^{81} +(3.44762 - 5.97145i) q^{82} +(7.21082 - 4.16317i) q^{83} +(5.22576 + 7.79417i) q^{84} +(-0.198760 - 0.344263i) q^{85} +(3.73498 + 6.46918i) q^{86} +(-4.20592 + 8.56290i) q^{87} +(-9.24726 + 5.33891i) q^{88} +(-2.61637 + 4.53168i) q^{89} +(-0.0296508 - 0.219841i) q^{90} +(-1.28468 - 0.741711i) q^{91} +(-7.13465 - 4.11919i) q^{92} +(-5.01410 + 3.36180i) q^{93} +(0.150350 + 0.0868045i) q^{94} +(-0.156096 + 0.439262i) q^{95} +(-10.0418 + 0.674138i) q^{96} +(11.3602 + 6.55883i) q^{97} +(-1.96075 - 3.39611i) q^{98} +(-12.1694 - 4.99568i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 3 q^{2} - 6 q^{3} - 15 q^{4} + 4 q^{6} - q^{7} + 12 q^{8} - 4 q^{9} - 6 q^{10} - 9 q^{11} + 15 q^{12} - 6 q^{13} - 6 q^{14} + 9 q^{15} - 9 q^{16} - 27 q^{17} + 6 q^{18} + q^{19} + 9 q^{20} - 3 q^{21}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.345701 + 0.598772i −0.244448 + 0.423396i −0.961976 0.273133i \(-0.911940\pi\)
0.717529 + 0.696529i \(0.245273\pi\)
\(3\) 0.763607 1.55464i 0.440869 0.897572i
\(4\) 0.760981 + 1.31806i 0.380491 + 0.659029i
\(5\) 0.106947i 0.0478283i −0.999714 0.0239142i \(-0.992387\pi\)
0.999714 0.0239142i \(-0.00761284\pi\)
\(6\) 0.666895 + 0.994667i 0.272259 + 0.406071i
\(7\) 1.77987 + 3.08283i 0.672729 + 1.16520i 0.977127 + 0.212656i \(0.0682113\pi\)
−0.304398 + 0.952545i \(0.598455\pi\)
\(8\) −2.43509 −0.860936
\(9\) −1.83381 2.37427i −0.611270 0.791422i
\(10\) 0.0640371 + 0.0369718i 0.0202503 + 0.0116915i
\(11\) 3.79750 2.19249i 1.14499 0.661060i 0.197328 0.980338i \(-0.436774\pi\)
0.947661 + 0.319278i \(0.103440\pi\)
\(12\) 2.63020 0.176573i 0.759272 0.0509723i
\(13\) −0.360891 + 0.208361i −0.100093 + 0.0577888i −0.549211 0.835684i \(-0.685072\pi\)
0.449118 + 0.893473i \(0.351738\pi\)
\(14\) −2.46122 −0.657788
\(15\) −0.166265 0.0816658i −0.0429294 0.0210860i
\(16\) −0.680148 + 1.17805i −0.170037 + 0.294513i
\(17\) 3.21900 1.85849i 0.780721 0.450749i −0.0559647 0.998433i \(-0.517823\pi\)
0.836686 + 0.547683i \(0.184490\pi\)
\(18\) 2.05559 0.277246i 0.484508 0.0653475i
\(19\) −4.10727 1.45956i −0.942273 0.334846i
\(20\) 0.140963 0.0813850i 0.0315203 0.0181982i
\(21\) 6.15181 0.412990i 1.34244 0.0901218i
\(22\) 3.03178i 0.646378i
\(23\) −4.68779 + 2.70650i −0.977472 + 0.564344i −0.901506 0.432767i \(-0.857537\pi\)
−0.0759662 + 0.997110i \(0.524204\pi\)
\(24\) −1.85945 + 3.78569i −0.379560 + 0.772751i
\(25\) 4.98856 0.997712
\(26\) 0.288122i 0.0565054i
\(27\) −5.09144 + 1.03790i −0.979848 + 0.199745i
\(28\) −2.70890 + 4.69195i −0.511934 + 0.886696i
\(29\) −5.50797 −1.02280 −0.511402 0.859342i \(-0.670874\pi\)
−0.511402 + 0.859342i \(0.670874\pi\)
\(30\) 0.106377 0.0713227i 0.0194217 0.0130217i
\(31\) −3.01840 1.74267i −0.542120 0.312993i 0.203817 0.979009i \(-0.434665\pi\)
−0.745938 + 0.666016i \(0.767998\pi\)
\(32\) −2.90535 5.03221i −0.513598 0.889578i
\(33\) −0.508730 7.57794i −0.0885585 1.31915i
\(34\) 2.56993i 0.440739i
\(35\) 0.329701 0.190353i 0.0557296 0.0321755i
\(36\) 1.73393 4.22384i 0.288988 0.703973i
\(37\) 1.84627i 0.303525i 0.988417 + 0.151763i \(0.0484949\pi\)
−0.988417 + 0.151763i \(0.951505\pi\)
\(38\) 2.29383 1.95475i 0.372109 0.317102i
\(39\) 0.0483466 + 0.720161i 0.00774165 + 0.115318i
\(40\) 0.260427i 0.0411771i
\(41\) −9.97283 −1.55749 −0.778747 0.627338i \(-0.784145\pi\)
−0.778747 + 0.627338i \(0.784145\pi\)
\(42\) −1.87940 + 3.82631i −0.289998 + 0.590412i
\(43\) 5.40204 9.35660i 0.823803 1.42687i −0.0790282 0.996872i \(-0.525182\pi\)
0.902831 0.429996i \(-0.141485\pi\)
\(44\) 5.77965 + 3.33688i 0.871315 + 0.503054i
\(45\) −0.253922 + 0.196121i −0.0378524 + 0.0292360i
\(46\) 3.74256i 0.551810i
\(47\) 0.251097i 0.0366263i −0.999832 0.0183131i \(-0.994170\pi\)
0.999832 0.0183131i \(-0.00582958\pi\)
\(48\) 1.31208 + 1.95695i 0.189382 + 0.282462i
\(49\) −2.83590 + 4.91192i −0.405128 + 0.701703i
\(50\) −1.72455 + 2.98701i −0.243888 + 0.422427i
\(51\) −0.431231 6.42353i −0.0603845 0.899474i
\(52\) −0.549263 0.317117i −0.0761690 0.0439762i
\(53\) −1.44192 + 2.49748i −0.198063 + 0.343055i −0.947900 0.318567i \(-0.896798\pi\)
0.749837 + 0.661622i \(0.230132\pi\)
\(54\) 1.13865 3.40742i 0.154950 0.463691i
\(55\) −0.234481 0.406133i −0.0316174 0.0547629i
\(56\) −4.33416 7.50698i −0.579176 1.00316i
\(57\) −5.40543 + 5.27080i −0.715967 + 0.698134i
\(58\) 1.90411 3.29802i 0.250022 0.433051i
\(59\) −2.37489 −0.309184 −0.154592 0.987978i \(-0.549406\pi\)
−0.154592 + 0.987978i \(0.549406\pi\)
\(60\) −0.0188840 0.281293i −0.00243792 0.0363147i
\(61\) −12.8567 −1.64613 −0.823064 0.567948i \(-0.807737\pi\)
−0.823064 + 0.567948i \(0.807737\pi\)
\(62\) 2.08693 1.20489i 0.265040 0.153021i
\(63\) 4.05552 9.87922i 0.510947 1.24466i
\(64\) 1.29694 0.162117
\(65\) 0.0222836 + 0.0385964i 0.00276394 + 0.00478729i
\(66\) 4.71333 + 2.31509i 0.580170 + 0.284968i
\(67\) 9.17875 5.29935i 1.12136 0.647419i 0.179614 0.983737i \(-0.442515\pi\)
0.941748 + 0.336318i \(0.109182\pi\)
\(68\) 4.89919 + 2.82855i 0.594114 + 0.343012i
\(69\) 0.627998 + 9.35453i 0.0756021 + 1.12615i
\(70\) 0.263221i 0.0314609i
\(71\) 5.43426 + 9.41241i 0.644928 + 1.11705i 0.984318 + 0.176402i \(0.0564459\pi\)
−0.339390 + 0.940646i \(0.610221\pi\)
\(72\) 4.46550 + 5.78156i 0.526264 + 0.681364i
\(73\) 2.47284 + 4.28309i 0.289424 + 0.501297i 0.973672 0.227952i \(-0.0732029\pi\)
−0.684248 + 0.729249i \(0.739870\pi\)
\(74\) −1.10550 0.638258i −0.128511 0.0741960i
\(75\) 3.80930 7.75542i 0.439860 0.895518i
\(76\) −1.20177 6.52432i −0.137852 0.748391i
\(77\) 13.5181 + 7.80470i 1.54053 + 0.889428i
\(78\) −0.447926 0.220012i −0.0507176 0.0249114i
\(79\) 0.947726 + 0.547170i 0.106627 + 0.0615614i 0.552365 0.833602i \(-0.313725\pi\)
−0.445738 + 0.895164i \(0.647059\pi\)
\(80\) 0.125990 + 0.0727401i 0.0140861 + 0.00813259i
\(81\) −2.27429 + 8.70790i −0.252699 + 0.967545i
\(82\) 3.44762 5.97145i 0.380726 0.659437i
\(83\) 7.21082 4.16317i 0.791490 0.456967i −0.0489969 0.998799i \(-0.515602\pi\)
0.840487 + 0.541832i \(0.182269\pi\)
\(84\) 5.22576 + 7.79417i 0.570177 + 0.850414i
\(85\) −0.198760 0.344263i −0.0215586 0.0373406i
\(86\) 3.73498 + 6.46918i 0.402753 + 0.697589i
\(87\) −4.20592 + 8.56290i −0.450922 + 0.918039i
\(88\) −9.24726 + 5.33891i −0.985761 + 0.569130i
\(89\) −2.61637 + 4.53168i −0.277335 + 0.480358i −0.970721 0.240208i \(-0.922784\pi\)
0.693387 + 0.720565i \(0.256118\pi\)
\(90\) −0.0296508 0.219841i −0.00312546 0.0231732i
\(91\) −1.28468 0.741711i −0.134671 0.0777524i
\(92\) −7.13465 4.11919i −0.743838 0.429455i
\(93\) −5.01410 + 3.36180i −0.519938 + 0.348603i
\(94\) 0.150350 + 0.0868045i 0.0155074 + 0.00895320i
\(95\) −0.156096 + 0.439262i −0.0160151 + 0.0450673i
\(96\) −10.0418 + 0.674138i −1.02489 + 0.0688039i
\(97\) 11.3602 + 6.55883i 1.15346 + 0.665948i 0.949727 0.313079i \(-0.101361\pi\)
0.203729 + 0.979027i \(0.434694\pi\)
\(98\) −1.96075 3.39611i −0.198065 0.343059i
\(99\) −12.1694 4.99568i −1.22307 0.502084i
\(100\) 3.79620 + 6.57522i 0.379620 + 0.657522i
\(101\) 1.76933i 0.176055i 0.996118 + 0.0880276i \(0.0280564\pi\)
−0.996118 + 0.0880276i \(0.971944\pi\)
\(102\) 3.99531 + 1.96241i 0.395594 + 0.194308i
\(103\) 1.56658 + 0.904463i 0.154359 + 0.0891194i 0.575190 0.818020i \(-0.304928\pi\)
−0.420831 + 0.907139i \(0.638261\pi\)
\(104\) 0.878803 0.507377i 0.0861738 0.0497524i
\(105\) −0.0441682 0.657921i −0.00431038 0.0642065i
\(106\) −0.996947 1.72676i −0.0968320 0.167718i
\(107\) 13.6046 1.31520 0.657601 0.753366i \(-0.271571\pi\)
0.657601 + 0.753366i \(0.271571\pi\)
\(108\) −5.24251 5.92099i −0.504461 0.569747i
\(109\) 10.9897 6.34490i 1.05262 0.607731i 0.129239 0.991613i \(-0.458747\pi\)
0.923382 + 0.383883i \(0.125413\pi\)
\(110\) 0.324241 0.0309152
\(111\) 2.87029 + 1.40983i 0.272436 + 0.133815i
\(112\) −4.84231 −0.457555
\(113\) 2.83696 4.91376i 0.266879 0.462247i −0.701175 0.712989i \(-0.747341\pi\)
0.968054 + 0.250741i \(0.0806744\pi\)
\(114\) −1.28734 5.05874i −0.120570 0.473795i
\(115\) 0.289453 + 0.501347i 0.0269916 + 0.0467509i
\(116\) −4.19146 7.25982i −0.389167 0.674057i
\(117\) 1.15651 + 0.474759i 0.106919 + 0.0438914i
\(118\) 0.821001 1.42202i 0.0755793 0.130907i
\(119\) 11.4588 + 6.61574i 1.05043 + 0.606464i
\(120\) 0.404870 + 0.198864i 0.0369594 + 0.0181537i
\(121\) 4.11399 7.12565i 0.374000 0.647786i
\(122\) 4.44457 7.69822i 0.402392 0.696964i
\(123\) −7.61532 + 15.5042i −0.686651 + 1.39796i
\(124\) 5.30457i 0.476364i
\(125\) 1.06825i 0.0955473i
\(126\) 4.51340 + 5.84359i 0.402086 + 0.520588i
\(127\) −14.2508 8.22768i −1.26455 0.730089i −0.290599 0.956845i \(-0.593855\pi\)
−0.973951 + 0.226756i \(0.927188\pi\)
\(128\) 5.36235 9.28786i 0.473969 0.820938i
\(129\) −10.4211 15.5430i −0.917527 1.36848i
\(130\) −0.0308139 −0.00270256
\(131\) 9.66429i 0.844373i −0.906509 0.422187i \(-0.861263\pi\)
0.906509 0.422187i \(-0.138737\pi\)
\(132\) 9.60103 6.43721i 0.835663 0.560287i
\(133\) −2.81084 15.2599i −0.243731 1.32320i
\(134\) 7.32797i 0.633040i
\(135\) 0.111001 + 0.544516i 0.00955346 + 0.0468645i
\(136\) −7.83855 + 4.52559i −0.672150 + 0.388066i
\(137\) 12.5958i 1.07613i 0.842904 + 0.538064i \(0.180844\pi\)
−0.842904 + 0.538064i \(0.819156\pi\)
\(138\) −5.81833 2.85784i −0.495289 0.243276i
\(139\) −5.07945 8.79786i −0.430833 0.746225i 0.566112 0.824328i \(-0.308447\pi\)
−0.996945 + 0.0781032i \(0.975114\pi\)
\(140\) 0.501792 + 0.289710i 0.0424092 + 0.0244850i
\(141\) −0.390365 0.191739i −0.0328747 0.0161474i
\(142\) −7.51452 −0.630604
\(143\) −0.913655 + 1.58250i −0.0764037 + 0.132335i
\(144\) 4.04427 0.545467i 0.337023 0.0454556i
\(145\) 0.589063i 0.0489190i
\(146\) −3.41946 −0.282996
\(147\) 5.47075 + 8.15957i 0.451220 + 0.672990i
\(148\) −2.43349 + 1.40498i −0.200032 + 0.115489i
\(149\) 17.1225i 1.40273i 0.712802 + 0.701365i \(0.247426\pi\)
−0.712802 + 0.701365i \(0.752574\pi\)
\(150\) 3.32685 + 4.96196i 0.271636 + 0.405142i
\(151\) 0.724901 0.418522i 0.0589916 0.0340588i −0.470214 0.882552i \(-0.655823\pi\)
0.529206 + 0.848494i \(0.322490\pi\)
\(152\) 10.0016 + 3.55417i 0.811236 + 0.288281i
\(153\) −10.3156 4.23464i −0.833964 0.342351i
\(154\) −9.34647 + 5.39619i −0.753160 + 0.434837i
\(155\) −0.186374 + 0.322810i −0.0149699 + 0.0259287i
\(156\) −0.912424 + 0.611753i −0.0730523 + 0.0489794i
\(157\) −14.9279 −1.19138 −0.595688 0.803216i \(-0.703121\pi\)
−0.595688 + 0.803216i \(0.703121\pi\)
\(158\) −0.655260 + 0.378314i −0.0521297 + 0.0300971i
\(159\) 2.78162 + 4.14876i 0.220597 + 0.329018i
\(160\) −0.538182 + 0.310720i −0.0425470 + 0.0245645i
\(161\) −16.6874 9.63445i −1.31515 0.759301i
\(162\) −4.42782 4.37212i −0.347883 0.343506i
\(163\) 3.88920 0.304626 0.152313 0.988332i \(-0.451328\pi\)
0.152313 + 0.988332i \(0.451328\pi\)
\(164\) −7.58914 13.1448i −0.592612 1.02643i
\(165\) −0.810441 + 0.0544074i −0.0630927 + 0.00423561i
\(166\) 5.75685i 0.446818i
\(167\) −4.78677 8.29094i −0.370412 0.641572i 0.619217 0.785220i \(-0.287450\pi\)
−0.989629 + 0.143648i \(0.954117\pi\)
\(168\) −14.9802 + 1.00567i −1.15575 + 0.0775891i
\(169\) −6.41317 + 11.1079i −0.493321 + 0.854457i
\(170\) 0.274847 0.0210798
\(171\) 4.06656 + 12.4283i 0.310978 + 0.950417i
\(172\) 16.4434 1.25380
\(173\) 2.24276 3.88458i 0.170514 0.295339i −0.768086 0.640347i \(-0.778790\pi\)
0.938600 + 0.345008i \(0.112124\pi\)
\(174\) −3.67323 5.47859i −0.278467 0.415331i
\(175\) 8.87901 + 15.3789i 0.671190 + 1.16254i
\(176\) 5.96486i 0.449618i
\(177\) −1.81348 + 3.69209i −0.136310 + 0.277515i
\(178\) −1.80896 3.13322i −0.135588 0.234845i
\(179\) 5.02157 0.375330 0.187665 0.982233i \(-0.439908\pi\)
0.187665 + 0.982233i \(0.439908\pi\)
\(180\) −0.451729 0.185439i −0.0336699 0.0138218i
\(181\) 10.9563 + 6.32561i 0.814374 + 0.470179i 0.848473 0.529239i \(-0.177523\pi\)
−0.0340985 + 0.999418i \(0.510856\pi\)
\(182\) 0.888231 0.512821i 0.0658401 0.0380128i
\(183\) −9.81745 + 19.9875i −0.725727 + 1.47752i
\(184\) 11.4152 6.59058i 0.841541 0.485864i
\(185\) 0.197454 0.0145171
\(186\) −0.279574 4.16448i −0.0204994 0.305355i
\(187\) 8.14942 14.1152i 0.595945 1.03221i
\(188\) 0.330961 0.191080i 0.0241378 0.0139360i
\(189\) −12.2618 13.8487i −0.891915 1.00735i
\(190\) −0.209055 0.245320i −0.0151665 0.0177973i
\(191\) 12.8859 7.43970i 0.932394 0.538318i 0.0448259 0.998995i \(-0.485727\pi\)
0.887568 + 0.460677i \(0.152393\pi\)
\(192\) 0.990351 2.01627i 0.0714724 0.145512i
\(193\) 13.3486i 0.960853i 0.877035 + 0.480426i \(0.159518\pi\)
−0.877035 + 0.480426i \(0.840482\pi\)
\(194\) −7.85449 + 4.53479i −0.563919 + 0.325579i
\(195\) 0.0770194 0.00517054i 0.00551547 0.000370270i
\(196\) −8.63226 −0.616590
\(197\) 21.4163i 1.52585i 0.646488 + 0.762925i \(0.276237\pi\)
−0.646488 + 0.762925i \(0.723763\pi\)
\(198\) 7.19826 5.55971i 0.511558 0.395111i
\(199\) 2.50917 4.34600i 0.177870 0.308080i −0.763281 0.646067i \(-0.776413\pi\)
0.941151 + 0.337987i \(0.109746\pi\)
\(200\) −12.1476 −0.858966
\(201\) −1.22963 18.3163i −0.0867312 1.29193i
\(202\) −1.05943 0.611661i −0.0745411 0.0430363i
\(203\) −9.80348 16.9801i −0.688069 1.19177i
\(204\) 8.13843 5.45658i 0.569804 0.382037i
\(205\) 1.06657i 0.0744924i
\(206\) −1.08313 + 0.625348i −0.0754655 + 0.0435700i
\(207\) 15.0225 + 6.16687i 1.04413 + 0.428627i
\(208\) 0.566864i 0.0393050i
\(209\) −18.7974 + 3.46246i −1.30025 + 0.239503i
\(210\) 0.409213 + 0.200997i 0.0282384 + 0.0138701i
\(211\) 16.0094i 1.10213i 0.834462 + 0.551066i \(0.185779\pi\)
−0.834462 + 0.551066i \(0.814221\pi\)
\(212\) −4.38910 −0.301444
\(213\) 18.7825 1.26093i 1.28696 0.0863975i
\(214\) −4.70311 + 8.14603i −0.321498 + 0.556851i
\(215\) −1.00066 0.577734i −0.0682447 0.0394011i
\(216\) 12.3981 2.52739i 0.843586 0.171967i
\(217\) 12.4069i 0.842239i
\(218\) 8.77375i 0.594233i
\(219\) 8.54693 0.573782i 0.577548 0.0387726i
\(220\) 0.356871 0.618119i 0.0240602 0.0416736i
\(221\) −0.774471 + 1.34142i −0.0520966 + 0.0902339i
\(222\) −1.83643 + 1.23127i −0.123253 + 0.0826374i
\(223\) 7.10493 + 4.10203i 0.475781 + 0.274693i 0.718657 0.695365i \(-0.244757\pi\)
−0.242875 + 0.970058i \(0.578091\pi\)
\(224\) 10.3423 17.9134i 0.691024 1.19689i
\(225\) −9.14807 11.8442i −0.609871 0.789612i
\(226\) 1.96148 + 3.39738i 0.130476 + 0.225991i
\(227\) 14.4019 + 24.9448i 0.955888 + 1.65565i 0.732322 + 0.680958i \(0.238437\pi\)
0.223566 + 0.974689i \(0.428230\pi\)
\(228\) −11.0607 3.11370i −0.732510 0.206210i
\(229\) 9.25025 16.0219i 0.611274 1.05876i −0.379753 0.925088i \(-0.623991\pi\)
0.991026 0.133669i \(-0.0426758\pi\)
\(230\) −0.400257 −0.0263922
\(231\) 22.4560 15.0561i 1.47750 0.990619i
\(232\) 13.4124 0.880568
\(233\) −17.8445 + 10.3025i −1.16903 + 0.674941i −0.953452 0.301545i \(-0.902498\pi\)
−0.215580 + 0.976486i \(0.569164\pi\)
\(234\) −0.684079 + 0.528360i −0.0447196 + 0.0345400i
\(235\) −0.0268542 −0.00175177
\(236\) −1.80725 3.13024i −0.117642 0.203761i
\(237\) 1.57434 1.05555i 0.102265 0.0685653i
\(238\) −7.92265 + 4.57414i −0.513549 + 0.296498i
\(239\) −25.5747 14.7655i −1.65429 0.955104i −0.975280 0.220972i \(-0.929077\pi\)
−0.679008 0.734131i \(-0.737590\pi\)
\(240\) 0.209291 0.140323i 0.0135097 0.00905784i
\(241\) 4.30851i 0.277536i −0.990325 0.138768i \(-0.955686\pi\)
0.990325 0.138768i \(-0.0443142\pi\)
\(242\) 2.84443 + 4.92669i 0.182847 + 0.316700i
\(243\) 11.8010 + 10.1851i 0.757034 + 0.653376i
\(244\) −9.78369 16.9459i −0.626337 1.08485i
\(245\) 0.525317 + 0.303292i 0.0335613 + 0.0193766i
\(246\) −6.65083 9.91965i −0.424041 0.632454i
\(247\) 1.78639 0.329051i 0.113665 0.0209370i
\(248\) 7.35008 + 4.24357i 0.466731 + 0.269467i
\(249\) −0.965994 14.3892i −0.0612174 0.911881i
\(250\) 0.639639 + 0.369296i 0.0404543 + 0.0233563i
\(251\) −10.3715 5.98796i −0.654640 0.377957i 0.135592 0.990765i \(-0.456707\pi\)
−0.790232 + 0.612808i \(0.790040\pi\)
\(252\) 16.1076 2.17249i 1.01468 0.136854i
\(253\) −11.8679 + 20.5558i −0.746130 + 1.29233i
\(254\) 9.85301 5.68864i 0.618233 0.356937i
\(255\) −0.686980 + 0.0461191i −0.0430204 + 0.00288809i
\(256\) 5.00448 + 8.66801i 0.312780 + 0.541750i
\(257\) 9.98699 + 17.2980i 0.622972 + 1.07902i 0.988929 + 0.148387i \(0.0474081\pi\)
−0.365958 + 0.930631i \(0.619259\pi\)
\(258\) 12.9093 0.866640i 0.803697 0.0539547i
\(259\) −5.69174 + 3.28613i −0.353668 + 0.204190i
\(260\) −0.0339148 + 0.0587422i −0.00210331 + 0.00364304i
\(261\) 10.1006 + 13.0774i 0.625209 + 0.809470i
\(262\) 5.78671 + 3.34096i 0.357504 + 0.206405i
\(263\) 7.30226 + 4.21596i 0.450277 + 0.259967i 0.707947 0.706266i \(-0.249622\pi\)
−0.257670 + 0.966233i \(0.582955\pi\)
\(264\) 1.23881 + 18.4530i 0.0762432 + 1.13570i
\(265\) 0.267099 + 0.154210i 0.0164078 + 0.00947302i
\(266\) 10.1089 + 3.59230i 0.619816 + 0.220258i
\(267\) 5.04726 + 7.52794i 0.308887 + 0.460702i
\(268\) 13.9697 + 8.06542i 0.853336 + 0.492674i
\(269\) −10.9044 18.8870i −0.664856 1.15156i −0.979324 0.202296i \(-0.935160\pi\)
0.314469 0.949268i \(-0.398174\pi\)
\(270\) −0.364414 0.121776i −0.0221775 0.00741102i
\(271\) 2.11392 + 3.66142i 0.128412 + 0.222416i 0.923061 0.384653i \(-0.125679\pi\)
−0.794650 + 0.607068i \(0.792345\pi\)
\(272\) 5.05619i 0.306576i
\(273\) −2.13408 + 1.43084i −0.129161 + 0.0865984i
\(274\) −7.54199 4.35437i −0.455628 0.263057i
\(275\) 18.9441 10.9374i 1.14237 0.659547i
\(276\) −11.8519 + 7.94636i −0.713402 + 0.478315i
\(277\) 8.28717 + 14.3538i 0.497928 + 0.862436i 0.999997 0.00239145i \(-0.000761224\pi\)
−0.502070 + 0.864827i \(0.667428\pi\)
\(278\) 7.02389 0.421265
\(279\) 1.39759 + 10.3622i 0.0836717 + 0.620370i
\(280\) −0.802852 + 0.463527i −0.0479796 + 0.0277010i
\(281\) −17.6086 −1.05044 −0.525220 0.850966i \(-0.676017\pi\)
−0.525220 + 0.850966i \(0.676017\pi\)
\(282\) 0.249758 0.167455i 0.0148729 0.00997182i
\(283\) −31.9287 −1.89797 −0.948983 0.315329i \(-0.897885\pi\)
−0.948983 + 0.315329i \(0.897885\pi\)
\(284\) −8.27074 + 14.3253i −0.490778 + 0.850053i
\(285\) 0.563698 + 0.578097i 0.0333906 + 0.0342435i
\(286\) −0.631703 1.09414i −0.0373534 0.0646980i
\(287\) −17.7504 30.7446i −1.04777 1.81479i
\(288\) −6.61996 + 16.1262i −0.390085 + 0.950245i
\(289\) −1.59205 + 2.75751i −0.0936498 + 0.162206i
\(290\) −0.352714 0.203640i −0.0207121 0.0119581i
\(291\) 18.8714 12.6527i 1.10626 0.741714i
\(292\) −3.76357 + 6.51870i −0.220246 + 0.381478i
\(293\) 14.0550 24.3440i 0.821101 1.42219i −0.0837616 0.996486i \(-0.526693\pi\)
0.904863 0.425703i \(-0.139973\pi\)
\(294\) −6.77697 + 0.454959i −0.395241 + 0.0265337i
\(295\) 0.253988i 0.0147878i
\(296\) 4.49584i 0.261316i
\(297\) −17.0591 + 15.1044i −0.989872 + 0.876443i
\(298\) −10.2525 5.91927i −0.593910 0.342894i
\(299\) 1.12785 1.95350i 0.0652255 0.112974i
\(300\) 13.1209 0.880846i 0.757535 0.0508557i
\(301\) 38.4598 2.21678
\(302\) 0.578734i 0.0333024i
\(303\) 2.75068 + 1.35108i 0.158022 + 0.0776173i
\(304\) 4.51299 3.84586i 0.258838 0.220575i
\(305\) 1.37499i 0.0787316i
\(306\) 6.10169 4.71275i 0.348810 0.269410i
\(307\) −8.38574 + 4.84151i −0.478599 + 0.276319i −0.719833 0.694148i \(-0.755781\pi\)
0.241233 + 0.970467i \(0.422448\pi\)
\(308\) 23.7569i 1.35368i
\(309\) 2.60236 1.74481i 0.148043 0.0992586i
\(310\) −0.128860 0.223192i −0.00731874 0.0126764i
\(311\) 0.0989162 + 0.0571093i 0.00560902 + 0.00323837i 0.502802 0.864402i \(-0.332303\pi\)
−0.497193 + 0.867640i \(0.665636\pi\)
\(312\) −0.117728 1.75366i −0.00666506 0.0992814i
\(313\) −2.26753 −0.128168 −0.0640841 0.997944i \(-0.520413\pi\)
−0.0640841 + 0.997944i \(0.520413\pi\)
\(314\) 5.16059 8.93841i 0.291229 0.504424i
\(315\) −1.05656 0.433727i −0.0595302 0.0244378i
\(316\) 1.66554i 0.0936942i
\(317\) 9.86385 0.554009 0.277004 0.960869i \(-0.410658\pi\)
0.277004 + 0.960869i \(0.410658\pi\)
\(318\) −3.44577 + 0.231325i −0.193229 + 0.0129721i
\(319\) −20.9165 + 12.0761i −1.17110 + 0.676134i
\(320\) 0.138704i 0.00775380i
\(321\) 10.3885 21.1502i 0.579832 1.18049i
\(322\) 11.5377 6.66128i 0.642969 0.371219i
\(323\) −15.9339 + 2.93499i −0.886584 + 0.163307i
\(324\) −13.2082 + 3.62890i −0.733790 + 0.201606i
\(325\) −1.80033 + 1.03942i −0.0998642 + 0.0576566i
\(326\) −1.34450 + 2.32874i −0.0744650 + 0.128977i
\(327\) −1.47223 21.9300i −0.0814144 1.21273i
\(328\) 24.2848 1.34090
\(329\) 0.774090 0.446921i 0.0426769 0.0246395i
\(330\) 0.247593 0.504078i 0.0136295 0.0277486i
\(331\) −6.56652 + 3.79118i −0.360929 + 0.208382i −0.669488 0.742823i \(-0.733486\pi\)
0.308559 + 0.951205i \(0.400153\pi\)
\(332\) 10.9746 + 6.33618i 0.602309 + 0.347743i
\(333\) 4.38354 3.38571i 0.240217 0.185536i
\(334\) 6.61917 0.362185
\(335\) −0.566752 0.981643i −0.0309650 0.0536329i
\(336\) −3.69762 + 7.52805i −0.201722 + 0.410689i
\(337\) 14.1127i 0.768768i −0.923173 0.384384i \(-0.874414\pi\)
0.923173 0.384384i \(-0.125586\pi\)
\(338\) −4.43408 7.68006i −0.241182 0.417740i
\(339\) −5.47280 8.16263i −0.297242 0.443333i
\(340\) 0.302506 0.523956i 0.0164057 0.0284155i
\(341\) −15.2831 −0.827629
\(342\) −8.84754 1.86154i −0.478420 0.100661i
\(343\) 4.72808 0.255292
\(344\) −13.1545 + 22.7842i −0.709241 + 1.22844i
\(345\) 1.00044 0.0671628i 0.0538620 0.00361592i
\(346\) 1.55065 + 2.68581i 0.0833636 + 0.144390i
\(347\) 6.86219i 0.368381i −0.982891 0.184191i \(-0.941034\pi\)
0.982891 0.184191i \(-0.0589664\pi\)
\(348\) −14.4870 + 0.972559i −0.776586 + 0.0521346i
\(349\) 3.10669 + 5.38094i 0.166297 + 0.288035i 0.937115 0.349020i \(-0.113486\pi\)
−0.770818 + 0.637056i \(0.780152\pi\)
\(350\) −12.2779 −0.656283
\(351\) 1.62120 1.43543i 0.0865331 0.0766173i
\(352\) −22.0661 12.7399i −1.17613 0.679038i
\(353\) −11.0335 + 6.37017i −0.587252 + 0.339050i −0.764010 0.645204i \(-0.776772\pi\)
0.176758 + 0.984254i \(0.443439\pi\)
\(354\) −1.58380 2.36222i −0.0841780 0.125551i
\(355\) 1.00663 0.581180i 0.0534265 0.0308458i
\(356\) −7.96403 −0.422093
\(357\) 19.0351 12.7625i 1.00745 0.675462i
\(358\) −1.73596 + 3.00678i −0.0917485 + 0.158913i
\(359\) 13.1829 7.61116i 0.695767 0.401701i −0.110002 0.993931i \(-0.535086\pi\)
0.805769 + 0.592230i \(0.201752\pi\)
\(360\) 0.618323 0.477573i 0.0325885 0.0251703i
\(361\) 14.7394 + 11.9896i 0.775756 + 0.631033i
\(362\) −7.57520 + 4.37354i −0.398144 + 0.229868i
\(363\) −7.93634 11.8370i −0.416550 0.621280i
\(364\) 2.25771i 0.118336i
\(365\) 0.458065 0.264464i 0.0239762 0.0138427i
\(366\) −8.57405 12.7881i −0.448173 0.668445i
\(367\) −7.66563 −0.400143 −0.200071 0.979781i \(-0.564117\pi\)
−0.200071 + 0.979781i \(0.564117\pi\)
\(368\) 7.36328i 0.383837i
\(369\) 18.2883 + 23.6782i 0.952049 + 1.23264i
\(370\) −0.0682601 + 0.118230i −0.00354867 + 0.00614648i
\(371\) −10.2657 −0.532971
\(372\) −8.24669 4.05060i −0.427571 0.210014i
\(373\) −16.3704 9.45148i −0.847629 0.489379i 0.0122211 0.999925i \(-0.496110\pi\)
−0.859850 + 0.510546i \(0.829443\pi\)
\(374\) 5.63453 + 9.75929i 0.291354 + 0.504641i
\(375\) −1.66075 0.815724i −0.0857605 0.0421238i
\(376\) 0.611445i 0.0315329i
\(377\) 1.98778 1.14764i 0.102376 0.0591066i
\(378\) 12.5311 2.55451i 0.644532 0.131390i
\(379\) 24.7158i 1.26957i −0.772690 0.634784i \(-0.781089\pi\)
0.772690 0.634784i \(-0.218911\pi\)
\(380\) −0.697759 + 0.128526i −0.0357943 + 0.00659325i
\(381\) −23.6731 + 15.8721i −1.21281 + 0.813151i
\(382\) 10.2877i 0.526362i
\(383\) 22.8913 1.16969 0.584845 0.811145i \(-0.301155\pi\)
0.584845 + 0.811145i \(0.301155\pi\)
\(384\) −10.3445 15.4288i −0.527893 0.787347i
\(385\) 0.834692 1.44573i 0.0425398 0.0736812i
\(386\) −7.99276 4.61462i −0.406821 0.234878i
\(387\) −32.1214 + 4.33234i −1.63282 + 0.220225i
\(388\) 19.9646i 1.01355i
\(389\) 3.79097i 0.192210i −0.995371 0.0961049i \(-0.969362\pi\)
0.995371 0.0961049i \(-0.0306384\pi\)
\(390\) −0.0235297 + 0.0479045i −0.00119147 + 0.00242574i
\(391\) −10.0600 + 17.4244i −0.508755 + 0.881190i
\(392\) 6.90567 11.9610i 0.348789 0.604121i
\(393\) −15.0245 7.37972i −0.757885 0.372258i
\(394\) −12.8235 7.40364i −0.646038 0.372990i
\(395\) 0.0585184 0.101357i 0.00294438 0.00509982i
\(396\) −2.67612 19.8416i −0.134480 0.997080i
\(397\) 3.53802 + 6.12804i 0.177568 + 0.307557i 0.941047 0.338276i \(-0.109844\pi\)
−0.763479 + 0.645833i \(0.776510\pi\)
\(398\) 1.73484 + 3.00484i 0.0869598 + 0.150619i
\(399\) −25.8700 7.28269i −1.29512 0.364590i
\(400\) −3.39296 + 5.87678i −0.169648 + 0.293839i
\(401\) −12.6565 −0.632036 −0.316018 0.948753i \(-0.602346\pi\)
−0.316018 + 0.948753i \(0.602346\pi\)
\(402\) 11.3924 + 5.59569i 0.568199 + 0.279088i
\(403\) 1.45242 0.0723501
\(404\) −2.33209 + 1.34643i −0.116026 + 0.0669874i
\(405\) 0.931288 + 0.243230i 0.0462761 + 0.0120862i
\(406\) 13.5563 0.672788
\(407\) 4.04793 + 7.01121i 0.200648 + 0.347533i
\(408\) 1.05009 + 15.6419i 0.0519871 + 0.774389i
\(409\) 20.9336 12.0860i 1.03510 0.597615i 0.116658 0.993172i \(-0.462782\pi\)
0.918441 + 0.395557i \(0.129448\pi\)
\(410\) −0.638631 0.368714i −0.0315398 0.0182095i
\(411\) 19.5819 + 9.61821i 0.965902 + 0.474431i
\(412\) 2.75312i 0.135636i
\(413\) −4.22700 7.32138i −0.207997 0.360261i
\(414\) −8.88583 + 6.86314i −0.436715 + 0.337305i
\(415\) −0.445240 0.771178i −0.0218560 0.0378556i
\(416\) 2.09703 + 1.21072i 0.102815 + 0.0593604i
\(417\) −17.5562 + 1.17860i −0.859731 + 0.0577164i
\(418\) 4.42507 12.4523i 0.216437 0.609064i
\(419\) 23.3582 + 13.4859i 1.14112 + 0.658828i 0.946709 0.322091i \(-0.104386\pi\)
0.194415 + 0.980919i \(0.437719\pi\)
\(420\) 0.833567 0.558882i 0.0406739 0.0272706i
\(421\) 22.9894 + 13.2730i 1.12044 + 0.646885i 0.941512 0.336978i \(-0.109405\pi\)
0.178925 + 0.983863i \(0.442738\pi\)
\(422\) −9.58598 5.53447i −0.466638 0.269414i
\(423\) −0.596172 + 0.460464i −0.0289869 + 0.0223885i
\(424\) 3.51121 6.08159i 0.170519 0.295348i
\(425\) 16.0582 9.27118i 0.778935 0.449718i
\(426\) −5.73814 + 11.6824i −0.278014 + 0.566013i
\(427\) −22.8833 39.6350i −1.10740 1.91807i
\(428\) 10.3528 + 17.9316i 0.500422 + 0.866757i
\(429\) 1.76254 + 2.62881i 0.0850962 + 0.126920i
\(430\) 0.691862 0.399446i 0.0333645 0.0192630i
\(431\) −8.45285 + 14.6408i −0.407159 + 0.705221i −0.994570 0.104068i \(-0.966814\pi\)
0.587411 + 0.809289i \(0.300147\pi\)
\(432\) 2.24023 6.70390i 0.107783 0.322542i
\(433\) −13.0398 7.52854i −0.626653 0.361799i 0.152801 0.988257i \(-0.451171\pi\)
−0.779455 + 0.626458i \(0.784504\pi\)
\(434\) 7.42893 + 4.28910i 0.356600 + 0.205883i
\(435\) 0.915780 + 0.449812i 0.0439083 + 0.0215669i
\(436\) 16.7259 + 9.65670i 0.801025 + 0.462472i
\(437\) 23.2043 4.27420i 1.11001 0.204463i
\(438\) −2.61112 + 5.31602i −0.124764 + 0.254009i
\(439\) −12.9671 7.48654i −0.618884 0.357313i 0.157550 0.987511i \(-0.449640\pi\)
−0.776434 + 0.630198i \(0.782974\pi\)
\(440\) 0.570983 + 0.988971i 0.0272205 + 0.0471473i
\(441\) 16.8627 2.27434i 0.802986 0.108302i
\(442\) −0.535471 0.927463i −0.0254698 0.0441149i
\(443\) 13.9092i 0.660844i −0.943833 0.330422i \(-0.892809\pi\)
0.943833 0.330422i \(-0.107191\pi\)
\(444\) 0.326002 + 4.85606i 0.0154714 + 0.230458i
\(445\) 0.484652 + 0.279814i 0.0229747 + 0.0132644i
\(446\) −4.91237 + 2.83616i −0.232607 + 0.134296i
\(447\) 26.6193 + 13.0749i 1.25905 + 0.618420i
\(448\) 2.30839 + 3.99824i 0.109061 + 0.188899i
\(449\) 33.9028 1.59997 0.799986 0.600018i \(-0.204840\pi\)
0.799986 + 0.600018i \(0.204840\pi\)
\(450\) 10.2545 1.38306i 0.483400 0.0651981i
\(451\) −37.8718 + 21.8653i −1.78331 + 1.02960i
\(452\) 8.63549 0.406179
\(453\) −0.0971110 1.44655i −0.00456267 0.0679646i
\(454\) −19.9150 −0.934659
\(455\) −0.0793240 + 0.137393i −0.00371877 + 0.00644110i
\(456\) 13.1627 12.8349i 0.616402 0.601048i
\(457\) −17.4349 30.1981i −0.815569 1.41261i −0.908919 0.416973i \(-0.863091\pi\)
0.0933501 0.995633i \(-0.470242\pi\)
\(458\) 6.39564 + 11.0776i 0.298849 + 0.517621i
\(459\) −14.4604 + 12.8034i −0.674953 + 0.597611i
\(460\) −0.440537 + 0.763032i −0.0205401 + 0.0355765i
\(461\) −10.5657 6.10014i −0.492096 0.284112i 0.233348 0.972393i \(-0.425032\pi\)
−0.725443 + 0.688282i \(0.758365\pi\)
\(462\) 1.25210 + 18.6510i 0.0582527 + 0.867721i
\(463\) 7.89622 13.6766i 0.366968 0.635608i −0.622122 0.782921i \(-0.713729\pi\)
0.989090 + 0.147313i \(0.0470624\pi\)
\(464\) 3.74623 6.48867i 0.173914 0.301229i
\(465\) 0.359536 + 0.536245i 0.0166731 + 0.0248678i
\(466\) 14.2464i 0.659951i
\(467\) 1.00890i 0.0466861i −0.999728 0.0233430i \(-0.992569\pi\)
0.999728 0.0233430i \(-0.00743100\pi\)
\(468\) 0.254322 + 1.88563i 0.0117560 + 0.0871632i
\(469\) 32.6740 + 18.8644i 1.50875 + 0.871075i
\(470\) 0.00928352 0.0160795i 0.000428217 0.000741693i
\(471\) −11.3990 + 23.2075i −0.525240 + 1.06935i
\(472\) 5.78307 0.266188
\(473\) 47.3756i 2.17833i
\(474\) 0.0877816 + 1.30758i 0.00403194 + 0.0600590i
\(475\) −20.4894 7.28111i −0.940117 0.334080i
\(476\) 20.1378i 0.923016i
\(477\) 8.57389 1.15639i 0.392571 0.0529477i
\(478\) 17.6824 10.2089i 0.808774 0.466946i
\(479\) 43.5986i 1.99207i −0.0889514 0.996036i \(-0.528352\pi\)
0.0889514 0.996036i \(-0.471648\pi\)
\(480\) 0.0720973 + 1.07395i 0.00329078 + 0.0490187i
\(481\) −0.384690 0.666303i −0.0175404 0.0303808i
\(482\) 2.57982 + 1.48946i 0.117507 + 0.0678429i
\(483\) −27.7207 + 18.5859i −1.26133 + 0.845687i
\(484\) 12.5227 0.569213
\(485\) 0.701450 1.21495i 0.0318512 0.0551679i
\(486\) −10.1782 + 3.54509i −0.461692 + 0.160809i
\(487\) 18.8798i 0.855523i −0.903892 0.427762i \(-0.859302\pi\)
0.903892 0.427762i \(-0.140698\pi\)
\(488\) 31.3072 1.41721
\(489\) 2.96982 6.04630i 0.134300 0.273423i
\(490\) −0.363205 + 0.209697i −0.0164079 + 0.00947313i
\(491\) 27.7179i 1.25089i 0.780269 + 0.625445i \(0.215082\pi\)
−0.780269 + 0.625445i \(0.784918\pi\)
\(492\) −26.2305 + 1.76093i −1.18256 + 0.0793890i
\(493\) −17.7301 + 10.2365i −0.798524 + 0.461028i
\(494\) −0.420532 + 1.18340i −0.0189206 + 0.0532435i
\(495\) −0.534275 + 1.30149i −0.0240139 + 0.0584976i
\(496\) 4.10592 2.37055i 0.184361 0.106441i
\(497\) −19.3446 + 33.5058i −0.867723 + 1.50294i
\(498\) 8.94982 + 4.39597i 0.401051 + 0.196988i
\(499\) 17.1864 0.769368 0.384684 0.923048i \(-0.374310\pi\)
0.384684 + 0.923048i \(0.374310\pi\)
\(500\) 1.40802 0.812919i 0.0629684 0.0363548i
\(501\) −16.5446 + 1.11069i −0.739160 + 0.0496220i
\(502\) 7.17085 4.14009i 0.320050 0.184781i
\(503\) 30.9064 + 17.8438i 1.37805 + 0.795617i 0.991924 0.126830i \(-0.0404804\pi\)
0.386124 + 0.922447i \(0.373814\pi\)
\(504\) −9.87557 + 24.0568i −0.439893 + 1.07158i
\(505\) 0.189226 0.00842043
\(506\) −8.20551 14.2124i −0.364779 0.631816i
\(507\) 12.3717 + 18.4523i 0.549446 + 0.819494i
\(508\) 25.0444i 1.11117i
\(509\) 14.3449 + 24.8461i 0.635826 + 1.10128i 0.986339 + 0.164726i \(0.0526739\pi\)
−0.350513 + 0.936558i \(0.613993\pi\)
\(510\) 0.209875 0.427288i 0.00929342 0.0189206i
\(511\) −8.80269 + 15.2467i −0.389408 + 0.674474i
\(512\) 14.5292 0.642105
\(513\) 22.4268 + 3.16832i 0.990168 + 0.139885i
\(514\) −13.8101 −0.609136
\(515\) 0.0967299 0.167541i 0.00426243 0.00738275i
\(516\) 12.5563 25.5636i 0.552760 1.12537i
\(517\) −0.550527 0.953540i −0.0242121 0.0419367i
\(518\) 4.54408i 0.199655i
\(519\) −4.32653 6.45298i −0.189914 0.283255i
\(520\) −0.0542627 0.0939857i −0.00237958 0.00412155i
\(521\) −19.0866 −0.836198 −0.418099 0.908402i \(-0.637303\pi\)
−0.418099 + 0.908402i \(0.637303\pi\)
\(522\) −11.3221 + 1.52706i −0.495557 + 0.0668377i
\(523\) 6.44315 + 3.71996i 0.281739 + 0.162662i 0.634211 0.773160i \(-0.281325\pi\)
−0.352471 + 0.935823i \(0.614659\pi\)
\(524\) 12.7381 7.35435i 0.556467 0.321276i
\(525\) 30.6887 2.06023i 1.33937 0.0899157i
\(526\) −5.04880 + 2.91493i −0.220138 + 0.127097i
\(527\) −12.9549 −0.564326
\(528\) 9.27321 + 4.55481i 0.403565 + 0.198223i
\(529\) 3.15026 5.45642i 0.136968 0.237236i
\(530\) −0.184673 + 0.106621i −0.00802167 + 0.00463132i
\(531\) 4.35509 + 5.63862i 0.188995 + 0.244695i
\(532\) 17.9744 15.3173i 0.779288 0.664090i
\(533\) 3.59911 2.07794i 0.155895 0.0900058i
\(534\) −6.25236 + 0.419740i −0.270566 + 0.0181639i
\(535\) 1.45497i 0.0629039i
\(536\) −22.3511 + 12.9044i −0.965421 + 0.557386i
\(537\) 3.83451 7.80673i 0.165471 0.336885i
\(538\) 15.0787 0.650089
\(539\) 24.8707i 1.07126i
\(540\) −0.633234 + 0.560673i −0.0272501 + 0.0241275i
\(541\) 5.10236 8.83755i 0.219368 0.379956i −0.735247 0.677799i \(-0.762934\pi\)
0.954615 + 0.297843i \(0.0962672\pi\)
\(542\) −2.92314 −0.125560
\(543\) 18.2003 12.2028i 0.781051 0.523672i
\(544\) −18.7046 10.7991i −0.801954 0.463008i
\(545\) −0.678570 1.17532i −0.0290668 0.0503451i
\(546\) −0.118991 1.77247i −0.00509237 0.0758548i
\(547\) 33.2332i 1.42095i 0.703724 + 0.710474i \(0.251519\pi\)
−0.703724 + 0.710474i \(0.748481\pi\)
\(548\) −16.6019 + 9.58514i −0.709200 + 0.409457i
\(549\) 23.5767 + 30.5252i 1.00623 + 1.30278i
\(550\) 15.1242i 0.644899i
\(551\) 22.6227 + 8.03921i 0.963760 + 0.342482i
\(552\) −1.52923 22.7792i −0.0650885 0.969545i
\(553\) 3.89557i 0.165657i
\(554\) −11.4595 −0.486869
\(555\) 0.150777 0.306970i 0.00640014 0.0130301i
\(556\) 7.73073 13.3900i 0.327856 0.567863i
\(557\) 22.7991 + 13.1631i 0.966030 + 0.557738i 0.898024 0.439947i \(-0.145003\pi\)
0.0680066 + 0.997685i \(0.478336\pi\)
\(558\) −6.68775 2.74539i −0.283115 0.116222i
\(559\) 4.50228i 0.190426i
\(560\) 0.517873i 0.0218841i
\(561\) −15.7211 23.4479i −0.663746 0.989970i
\(562\) 6.08731 10.5435i 0.256778 0.444752i
\(563\) 5.84768 10.1285i 0.246450 0.426864i −0.716088 0.698010i \(-0.754069\pi\)
0.962538 + 0.271146i \(0.0874025\pi\)
\(564\) −0.0443370 0.660435i −0.00186692 0.0278093i
\(565\) −0.525514 0.303405i −0.0221085 0.0127644i
\(566\) 11.0378 19.1180i 0.463953 0.803590i
\(567\) −30.8929 + 8.48771i −1.29738 + 0.356450i
\(568\) −13.2329 22.9201i −0.555241 0.961706i
\(569\) −9.05101 15.6768i −0.379438 0.657206i 0.611543 0.791211i \(-0.290549\pi\)
−0.990981 + 0.134006i \(0.957216\pi\)
\(570\) −0.541019 + 0.137678i −0.0226608 + 0.00576668i
\(571\) 4.87651 8.44636i 0.204076 0.353469i −0.745762 0.666212i \(-0.767914\pi\)
0.949838 + 0.312743i \(0.101248\pi\)
\(572\) −2.78110 −0.116284
\(573\) −1.72626 25.7140i −0.0721155 1.07422i
\(574\) 24.5453 1.02450
\(575\) −23.3853 + 13.5015i −0.975236 + 0.563053i
\(576\) −2.37834 3.07928i −0.0990973 0.128303i
\(577\) −25.3878 −1.05691 −0.528454 0.848962i \(-0.677228\pi\)
−0.528454 + 0.848962i \(0.677228\pi\)
\(578\) −1.10074 1.90655i −0.0457850 0.0793019i
\(579\) 20.7523 + 10.1931i 0.862434 + 0.423610i
\(580\) −0.776419 + 0.448266i −0.0322390 + 0.0186132i
\(581\) 25.6687 + 14.8198i 1.06492 + 0.614830i
\(582\) 1.05222 + 15.6737i 0.0436160 + 0.649695i
\(583\) 12.6456i 0.523726i
\(584\) −6.02160 10.4297i −0.249176 0.431585i
\(585\) 0.0507742 0.123686i 0.00209925 0.00511377i
\(586\) 9.71765 + 16.8315i 0.401433 + 0.695302i
\(587\) 16.6038 + 9.58622i 0.685313 + 0.395666i 0.801854 0.597520i \(-0.203847\pi\)
−0.116541 + 0.993186i \(0.537181\pi\)
\(588\) −6.59165 + 13.4201i −0.271835 + 0.553434i
\(589\) 9.85384 + 11.5632i 0.406021 + 0.476452i
\(590\) −0.152081 0.0878040i −0.00626107 0.00361483i
\(591\) 33.2946 + 16.3536i 1.36956 + 0.672699i
\(592\) −2.17500 1.25574i −0.0893921 0.0516105i
\(593\) 2.09357 + 1.20873i 0.0859728 + 0.0496364i 0.542370 0.840140i \(-0.317527\pi\)
−0.456397 + 0.889776i \(0.650860\pi\)
\(594\) −3.14670 15.4361i −0.129111 0.633352i
\(595\) 0.707537 1.22549i 0.0290062 0.0502402i
\(596\) −22.5685 + 13.0299i −0.924440 + 0.533726i
\(597\) −4.84045 7.21949i −0.198106 0.295474i
\(598\) 0.779801 + 1.35066i 0.0318885 + 0.0552324i
\(599\) −16.0932 27.8742i −0.657550 1.13891i −0.981248 0.192749i \(-0.938260\pi\)
0.323698 0.946160i \(-0.395074\pi\)
\(600\) −9.27600 + 18.8852i −0.378691 + 0.770984i
\(601\) −23.2325 + 13.4133i −0.947675 + 0.547140i −0.892358 0.451329i \(-0.850950\pi\)
−0.0553168 + 0.998469i \(0.517617\pi\)
\(602\) −13.2956 + 23.0286i −0.541887 + 0.938577i
\(603\) −29.4141 12.0748i −1.19784 0.491724i
\(604\) 1.10327 + 0.636974i 0.0448915 + 0.0259181i
\(605\) −0.762070 0.439981i −0.0309825 0.0178878i
\(606\) −1.75990 + 1.17996i −0.0714910 + 0.0479326i
\(607\) 21.3827 + 12.3453i 0.867897 + 0.501081i 0.866649 0.498919i \(-0.166269\pi\)
0.00124816 + 0.999999i \(0.499603\pi\)
\(608\) 4.58824 + 24.9092i 0.186078 + 1.01020i
\(609\) −33.8840 + 2.27474i −1.37305 + 0.0921769i
\(610\) −0.823304 0.475335i −0.0333346 0.0192458i
\(611\) 0.0523187 + 0.0906187i 0.00211659 + 0.00366604i
\(612\) −2.26845 16.8190i −0.0916965 0.679868i
\(613\) −1.93026 3.34330i −0.0779624 0.135035i 0.824408 0.565996i \(-0.191508\pi\)
−0.902371 + 0.430961i \(0.858175\pi\)
\(614\) 6.69486i 0.270183i
\(615\) 1.65813 + 0.814439i 0.0668622 + 0.0328414i
\(616\) −32.9179 19.0052i −1.32630 0.765740i
\(617\) 18.6070 10.7427i 0.749088 0.432486i −0.0762764 0.997087i \(-0.524303\pi\)
0.825364 + 0.564601i \(0.190970\pi\)
\(618\) 0.145102 + 2.16140i 0.00583684 + 0.0869444i
\(619\) −16.6647 28.8640i −0.669809 1.16014i −0.977957 0.208805i \(-0.933042\pi\)
0.308148 0.951339i \(-0.400291\pi\)
\(620\) −0.567310 −0.0227837
\(621\) 21.0585 18.6454i 0.845050 0.748216i
\(622\) −0.0683909 + 0.0394855i −0.00274223 + 0.00158322i
\(623\) −18.6272 −0.746284
\(624\) −0.881269 0.432861i −0.0352790 0.0173283i
\(625\) 24.8286 0.993143
\(626\) 0.783887 1.35773i 0.0313304 0.0542659i
\(627\) −8.97098 + 31.8672i −0.358266 + 1.27265i
\(628\) −11.3599 19.6758i −0.453308 0.785152i
\(629\) 3.43127 + 5.94314i 0.136814 + 0.236969i
\(630\) 0.624957 0.482697i 0.0248989 0.0192311i
\(631\) −10.5833 + 18.3308i −0.421313 + 0.729736i −0.996068 0.0885897i \(-0.971764\pi\)
0.574755 + 0.818325i \(0.305097\pi\)
\(632\) −2.30780 1.33241i −0.0917994 0.0530004i
\(633\) 24.8888 + 12.2249i 0.989242 + 0.485896i
\(634\) −3.40994 + 5.90620i −0.135426 + 0.234565i
\(635\) −0.879929 + 1.52408i −0.0349189 + 0.0604813i
\(636\) −3.35155 + 6.82346i −0.132897 + 0.270568i
\(637\) 2.36356i 0.0936475i
\(638\) 16.6989i 0.661118i
\(639\) 12.3822 30.1629i 0.489832 1.19323i
\(640\) −0.993312 0.573489i −0.0392641 0.0226691i
\(641\) −15.1501 + 26.2408i −0.598393 + 1.03645i 0.394665 + 0.918825i \(0.370861\pi\)
−0.993058 + 0.117623i \(0.962473\pi\)
\(642\) 9.07281 + 13.5320i 0.358075 + 0.534066i
\(643\) 8.52483 0.336186 0.168093 0.985771i \(-0.446239\pi\)
0.168093 + 0.985771i \(0.446239\pi\)
\(644\) 29.3265i 1.15563i
\(645\) −1.66228 + 1.11451i −0.0654523 + 0.0438838i
\(646\) 3.75096 10.5554i 0.147580 0.415296i
\(647\) 30.0725i 1.18227i −0.806572 0.591135i \(-0.798680\pi\)
0.806572 0.591135i \(-0.201320\pi\)
\(648\) 5.53811 21.2046i 0.217558 0.832994i
\(649\) −9.01863 + 5.20691i −0.354012 + 0.204389i
\(650\) 1.43731i 0.0563761i
\(651\) −19.2883 9.47403i −0.755969 0.371317i
\(652\) 2.95961 + 5.12619i 0.115907 + 0.200757i
\(653\) −38.8242 22.4151i −1.51931 0.877173i −0.999741 0.0227422i \(-0.992760\pi\)
−0.519566 0.854430i \(-0.673906\pi\)
\(654\) 13.6400 + 6.69970i 0.533367 + 0.261979i
\(655\) −1.03357 −0.0403850
\(656\) 6.78300 11.7485i 0.264832 0.458702i
\(657\) 5.63447 13.7255i 0.219822 0.535485i
\(658\) 0.618004i 0.0240923i
\(659\) 7.71805 0.300653 0.150326 0.988636i \(-0.451968\pi\)
0.150326 + 0.988636i \(0.451968\pi\)
\(660\) −0.688443 1.02681i −0.0267976 0.0399684i
\(661\) 4.72895 2.73026i 0.183935 0.106195i −0.405205 0.914226i \(-0.632800\pi\)
0.589140 + 0.808031i \(0.299467\pi\)
\(662\) 5.24247i 0.203754i
\(663\) 1.49404 + 2.22834i 0.0580236 + 0.0865417i
\(664\) −17.5590 + 10.1377i −0.681422 + 0.393419i
\(665\) −1.63200 + 0.300612i −0.0632863 + 0.0116572i
\(666\) 0.511872 + 3.79519i 0.0198346 + 0.147060i
\(667\) 25.8202 14.9073i 0.999762 0.577213i
\(668\) 7.28529 12.6185i 0.281876 0.488224i
\(669\) 11.8026 7.91327i 0.456313 0.305945i
\(670\) 0.783707 0.0302773
\(671\) −48.8232 + 28.1881i −1.88480 + 1.08819i
\(672\) −19.9514 29.7574i −0.769643 1.14792i
\(673\) 7.25030 4.18596i 0.279478 0.161357i −0.353709 0.935356i \(-0.615080\pi\)
0.633187 + 0.773999i \(0.281746\pi\)
\(674\) 8.45029 + 4.87878i 0.325493 + 0.187924i
\(675\) −25.3990 + 5.17765i −0.977607 + 0.199288i
\(676\) −19.5212 −0.750816
\(677\) −18.8962 32.7292i −0.726241 1.25789i −0.958461 0.285223i \(-0.907932\pi\)
0.232220 0.972663i \(-0.425401\pi\)
\(678\) 6.77951 0.455129i 0.260365 0.0174791i
\(679\) 46.6955i 1.79201i
\(680\) 0.484000 + 0.838313i 0.0185606 + 0.0321478i
\(681\) 49.7776 3.34172i 1.90748 0.128055i
\(682\) 5.28340 9.15112i 0.202312 0.350415i
\(683\) −6.09850 −0.233352 −0.116676 0.993170i \(-0.537224\pi\)
−0.116676 + 0.993170i \(0.537224\pi\)
\(684\) −13.2867 + 14.8177i −0.508029 + 0.566568i
\(685\) 1.34708 0.0514694
\(686\) −1.63450 + 2.83104i −0.0624056 + 0.108090i
\(687\) −17.8447 26.6152i −0.680819 1.01543i
\(688\) 7.34837 + 12.7277i 0.280154 + 0.485241i
\(689\) 1.20176i 0.0457833i
\(690\) −0.305639 + 0.622255i −0.0116355 + 0.0236889i
\(691\) −16.5151 28.6050i −0.628265 1.08819i −0.987900 0.155094i \(-0.950432\pi\)
0.359635 0.933093i \(-0.382901\pi\)
\(692\) 6.82681 0.259516
\(693\) −6.25923 46.4080i −0.237768 1.76289i
\(694\) 4.10889 + 2.37227i 0.155971 + 0.0900500i
\(695\) −0.940909 + 0.543234i −0.0356907 + 0.0206060i
\(696\) 10.2418 20.8515i 0.388215 0.790373i
\(697\) −32.1025 + 18.5344i −1.21597 + 0.702040i
\(698\) −4.29595 −0.162604
\(699\) 2.39053 + 35.6089i 0.0904182 + 1.34685i
\(700\) −13.5135 + 23.4061i −0.510763 + 0.884668i
\(701\) −5.80129 + 3.34938i −0.219112 + 0.126504i −0.605539 0.795816i \(-0.707042\pi\)
0.386427 + 0.922320i \(0.373709\pi\)
\(702\) 0.299043 + 1.46696i 0.0112866 + 0.0553667i
\(703\) 2.69475 7.58314i 0.101634 0.286004i
\(704\) 4.92512 2.84352i 0.185622 0.107169i
\(705\) −0.0205060 + 0.0417486i −0.000772302 + 0.00157234i
\(706\) 8.80870i 0.331520i
\(707\) −5.45456 + 3.14919i −0.205140 + 0.118437i
\(708\) −6.24642 + 0.419341i −0.234755 + 0.0157598i
\(709\) 21.8491 0.820561 0.410280 0.911959i \(-0.365431\pi\)
0.410280 + 0.911959i \(0.365431\pi\)
\(710\) 0.803658i 0.0301608i
\(711\) −0.438820 3.25356i −0.0164571 0.122018i
\(712\) 6.37110 11.0351i 0.238767 0.413557i
\(713\) 18.8662 0.706543
\(714\) 1.06135 + 15.8097i 0.0397202 + 0.591663i
\(715\) 0.169244 + 0.0977131i 0.00632937 + 0.00365426i
\(716\) 3.82132 + 6.61872i 0.142809 + 0.247353i
\(717\) −42.4841 + 28.4843i −1.58660 + 1.06377i
\(718\) 10.5247i 0.392780i
\(719\) −20.5211 + 11.8479i −0.765309 + 0.441851i −0.831199 0.555975i \(-0.812345\pi\)
0.0658895 + 0.997827i \(0.479012\pi\)
\(720\) −0.0583362 0.432524i −0.00217406 0.0161192i
\(721\) 6.43932i 0.239813i
\(722\) −12.2745 + 4.68069i −0.456808 + 0.174197i
\(723\) −6.69818 3.29001i −0.249108 0.122357i
\(724\) 19.2547i 0.715595i
\(725\) −27.4768 −1.02046
\(726\) 9.83125 0.660002i 0.364872 0.0244950i
\(727\) 9.23595 15.9971i 0.342542 0.593301i −0.642362 0.766402i \(-0.722045\pi\)
0.984904 + 0.173101i \(0.0553786\pi\)
\(728\) 3.12832 + 1.80613i 0.115943 + 0.0669398i
\(729\) 24.8455 10.5689i 0.920204 0.391439i
\(730\) 0.365702i 0.0135352i
\(731\) 40.1585i 1.48531i
\(732\) −33.8156 + 2.27014i −1.24986 + 0.0839069i
\(733\) −20.4287 + 35.3835i −0.754550 + 1.30692i 0.191048 + 0.981581i \(0.438811\pi\)
−0.945598 + 0.325338i \(0.894522\pi\)
\(734\) 2.65002 4.58997i 0.0978140 0.169419i
\(735\) 0.872645 0.585083i 0.0321880 0.0215811i
\(736\) 27.2393 + 15.7266i 1.00406 + 0.579692i
\(737\) 23.2375 40.2486i 0.855965 1.48257i
\(738\) −20.5001 + 2.76493i −0.754619 + 0.101778i
\(739\) 1.64367 + 2.84692i 0.0604633 + 0.104726i 0.894673 0.446722i \(-0.147409\pi\)
−0.834209 + 0.551448i \(0.814076\pi\)
\(740\) 0.150259 + 0.260256i 0.00552362 + 0.00956720i
\(741\) 0.852547 3.02846i 0.0313191 0.111253i
\(742\) 3.54888 6.14684i 0.130283 0.225658i
\(743\) −33.7360 −1.23765 −0.618826 0.785528i \(-0.712392\pi\)
−0.618826 + 0.785528i \(0.712392\pi\)
\(744\) 12.2098 8.18631i 0.447633 0.300125i
\(745\) 1.83121 0.0670902
\(746\) 11.3186 6.53477i 0.414402 0.239255i
\(747\) −23.1077 9.48596i −0.845468 0.347073i
\(748\) 24.8062 0.907005
\(749\) 24.2144 + 41.9405i 0.884774 + 1.53247i
\(750\) 1.06255 0.712411i 0.0387990 0.0260136i
\(751\) −34.3050 + 19.8060i −1.25181 + 0.722731i −0.971468 0.237170i \(-0.923780\pi\)
−0.280339 + 0.959901i \(0.590447\pi\)
\(752\) 0.295805 + 0.170783i 0.0107869 + 0.00622782i
\(753\) −17.2288 + 11.5514i −0.627854 + 0.420957i
\(754\) 1.58697i 0.0577939i
\(755\) −0.0447598 0.0775263i −0.00162898 0.00282147i
\(756\) 8.92241 26.7004i 0.324505 0.971083i
\(757\) 2.10833 + 3.65174i 0.0766287 + 0.132725i 0.901793 0.432167i \(-0.142251\pi\)
−0.825165 + 0.564892i \(0.808918\pi\)
\(758\) 14.7992 + 8.54429i 0.537529 + 0.310343i
\(759\) 22.8945 + 34.1469i 0.831018 + 1.23945i
\(760\) 0.380109 1.06964i 0.0137880 0.0388001i
\(761\) −6.65646 3.84311i −0.241297 0.139313i 0.374476 0.927237i \(-0.377823\pi\)
−0.615773 + 0.787924i \(0.711156\pi\)
\(762\) −1.31995 19.6618i −0.0478169 0.712270i
\(763\) 39.1205 + 22.5862i 1.41626 + 0.817676i
\(764\) 19.6119 + 11.3229i 0.709534 + 0.409650i
\(765\) −0.452884 + 1.10322i −0.0163741 + 0.0398871i
\(766\) −7.91354 + 13.7067i −0.285928 + 0.495242i
\(767\) 0.857076 0.494833i 0.0309472 0.0178674i
\(768\) 17.2971 1.16121i 0.624155 0.0419014i
\(769\) 8.84877 + 15.3265i 0.319095 + 0.552689i 0.980299 0.197517i \(-0.0632878\pi\)
−0.661204 + 0.750206i \(0.729954\pi\)
\(770\) 0.577108 + 0.999580i 0.0207975 + 0.0360224i
\(771\) 34.5183 2.31732i 1.24314 0.0834561i
\(772\) −17.5942 + 10.1580i −0.633230 + 0.365596i
\(773\) 0.137641 0.238402i 0.00495061 0.00857471i −0.863539 0.504281i \(-0.831757\pi\)
0.868490 + 0.495707i \(0.165091\pi\)
\(774\) 8.51031 20.7311i 0.305897 0.745163i
\(775\) −15.0575 8.69343i −0.540880 0.312277i
\(776\) −27.6632 15.9714i −0.993051 0.573338i
\(777\) 0.762492 + 11.3579i 0.0273542 + 0.407463i
\(778\) 2.26993 + 1.31054i 0.0813808 + 0.0469852i
\(779\) 40.9611 + 14.5560i 1.46758 + 0.521521i
\(780\) 0.0654254 + 0.0975813i 0.00234260 + 0.00349397i
\(781\) 41.2732 + 23.8291i 1.47687 + 0.852671i
\(782\) −6.95550 12.0473i −0.248728 0.430810i
\(783\) 28.0435 5.71674i 1.00219 0.204300i
\(784\) −3.85766 6.68166i −0.137774 0.238631i
\(785\) 1.59650i 0.0569815i
\(786\) 9.61276 6.44507i 0.342876 0.229888i
\(787\) −11.1612 6.44390i −0.397853 0.229700i 0.287704 0.957719i \(-0.407108\pi\)
−0.685557 + 0.728019i \(0.740441\pi\)
\(788\) −28.2280 + 16.2974i −1.00558 + 0.580571i
\(789\) 12.1304 8.13304i 0.431852 0.289544i
\(790\) 0.0404598 + 0.0700783i 0.00143949 + 0.00249328i
\(791\) 20.1977 0.718148
\(792\) 29.6337 + 12.1649i 1.05299 + 0.432262i
\(793\) 4.63986 2.67882i 0.164766 0.0951278i
\(794\) −4.89240 −0.173625
\(795\) 0.443699 0.297487i 0.0157364 0.0105508i
\(796\) 7.63771 0.270712
\(797\) −24.8067 + 42.9665i −0.878699 + 1.52195i −0.0259298 + 0.999664i \(0.508255\pi\)
−0.852769 + 0.522288i \(0.825079\pi\)
\(798\) 13.3039 12.9726i 0.470955 0.459224i
\(799\) −0.466661 0.808280i −0.0165093 0.0285949i
\(800\) −14.4935 25.1035i −0.512423 0.887543i
\(801\) 15.5573 2.09828i 0.549692 0.0741391i
\(802\) 4.37537 7.57837i 0.154500 0.267602i
\(803\) 18.7812 + 10.8433i 0.662775 + 0.382653i
\(804\) 23.2062 15.5591i 0.818419 0.548726i
\(805\) −1.03038 + 1.78467i −0.0363161 + 0.0629013i
\(806\) −0.502102 + 0.869667i −0.0176858 + 0.0306327i
\(807\) −37.6893 + 2.53019i −1.32672 + 0.0890671i
\(808\) 4.30849i 0.151572i
\(809\) 23.6970i 0.833142i 0.909103 + 0.416571i \(0.136768\pi\)
−0.909103 + 0.416571i \(0.863232\pi\)
\(810\) −0.467586 + 0.473544i −0.0164293 + 0.0166386i
\(811\) 35.4486 + 20.4662i 1.24477 + 0.718667i 0.970061 0.242861i \(-0.0780860\pi\)
0.274707 + 0.961528i \(0.411419\pi\)
\(812\) 14.9205 25.8431i 0.523608 0.906916i
\(813\) 7.30640 0.490501i 0.256247 0.0172026i
\(814\) −5.59749 −0.196192
\(815\) 0.415940i 0.0145697i
\(816\) 7.86055 + 3.86094i 0.275174 + 0.135160i
\(817\) −35.8442 + 30.5455i −1.25403 + 1.06865i
\(818\) 16.7126i 0.584342i
\(819\) 0.594839 + 4.41033i 0.0207853 + 0.154109i
\(820\) −1.40580 + 0.811639i −0.0490927 + 0.0283437i
\(821\) 52.2099i 1.82214i −0.412255 0.911068i \(-0.635259\pi\)
0.412255 0.911068i \(-0.364741\pi\)
\(822\) −12.5286 + 8.40004i −0.436985 + 0.292985i
\(823\) 6.85347 + 11.8706i 0.238897 + 0.413782i 0.960398 0.278632i \(-0.0898808\pi\)
−0.721501 + 0.692413i \(0.756548\pi\)
\(824\) −3.81476 2.20245i −0.132893 0.0767260i
\(825\) −2.53783 37.8030i −0.0883560 1.31613i
\(826\) 5.84511 0.203378
\(827\) 5.42239 9.39185i 0.188555 0.326587i −0.756214 0.654325i \(-0.772953\pi\)
0.944769 + 0.327738i \(0.106286\pi\)
\(828\) 3.30352 + 24.4934i 0.114805 + 0.851203i
\(829\) 44.0349i 1.52939i −0.644390 0.764697i \(-0.722889\pi\)
0.644390 0.764697i \(-0.277111\pi\)
\(830\) 0.615680 0.0213706
\(831\) 28.6431 1.92290i 0.993618 0.0667046i
\(832\) −0.468053 + 0.270231i −0.0162268 + 0.00936856i
\(833\) 21.0819i 0.730445i
\(834\) 5.36349 10.9196i 0.185722 0.378115i
\(835\) −0.886694 + 0.511933i −0.0306853 + 0.0177162i
\(836\) −18.8682 22.1412i −0.652571 0.765771i
\(837\) 17.1767 + 5.73991i 0.593714 + 0.198400i
\(838\) −16.1499 + 9.32416i −0.557890 + 0.322098i
\(839\) −20.5691 + 35.6267i −0.710124 + 1.22997i 0.254686 + 0.967024i \(0.418028\pi\)
−0.964810 + 0.262947i \(0.915306\pi\)
\(840\) 0.107554 + 1.60210i 0.00371096 + 0.0552776i
\(841\) 1.33769 0.0461272
\(842\) −15.8950 + 9.17696i −0.547776 + 0.316259i
\(843\) −13.4460 + 27.3750i −0.463106 + 0.942846i
\(844\) −21.1013 + 12.1829i −0.726337 + 0.419351i
\(845\) 1.18797 + 0.685872i 0.0408672 + 0.0235947i
\(846\) −0.0696157 0.516154i −0.00239344 0.0177457i
\(847\) 29.2896 1.00640
\(848\) −1.96144 3.39731i −0.0673561 0.116664i
\(849\) −24.3810 + 49.6376i −0.836753 + 1.70356i
\(850\) 12.8202i 0.439730i
\(851\) −4.99693 8.65494i −0.171293 0.296688i
\(852\) 15.9551 + 23.7969i 0.546614 + 0.815270i
\(853\) 6.24927 10.8240i 0.213971 0.370608i −0.738983 0.673724i \(-0.764694\pi\)
0.952954 + 0.303116i \(0.0980269\pi\)
\(854\) 31.6431 1.08280
\(855\) 1.32918 0.434908i 0.0454569 0.0148735i
\(856\) −33.1284 −1.13230
\(857\) 2.42104 4.19336i 0.0827012 0.143243i −0.821708 0.569908i \(-0.806979\pi\)
0.904409 + 0.426666i \(0.140312\pi\)
\(858\) −2.18337 + 0.146576i −0.0745390 + 0.00500403i
\(859\) −7.05200 12.2144i −0.240611 0.416751i 0.720277 0.693686i \(-0.244014\pi\)
−0.960889 + 0.276936i \(0.910681\pi\)
\(860\) 1.75858i 0.0599670i
\(861\) −61.3510 + 4.11868i −2.09084 + 0.140364i
\(862\) −5.84432 10.1227i −0.199058 0.344779i
\(863\) 37.3291 1.27070 0.635348 0.772226i \(-0.280857\pi\)
0.635348 + 0.772226i \(0.280857\pi\)
\(864\) 20.0154 + 22.6057i 0.680937 + 0.769063i
\(865\) −0.415446 0.239858i −0.0141256 0.00815541i
\(866\) 9.01576 5.20525i 0.306368 0.176882i
\(867\) 3.07123 + 4.58071i 0.104304 + 0.155569i
\(868\) 16.3531 9.44146i 0.555060 0.320464i
\(869\) 4.79865 0.162783
\(870\) −0.585921 + 0.392843i −0.0198646 + 0.0133186i
\(871\) −2.20835 + 3.82498i −0.0748272 + 0.129604i
\(872\) −26.7609 + 15.4504i −0.906239 + 0.523217i
\(873\) −5.26006 38.9998i −0.178026 1.31994i
\(874\) −5.46249 + 15.3717i −0.184772 + 0.519956i
\(875\) 3.29324 1.90135i 0.111332 0.0642774i
\(876\) 7.26034 + 10.8287i 0.245304 + 0.365869i
\(877\) 16.9261i 0.571552i −0.958296 0.285776i \(-0.907749\pi\)
0.958296 0.285776i \(-0.0922514\pi\)
\(878\) 8.96546 5.17621i 0.302570 0.174689i
\(879\) −27.1136 40.4397i −0.914519 1.36400i
\(880\) 0.637927 0.0215045
\(881\) 11.2468i 0.378913i −0.981889 0.189457i \(-0.939327\pi\)
0.981889 0.189457i \(-0.0606727\pi\)
\(882\) −4.46764 + 10.8832i −0.150433 + 0.366455i
\(883\) −2.49791 + 4.32650i −0.0840613 + 0.145598i −0.904991 0.425431i \(-0.860122\pi\)
0.820930 + 0.571030i \(0.193456\pi\)
\(884\) −2.35743 −0.0792890
\(885\) 0.394860 + 0.193947i 0.0132731 + 0.00651946i
\(886\) 8.32842 + 4.80841i 0.279799 + 0.161542i
\(887\) −14.3062 24.7790i −0.480354 0.831998i 0.519392 0.854536i \(-0.326159\pi\)
−0.999746 + 0.0225383i \(0.992825\pi\)
\(888\) −6.98942 3.43306i −0.234550 0.115206i
\(889\) 58.5769i 1.96461i
\(890\) −0.335089 + 0.193464i −0.0112322 + 0.00648493i
\(891\) 10.4553 + 38.0546i 0.350267 + 1.27488i
\(892\) 12.4863i 0.418072i
\(893\) −0.366492 + 1.03132i −0.0122642 + 0.0345119i
\(894\) −17.0312 + 11.4189i −0.569608 + 0.381905i
\(895\) 0.537044i 0.0179514i
\(896\) 38.1772 1.27541
\(897\) −2.17575 3.24512i −0.0726463 0.108351i
\(898\) −11.7202 + 20.3001i −0.391110 + 0.677422i
\(899\) 16.6252 + 9.59858i 0.554483 + 0.320131i
\(900\) 8.64981 21.0709i 0.288327 0.702363i
\(901\) 10.7192i 0.357107i
\(902\) 30.2354i 1.00673i
\(903\) 29.3681 59.7911i 0.977310 1.98972i
\(904\) −6.90826 + 11.9655i −0.229765 + 0.397965i
\(905\) 0.676508 1.17175i 0.0224879 0.0389502i
\(906\) 0.899722 + 0.441925i 0.0298913 + 0.0146820i
\(907\) 20.6325 + 11.9122i 0.685090 + 0.395537i 0.801770 0.597633i \(-0.203892\pi\)
−0.116680 + 0.993170i \(0.537225\pi\)
\(908\) −21.9192 + 37.9651i −0.727413 + 1.25992i
\(909\) 4.20087 3.24462i 0.139334 0.107617i
\(910\) −0.0548448 0.0949940i −0.00181809 0.00314902i
\(911\) −20.4314 35.3881i −0.676921 1.17246i −0.975903 0.218203i \(-0.929981\pi\)
0.298982 0.954259i \(-0.403353\pi\)
\(912\) −2.53277 9.95280i −0.0838684 0.329570i
\(913\) 18.2554 31.6192i 0.604165 1.04644i
\(914\) 24.1090 0.797455
\(915\) 2.13761 + 1.04995i 0.0706672 + 0.0347103i
\(916\) 28.1571 0.930336
\(917\) 29.7934 17.2012i 0.983864 0.568034i
\(918\) −2.66734 13.0846i −0.0880352 0.431857i
\(919\) −48.0310 −1.58440 −0.792198 0.610264i \(-0.791063\pi\)
−0.792198 + 0.610264i \(0.791063\pi\)
\(920\) −0.704845 1.22083i −0.0232381 0.0402495i
\(921\) 1.12339 + 16.7338i 0.0370170 + 0.551398i
\(922\) 7.30518 4.21765i 0.240583 0.138901i
\(923\) −3.92235 2.26457i −0.129106 0.0745392i
\(924\) 36.9334 + 18.1409i 1.21502 + 0.596793i
\(925\) 9.21024i 0.302831i
\(926\) 5.45946 + 9.45606i 0.179409 + 0.310746i
\(927\) −0.725363 5.37808i −0.0238240 0.176639i
\(928\) 16.0026 + 27.7173i 0.525310 + 0.909864i
\(929\) −11.6585 6.73102i −0.382502 0.220838i 0.296404 0.955063i \(-0.404212\pi\)
−0.678906 + 0.734225i \(0.737546\pi\)
\(930\) −0.445381 + 0.0298997i −0.0146046 + 0.000980451i
\(931\) 18.8170 16.0354i 0.616704 0.525539i
\(932\) −27.1587 15.6801i −0.889612 0.513618i
\(933\) 0.164318 0.110170i 0.00537951 0.00360680i
\(934\) 0.604098 + 0.348776i 0.0197667 + 0.0114123i
\(935\) −1.50958 0.871559i −0.0493687 0.0285030i
\(936\) −2.81621 1.15608i −0.0920506 0.0377877i
\(937\) 7.39153 12.8025i 0.241471 0.418240i −0.719663 0.694324i \(-0.755704\pi\)
0.961133 + 0.276084i \(0.0890369\pi\)
\(938\) −22.5909 + 13.0429i −0.737619 + 0.425864i
\(939\) −1.73150 + 3.52519i −0.0565054 + 0.115040i
\(940\) −0.0204355 0.0353954i −0.000666533 0.00115447i
\(941\) 9.89021 + 17.1303i 0.322412 + 0.558433i 0.980985 0.194083i \(-0.0621731\pi\)
−0.658573 + 0.752516i \(0.728840\pi\)
\(942\) −9.95534 14.8483i −0.324362 0.483784i
\(943\) 46.7506 26.9915i 1.52241 0.878963i
\(944\) 1.61528 2.79774i 0.0525727 0.0910587i
\(945\) −1.48108 + 1.31137i −0.0481796 + 0.0426588i
\(946\) 28.3672 + 16.3778i 0.922296 + 0.532488i
\(947\) 26.5620 + 15.3356i 0.863150 + 0.498340i 0.865066 0.501658i \(-0.167276\pi\)
−0.00191559 + 0.999998i \(0.500610\pi\)
\(948\) 2.58932 + 1.27182i 0.0840972 + 0.0413068i
\(949\) −1.78485 1.03048i −0.0579388 0.0334510i
\(950\) 11.4429 9.75138i 0.371258 0.316376i
\(951\) 7.53210 15.3347i 0.244245 0.497263i
\(952\) −27.9033 16.1100i −0.904350 0.522127i
\(953\) −20.9938 36.3623i −0.680055 1.17789i −0.974964 0.222365i \(-0.928622\pi\)
0.294908 0.955526i \(-0.404711\pi\)
\(954\) −2.27159 + 5.53357i −0.0735453 + 0.179156i
\(955\) −0.795657 1.37812i −0.0257468 0.0445948i
\(956\) 44.9452i 1.45363i
\(957\) 2.80207 + 41.7390i 0.0905780 + 1.34923i
\(958\) 26.1056 + 15.0721i 0.843435 + 0.486957i
\(959\) −38.8306 + 22.4188i −1.25391 + 0.723942i
\(960\) −0.215635 0.105915i −0.00695959 0.00341841i
\(961\) −9.42618 16.3266i −0.304070 0.526665i
\(962\) 0.531951 0.0171508
\(963\) −24.9482 32.3009i −0.803943 1.04088i
\(964\) 5.67887 3.27870i 0.182904 0.105600i
\(965\) 1.42760 0.0459560
\(966\) −1.54564 23.0235i −0.0497301 0.740770i
\(967\) −33.5211 −1.07796 −0.538982 0.842317i \(-0.681191\pi\)
−0.538982 + 0.842317i \(0.681191\pi\)
\(968\) −10.0180 + 17.3516i −0.321989 + 0.557702i
\(969\) −7.60436 + 27.0126i −0.244287 + 0.867770i
\(970\) 0.484984 + 0.840017i 0.0155719 + 0.0269713i
\(971\) 15.4529 + 26.7652i 0.495907 + 0.858936i 0.999989 0.00471955i \(-0.00150229\pi\)
−0.504082 + 0.863656i \(0.668169\pi\)
\(972\) −4.44425 + 23.3051i −0.142550 + 0.747511i
\(973\) 18.0816 31.3182i 0.579668 1.00401i
\(974\) 11.3047 + 6.52675i 0.362225 + 0.209131i
\(975\) 0.241180 + 3.59257i 0.00772394 + 0.115054i
\(976\) 8.74444 15.1458i 0.279903 0.484806i
\(977\) −18.1095 + 31.3666i −0.579375 + 1.00351i 0.416176 + 0.909284i \(0.363370\pi\)
−0.995551 + 0.0942233i \(0.969963\pi\)
\(978\) 2.59369 + 3.86846i 0.0829370 + 0.123700i
\(979\) 22.9454i 0.733339i
\(980\) 0.923198i 0.0294905i
\(981\) −35.2175 14.4571i −1.12441 0.461580i
\(982\) −16.5967 9.58210i −0.529621 0.305777i
\(983\) −7.75751 + 13.4364i −0.247426 + 0.428554i −0.962811 0.270176i \(-0.912918\pi\)
0.715385 + 0.698731i \(0.246251\pi\)
\(984\) 18.5440 37.7541i 0.591162 1.20356i
\(985\) 2.29042 0.0729788
\(986\) 14.1551i 0.450789i
\(987\) −0.103701 1.54470i −0.00330083 0.0491684i
\(988\) 1.79312 + 2.10417i 0.0570467 + 0.0669425i
\(989\) 58.4824i 1.85963i
\(990\) −0.594596 0.769835i −0.0188975 0.0244670i
\(991\) −3.23093 + 1.86538i −0.102634 + 0.0592558i −0.550438 0.834876i \(-0.685539\pi\)
0.447804 + 0.894132i \(0.352206\pi\)
\(992\) 20.2523i 0.643011i
\(993\) 0.879681 + 13.1036i 0.0279158 + 0.415829i
\(994\) −13.3749 23.1660i −0.424226 0.734781i
\(995\) −0.464794 0.268349i −0.0147350 0.00850723i
\(996\) 18.2308 12.2232i 0.577664 0.387306i
\(997\) −40.7013 −1.28902 −0.644512 0.764595i \(-0.722939\pi\)
−0.644512 + 0.764595i \(0.722939\pi\)
\(998\) −5.94135 + 10.2907i −0.188070 + 0.325747i
\(999\) −1.91625 9.40018i −0.0606276 0.297409i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.2.k.a.50.8 36
3.2 odd 2 513.2.k.a.449.11 36
9.2 odd 6 171.2.t.a.164.8 yes 36
9.7 even 3 513.2.t.a.278.11 36
19.8 odd 6 171.2.t.a.122.8 yes 36
57.8 even 6 513.2.t.a.179.11 36
171.65 even 6 inner 171.2.k.a.65.8 yes 36
171.160 odd 6 513.2.k.a.8.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.8 36 1.1 even 1 trivial
171.2.k.a.65.8 yes 36 171.65 even 6 inner
171.2.t.a.122.8 yes 36 19.8 odd 6
171.2.t.a.164.8 yes 36 9.2 odd 6
513.2.k.a.8.11 36 171.160 odd 6
513.2.k.a.449.11 36 3.2 odd 2
513.2.t.a.179.11 36 57.8 even 6
513.2.t.a.278.11 36 9.7 even 3