Properties

Label 513.2.m.c.107.2
Level $513$
Weight $2$
Character 513.107
Analytic conductor $4.096$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(107,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 513.107
Dual form 513.2.m.c.350.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 2.12132i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(1.22474 - 0.707107i) q^{5} +2.00000 q^{7} -4.89898 q^{8} +(3.00000 + 1.73205i) q^{10} +5.65685i q^{11} +(-1.50000 - 0.866025i) q^{13} +(2.44949 + 4.24264i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(1.22474 - 0.707107i) q^{17} +(-3.50000 - 2.59808i) q^{19} +5.65685i q^{20} +(-12.0000 + 6.92820i) q^{22} +(2.44949 + 1.41421i) q^{23} +(-1.50000 + 2.59808i) q^{25} -4.24264i q^{26} +(-4.00000 + 6.92820i) q^{28} +(3.67423 - 6.36396i) q^{29} -1.73205i q^{31} +(3.00000 + 1.73205i) q^{34} +(2.44949 - 1.41421i) q^{35} -5.19615i q^{37} +(1.22474 - 10.6066i) q^{38} +(-6.00000 + 3.46410i) q^{40} +(-5.50000 - 9.52628i) q^{43} +(-19.5959 - 11.3137i) q^{44} +6.92820i q^{46} +(9.79796 + 5.65685i) q^{47} -3.00000 q^{49} -7.34847 q^{50} +(6.00000 - 3.46410i) q^{52} +(1.22474 - 2.12132i) q^{53} +(4.00000 + 6.92820i) q^{55} -9.79796 q^{56} +18.0000 q^{58} +(-3.67423 - 6.36396i) q^{59} +(6.50000 - 11.2583i) q^{61} +(3.67423 - 2.12132i) q^{62} -8.00000 q^{64} -2.44949 q^{65} +(12.0000 + 6.92820i) q^{67} +5.65685i q^{68} +(6.00000 + 3.46410i) q^{70} +(2.44949 + 4.24264i) q^{71} +(2.00000 + 3.46410i) q^{73} +(11.0227 - 6.36396i) q^{74} +(16.0000 - 6.92820i) q^{76} +11.3137i q^{77} +(-10.5000 + 6.06218i) q^{79} +(-4.89898 - 2.82843i) q^{80} +1.41421i q^{83} +(1.00000 - 1.73205i) q^{85} +(13.4722 - 23.3345i) q^{86} -27.7128i q^{88} +(4.89898 - 8.48528i) q^{89} +(-3.00000 - 1.73205i) q^{91} +(-9.79796 + 5.65685i) q^{92} +27.7128i q^{94} +(-6.12372 - 0.707107i) q^{95} +(-1.50000 + 0.866025i) q^{97} +(-3.67423 - 6.36396i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 8 q^{7} + 12 q^{10} - 6 q^{13} - 8 q^{16} - 14 q^{19} - 48 q^{22} - 6 q^{25} - 16 q^{28} + 12 q^{34} - 24 q^{40} - 22 q^{43} - 12 q^{49} + 24 q^{52} + 16 q^{55} + 72 q^{58} + 26 q^{61} - 32 q^{64}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 2.12132i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −1.00000 + 1.73205i
\(5\) 1.22474 0.707107i 0.547723 0.316228i −0.200480 0.979698i \(-0.564250\pi\)
0.748203 + 0.663470i \(0.230917\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −4.89898 −1.73205
\(9\) 0 0
\(10\) 3.00000 + 1.73205i 0.948683 + 0.547723i
\(11\) 5.65685i 1.70561i 0.522233 + 0.852803i \(0.325099\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) −1.50000 0.866025i −0.416025 0.240192i 0.277350 0.960769i \(-0.410544\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 2.44949 + 4.24264i 0.654654 + 1.13389i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 1.22474 0.707107i 0.297044 0.171499i −0.344070 0.938944i \(-0.611806\pi\)
0.641114 + 0.767445i \(0.278472\pi\)
\(18\) 0 0
\(19\) −3.50000 2.59808i −0.802955 0.596040i
\(20\) 5.65685i 1.26491i
\(21\) 0 0
\(22\) −12.0000 + 6.92820i −2.55841 + 1.47710i
\(23\) 2.44949 + 1.41421i 0.510754 + 0.294884i 0.733144 0.680074i \(-0.238052\pi\)
−0.222390 + 0.974958i \(0.571386\pi\)
\(24\) 0 0
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 4.24264i 0.832050i
\(27\) 0 0
\(28\) −4.00000 + 6.92820i −0.755929 + 1.30931i
\(29\) 3.67423 6.36396i 0.682288 1.18176i −0.291993 0.956421i \(-0.594318\pi\)
0.974281 0.225337i \(-0.0723484\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 3.00000 + 1.73205i 0.514496 + 0.297044i
\(35\) 2.44949 1.41421i 0.414039 0.239046i
\(36\) 0 0
\(37\) 5.19615i 0.854242i −0.904194 0.427121i \(-0.859528\pi\)
0.904194 0.427121i \(-0.140472\pi\)
\(38\) 1.22474 10.6066i 0.198680 1.72062i
\(39\) 0 0
\(40\) −6.00000 + 3.46410i −0.948683 + 0.547723i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) −19.5959 11.3137i −2.95420 1.70561i
\(45\) 0 0
\(46\) 6.92820i 1.02151i
\(47\) 9.79796 + 5.65685i 1.42918 + 0.825137i 0.997056 0.0766776i \(-0.0244312\pi\)
0.432123 + 0.901815i \(0.357765\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) −7.34847 −1.03923
\(51\) 0 0
\(52\) 6.00000 3.46410i 0.832050 0.480384i
\(53\) 1.22474 2.12132i 0.168232 0.291386i −0.769567 0.638567i \(-0.779528\pi\)
0.937798 + 0.347181i \(0.112861\pi\)
\(54\) 0 0
\(55\) 4.00000 + 6.92820i 0.539360 + 0.934199i
\(56\) −9.79796 −1.30931
\(57\) 0 0
\(58\) 18.0000 2.36352
\(59\) −3.67423 6.36396i −0.478345 0.828517i 0.521347 0.853345i \(-0.325430\pi\)
−0.999692 + 0.0248275i \(0.992096\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 3.67423 2.12132i 0.466628 0.269408i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −2.44949 −0.303822
\(66\) 0 0
\(67\) 12.0000 + 6.92820i 1.46603 + 0.846415i 0.999279 0.0379722i \(-0.0120898\pi\)
0.466755 + 0.884387i \(0.345423\pi\)
\(68\) 5.65685i 0.685994i
\(69\) 0 0
\(70\) 6.00000 + 3.46410i 0.717137 + 0.414039i
\(71\) 2.44949 + 4.24264i 0.290701 + 0.503509i 0.973976 0.226653i \(-0.0727782\pi\)
−0.683275 + 0.730161i \(0.739445\pi\)
\(72\) 0 0
\(73\) 2.00000 + 3.46410i 0.234082 + 0.405442i 0.959006 0.283387i \(-0.0914581\pi\)
−0.724923 + 0.688830i \(0.758125\pi\)
\(74\) 11.0227 6.36396i 1.28136 0.739795i
\(75\) 0 0
\(76\) 16.0000 6.92820i 1.83533 0.794719i
\(77\) 11.3137i 1.28932i
\(78\) 0 0
\(79\) −10.5000 + 6.06218i −1.18134 + 0.682048i −0.956325 0.292306i \(-0.905577\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −4.89898 2.82843i −0.547723 0.316228i
\(81\) 0 0
\(82\) 0 0
\(83\) 1.41421i 0.155230i 0.996983 + 0.0776151i \(0.0247305\pi\)
−0.996983 + 0.0776151i \(0.975269\pi\)
\(84\) 0 0
\(85\) 1.00000 1.73205i 0.108465 0.187867i
\(86\) 13.4722 23.3345i 1.45274 2.51623i
\(87\) 0 0
\(88\) 27.7128i 2.95420i
\(89\) 4.89898 8.48528i 0.519291 0.899438i −0.480458 0.877018i \(-0.659529\pi\)
0.999749 0.0224202i \(-0.00713717\pi\)
\(90\) 0 0
\(91\) −3.00000 1.73205i −0.314485 0.181568i
\(92\) −9.79796 + 5.65685i −1.02151 + 0.589768i
\(93\) 0 0
\(94\) 27.7128i 2.85836i
\(95\) −6.12372 0.707107i −0.628281 0.0725476i
\(96\) 0 0
\(97\) −1.50000 + 0.866025i −0.152302 + 0.0879316i −0.574214 0.818705i \(-0.694692\pi\)
0.421912 + 0.906637i \(0.361359\pi\)
\(98\) −3.67423 6.36396i −0.371154 0.642857i
\(99\) 0 0
\(100\) −6.00000 10.3923i −0.600000 1.03923i
\(101\) 9.79796 + 5.65685i 0.974933 + 0.562878i 0.900737 0.434366i \(-0.143027\pi\)
0.0741967 + 0.997244i \(0.476361\pi\)
\(102\) 0 0
\(103\) 17.3205i 1.70664i −0.521387 0.853320i \(-0.674585\pi\)
0.521387 0.853320i \(-0.325415\pi\)
\(104\) 7.34847 + 4.24264i 0.720577 + 0.416025i
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 7.34847 0.710403 0.355202 0.934790i \(-0.384412\pi\)
0.355202 + 0.934790i \(0.384412\pi\)
\(108\) 0 0
\(109\) −3.00000 + 1.73205i −0.287348 + 0.165900i −0.636745 0.771074i \(-0.719720\pi\)
0.349397 + 0.936975i \(0.386386\pi\)
\(110\) −9.79796 + 16.9706i −0.934199 + 1.61808i
\(111\) 0 0
\(112\) −4.00000 6.92820i −0.377964 0.654654i
\(113\) −17.1464 −1.61300 −0.806500 0.591234i \(-0.798641\pi\)
−0.806500 + 0.591234i \(0.798641\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 14.6969 + 25.4558i 1.36458 + 2.36352i
\(117\) 0 0
\(118\) 9.00000 15.5885i 0.828517 1.43503i
\(119\) 2.44949 1.41421i 0.224544 0.129641i
\(120\) 0 0
\(121\) −21.0000 −1.90909
\(122\) 31.8434 2.88296
\(123\) 0 0
\(124\) 6.00000 + 3.46410i 0.538816 + 0.311086i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 6.00000 + 3.46410i 0.532414 + 0.307389i 0.741999 0.670401i \(-0.233878\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(128\) −9.79796 16.9706i −0.866025 1.50000i
\(129\) 0 0
\(130\) −3.00000 5.19615i −0.263117 0.455733i
\(131\) −17.1464 + 9.89949i −1.49809 + 0.864923i −0.999998 0.00220084i \(-0.999299\pi\)
−0.498093 + 0.867124i \(0.665966\pi\)
\(132\) 0 0
\(133\) −7.00000 5.19615i −0.606977 0.450564i
\(134\) 33.9411i 2.93207i
\(135\) 0 0
\(136\) −6.00000 + 3.46410i −0.514496 + 0.297044i
\(137\) −12.2474 7.07107i −1.04637 0.604122i −0.124739 0.992190i \(-0.539809\pi\)
−0.921631 + 0.388067i \(0.873143\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 11.3137i 0.956183i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) 4.89898 8.48528i 0.409673 0.709575i
\(144\) 0 0
\(145\) 10.3923i 0.863034i
\(146\) −4.89898 + 8.48528i −0.405442 + 0.702247i
\(147\) 0 0
\(148\) 18.0000 + 10.3923i 1.47959 + 0.854242i
\(149\) −6.12372 + 3.53553i −0.501675 + 0.289642i −0.729405 0.684082i \(-0.760203\pi\)
0.227730 + 0.973724i \(0.426870\pi\)
\(150\) 0 0
\(151\) 1.73205i 0.140952i 0.997513 + 0.0704761i \(0.0224519\pi\)
−0.997513 + 0.0704761i \(0.977548\pi\)
\(152\) 17.1464 + 12.7279i 1.39076 + 1.03237i
\(153\) 0 0
\(154\) −24.0000 + 13.8564i −1.93398 + 1.11658i
\(155\) −1.22474 2.12132i −0.0983739 0.170389i
\(156\) 0 0
\(157\) −2.50000 4.33013i −0.199522 0.345582i 0.748852 0.662738i \(-0.230606\pi\)
−0.948373 + 0.317156i \(0.897272\pi\)
\(158\) −25.7196 14.8492i −2.04614 1.18134i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.89898 + 2.82843i 0.386094 + 0.222911i
\(162\) 0 0
\(163\) 17.0000 1.33154 0.665771 0.746156i \(-0.268103\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −3.00000 + 1.73205i −0.232845 + 0.134433i
\(167\) −1.22474 + 2.12132i −0.0947736 + 0.164153i −0.909514 0.415673i \(-0.863546\pi\)
0.814740 + 0.579826i \(0.196879\pi\)
\(168\) 0 0
\(169\) −5.00000 8.66025i −0.384615 0.666173i
\(170\) 4.89898 0.375735
\(171\) 0 0
\(172\) 44.0000 3.35497
\(173\) 1.22474 + 2.12132i 0.0931156 + 0.161281i 0.908821 0.417187i \(-0.136984\pi\)
−0.815705 + 0.578468i \(0.803651\pi\)
\(174\) 0 0
\(175\) −3.00000 + 5.19615i −0.226779 + 0.392792i
\(176\) 19.5959 11.3137i 1.47710 0.852803i
\(177\) 0 0
\(178\) 24.0000 1.79888
\(179\) 14.6969 1.09850 0.549250 0.835658i \(-0.314913\pi\)
0.549250 + 0.835658i \(0.314913\pi\)
\(180\) 0 0
\(181\) 10.5000 + 6.06218i 0.780459 + 0.450598i 0.836593 0.547825i \(-0.184544\pi\)
−0.0561340 + 0.998423i \(0.517877\pi\)
\(182\) 8.48528i 0.628971i
\(183\) 0 0
\(184\) −12.0000 6.92820i −0.884652 0.510754i
\(185\) −3.67423 6.36396i −0.270135 0.467888i
\(186\) 0 0
\(187\) 4.00000 + 6.92820i 0.292509 + 0.506640i
\(188\) −39.1918 + 22.6274i −2.85836 + 1.65027i
\(189\) 0 0
\(190\) −6.00000 13.8564i −0.435286 1.00525i
\(191\) 19.7990i 1.43260i −0.697790 0.716302i \(-0.745833\pi\)
0.697790 0.716302i \(-0.254167\pi\)
\(192\) 0 0
\(193\) −9.00000 + 5.19615i −0.647834 + 0.374027i −0.787626 0.616154i \(-0.788690\pi\)
0.139792 + 0.990181i \(0.455357\pi\)
\(194\) −3.67423 2.12132i −0.263795 0.152302i
\(195\) 0 0
\(196\) 6.00000 10.3923i 0.428571 0.742307i
\(197\) 5.65685i 0.403034i 0.979485 + 0.201517i \(0.0645872\pi\)
−0.979485 + 0.201517i \(0.935413\pi\)
\(198\) 0 0
\(199\) −7.00000 + 12.1244i −0.496217 + 0.859473i −0.999990 0.00436292i \(-0.998611\pi\)
0.503774 + 0.863836i \(0.331945\pi\)
\(200\) 7.34847 12.7279i 0.519615 0.900000i
\(201\) 0 0
\(202\) 27.7128i 1.94987i
\(203\) 7.34847 12.7279i 0.515761 0.893325i
\(204\) 0 0
\(205\) 0 0
\(206\) 36.7423 21.2132i 2.55996 1.47799i
\(207\) 0 0
\(208\) 6.92820i 0.480384i
\(209\) 14.6969 19.7990i 1.01661 1.36952i
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 4.89898 + 8.48528i 0.336463 + 0.582772i
\(213\) 0 0
\(214\) 9.00000 + 15.5885i 0.615227 + 1.06561i
\(215\) −13.4722 7.77817i −0.918796 0.530467i
\(216\) 0 0
\(217\) 3.46410i 0.235159i
\(218\) −7.34847 4.24264i −0.497701 0.287348i
\(219\) 0 0
\(220\) −32.0000 −2.15744
\(221\) −2.44949 −0.164771
\(222\) 0 0
\(223\) 16.5000 9.52628i 1.10492 0.637927i 0.167412 0.985887i \(-0.446459\pi\)
0.937509 + 0.347960i \(0.113126\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −21.0000 36.3731i −1.39690 2.41950i
\(227\) −26.9444 −1.78836 −0.894181 0.447706i \(-0.852241\pi\)
−0.894181 + 0.447706i \(0.852241\pi\)
\(228\) 0 0
\(229\) −19.0000 −1.25556 −0.627778 0.778393i \(-0.716035\pi\)
−0.627778 + 0.778393i \(0.716035\pi\)
\(230\) 4.89898 + 8.48528i 0.323029 + 0.559503i
\(231\) 0 0
\(232\) −18.0000 + 31.1769i −1.18176 + 2.04686i
\(233\) −20.8207 + 12.0208i −1.36401 + 0.787510i −0.990155 0.139978i \(-0.955297\pi\)
−0.373852 + 0.927488i \(0.621963\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) 29.3939 1.91338
\(237\) 0 0
\(238\) 6.00000 + 3.46410i 0.388922 + 0.224544i
\(239\) 2.82843i 0.182956i −0.995807 0.0914779i \(-0.970841\pi\)
0.995807 0.0914779i \(-0.0291591\pi\)
\(240\) 0 0
\(241\) −9.00000 5.19615i −0.579741 0.334714i 0.181289 0.983430i \(-0.441973\pi\)
−0.761030 + 0.648716i \(0.775306\pi\)
\(242\) −25.7196 44.5477i −1.65332 2.86364i
\(243\) 0 0
\(244\) 26.0000 + 45.0333i 1.66448 + 2.88296i
\(245\) −3.67423 + 2.12132i −0.234738 + 0.135526i
\(246\) 0 0
\(247\) 3.00000 + 6.92820i 0.190885 + 0.440831i
\(248\) 8.48528i 0.538816i
\(249\) 0 0
\(250\) −24.0000 + 13.8564i −1.51789 + 0.876356i
\(251\) 13.4722 + 7.77817i 0.850357 + 0.490954i 0.860771 0.508992i \(-0.169982\pi\)
−0.0104141 + 0.999946i \(0.503315\pi\)
\(252\) 0 0
\(253\) −8.00000 + 13.8564i −0.502956 + 0.871145i
\(254\) 16.9706i 1.06483i
\(255\) 0 0
\(256\) 16.0000 27.7128i 1.00000 1.73205i
\(257\) 2.44949 4.24264i 0.152795 0.264649i −0.779459 0.626453i \(-0.784506\pi\)
0.932254 + 0.361805i \(0.117839\pi\)
\(258\) 0 0
\(259\) 10.3923i 0.645746i
\(260\) 4.89898 8.48528i 0.303822 0.526235i
\(261\) 0 0
\(262\) −42.0000 24.2487i −2.59477 1.49809i
\(263\) −20.8207 + 12.0208i −1.28386 + 0.741235i −0.977551 0.210698i \(-0.932426\pi\)
−0.306306 + 0.951933i \(0.599093\pi\)
\(264\) 0 0
\(265\) 3.46410i 0.212798i
\(266\) 2.44949 21.2132i 0.150188 1.30066i
\(267\) 0 0
\(268\) −48.0000 + 27.7128i −2.93207 + 1.69283i
\(269\) −8.57321 14.8492i −0.522718 0.905374i −0.999651 0.0264343i \(-0.991585\pi\)
0.476932 0.878940i \(-0.341749\pi\)
\(270\) 0 0
\(271\) 6.50000 + 11.2583i 0.394847 + 0.683895i 0.993082 0.117426i \(-0.0374643\pi\)
−0.598235 + 0.801321i \(0.704131\pi\)
\(272\) −4.89898 2.82843i −0.297044 0.171499i
\(273\) 0 0
\(274\) 34.6410i 2.09274i
\(275\) −14.6969 8.48528i −0.886259 0.511682i
\(276\) 0 0
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) 39.1918 2.35057
\(279\) 0 0
\(280\) −12.0000 + 6.92820i −0.717137 + 0.414039i
\(281\) −11.0227 + 19.0919i −0.657559 + 1.13893i 0.323686 + 0.946164i \(0.395078\pi\)
−0.981246 + 0.192762i \(0.938256\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) −19.5959 −1.16280
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 0 0
\(288\) 0 0
\(289\) −7.50000 + 12.9904i −0.441176 + 0.764140i
\(290\) 22.0454 12.7279i 1.29455 0.747409i
\(291\) 0 0
\(292\) −16.0000 −0.936329
\(293\) −2.44949 −0.143101 −0.0715504 0.997437i \(-0.522795\pi\)
−0.0715504 + 0.997437i \(0.522795\pi\)
\(294\) 0 0
\(295\) −9.00000 5.19615i −0.524000 0.302532i
\(296\) 25.4558i 1.47959i
\(297\) 0 0
\(298\) −15.0000 8.66025i −0.868927 0.501675i
\(299\) −2.44949 4.24264i −0.141658 0.245358i
\(300\) 0 0
\(301\) −11.0000 19.0526i −0.634029 1.09817i
\(302\) −3.67423 + 2.12132i −0.211428 + 0.122068i
\(303\) 0 0
\(304\) −2.00000 + 17.3205i −0.114708 + 0.993399i
\(305\) 18.3848i 1.05271i
\(306\) 0 0
\(307\) 15.0000 8.66025i 0.856095 0.494267i −0.00660752 0.999978i \(-0.502103\pi\)
0.862703 + 0.505711i \(0.168770\pi\)
\(308\) −39.1918 22.6274i −2.23316 1.28932i
\(309\) 0 0
\(310\) 3.00000 5.19615i 0.170389 0.295122i
\(311\) 7.07107i 0.400963i −0.979697 0.200482i \(-0.935749\pi\)
0.979697 0.200482i \(-0.0642507\pi\)
\(312\) 0 0
\(313\) −2.50000 + 4.33013i −0.141308 + 0.244753i −0.927990 0.372606i \(-0.878464\pi\)
0.786681 + 0.617359i \(0.211798\pi\)
\(314\) 6.12372 10.6066i 0.345582 0.598565i
\(315\) 0 0
\(316\) 48.4974i 2.72819i
\(317\) 7.34847 12.7279i 0.412731 0.714871i −0.582456 0.812862i \(-0.697908\pi\)
0.995187 + 0.0979908i \(0.0312416\pi\)
\(318\) 0 0
\(319\) 36.0000 + 20.7846i 2.01561 + 1.16371i
\(320\) −9.79796 + 5.65685i −0.547723 + 0.316228i
\(321\) 0 0
\(322\) 13.8564i 0.772187i
\(323\) −6.12372 0.707107i −0.340733 0.0393445i
\(324\) 0 0
\(325\) 4.50000 2.59808i 0.249615 0.144115i
\(326\) 20.8207 + 36.0624i 1.15315 + 1.99731i
\(327\) 0 0
\(328\) 0 0
\(329\) 19.5959 + 11.3137i 1.08036 + 0.623745i
\(330\) 0 0
\(331\) 12.1244i 0.666415i 0.942854 + 0.333207i \(0.108131\pi\)
−0.942854 + 0.333207i \(0.891869\pi\)
\(332\) −4.89898 2.82843i −0.268866 0.155230i
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) 19.5959 1.07064
\(336\) 0 0
\(337\) 9.00000 5.19615i 0.490261 0.283052i −0.234422 0.972135i \(-0.575320\pi\)
0.724683 + 0.689083i \(0.241986\pi\)
\(338\) 12.2474 21.2132i 0.666173 1.15385i
\(339\) 0 0
\(340\) 4.00000 + 6.92820i 0.216930 + 0.375735i
\(341\) 9.79796 0.530589
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 26.9444 + 46.6690i 1.45274 + 2.51623i
\(345\) 0 0
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) −9.79796 + 5.65685i −0.525982 + 0.303676i −0.739379 0.673290i \(-0.764881\pi\)
0.213397 + 0.976966i \(0.431547\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) −14.6969 −0.785584
\(351\) 0 0
\(352\) 0 0
\(353\) 18.3848i 0.978523i 0.872137 + 0.489261i \(0.162734\pi\)
−0.872137 + 0.489261i \(0.837266\pi\)
\(354\) 0 0
\(355\) 6.00000 + 3.46410i 0.318447 + 0.183855i
\(356\) 19.5959 + 33.9411i 1.03858 + 1.79888i
\(357\) 0 0
\(358\) 18.0000 + 31.1769i 0.951330 + 1.64775i
\(359\) −13.4722 + 7.77817i −0.711035 + 0.410516i −0.811444 0.584430i \(-0.801318\pi\)
0.100409 + 0.994946i \(0.467985\pi\)
\(360\) 0 0
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 29.6985i 1.56092i
\(363\) 0 0
\(364\) 12.0000 6.92820i 0.628971 0.363137i
\(365\) 4.89898 + 2.82843i 0.256424 + 0.148047i
\(366\) 0 0
\(367\) −11.5000 + 19.9186i −0.600295 + 1.03974i 0.392481 + 0.919760i \(0.371617\pi\)
−0.992776 + 0.119982i \(0.961716\pi\)
\(368\) 11.3137i 0.589768i
\(369\) 0 0
\(370\) 9.00000 15.5885i 0.467888 0.810405i
\(371\) 2.44949 4.24264i 0.127171 0.220267i
\(372\) 0 0
\(373\) 8.66025i 0.448411i 0.974542 + 0.224205i \(0.0719787\pi\)
−0.974542 + 0.224205i \(0.928021\pi\)
\(374\) −9.79796 + 16.9706i −0.506640 + 0.877527i
\(375\) 0 0
\(376\) −48.0000 27.7128i −2.47541 1.42918i
\(377\) −11.0227 + 6.36396i −0.567698 + 0.327761i
\(378\) 0 0
\(379\) 20.7846i 1.06763i 0.845600 + 0.533817i \(0.179243\pi\)
−0.845600 + 0.533817i \(0.820757\pi\)
\(380\) 14.6969 19.7990i 0.753937 1.01567i
\(381\) 0 0
\(382\) 42.0000 24.2487i 2.14891 1.24067i
\(383\) 18.3712 + 31.8198i 0.938723 + 1.62592i 0.767856 + 0.640622i \(0.221323\pi\)
0.170867 + 0.985294i \(0.445343\pi\)
\(384\) 0 0
\(385\) 8.00000 + 13.8564i 0.407718 + 0.706188i
\(386\) −22.0454 12.7279i −1.12208 0.647834i
\(387\) 0 0
\(388\) 6.92820i 0.351726i
\(389\) 13.4722 + 7.77817i 0.683067 + 0.394369i 0.801010 0.598651i \(-0.204296\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 14.6969 0.742307
\(393\) 0 0
\(394\) −12.0000 + 6.92820i −0.604551 + 0.349038i
\(395\) −8.57321 + 14.8492i −0.431365 + 0.747146i
\(396\) 0 0
\(397\) −8.50000 14.7224i −0.426603 0.738898i 0.569966 0.821668i \(-0.306956\pi\)
−0.996569 + 0.0827707i \(0.973623\pi\)
\(398\) −34.2929 −1.71895
\(399\) 0 0
\(400\) 12.0000 0.600000
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) −1.50000 + 2.59808i −0.0747203 + 0.129419i
\(404\) −39.1918 + 22.6274i −1.94987 + 1.12576i
\(405\) 0 0
\(406\) 36.0000 1.78665
\(407\) 29.3939 1.45700
\(408\) 0 0
\(409\) −10.5000 6.06218i −0.519192 0.299755i 0.217412 0.976080i \(-0.430238\pi\)
−0.736604 + 0.676324i \(0.763572\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 60.0000 + 34.6410i 2.95599 + 1.70664i
\(413\) −7.34847 12.7279i −0.361595 0.626300i
\(414\) 0 0
\(415\) 1.00000 + 1.73205i 0.0490881 + 0.0850230i
\(416\) 0 0
\(417\) 0 0
\(418\) 60.0000 + 6.92820i 2.93470 + 0.338869i
\(419\) 22.6274i 1.10542i 0.833373 + 0.552711i \(0.186407\pi\)
−0.833373 + 0.552711i \(0.813593\pi\)
\(420\) 0 0
\(421\) 16.5000 9.52628i 0.804161 0.464282i −0.0407632 0.999169i \(-0.512979\pi\)
0.844924 + 0.534886i \(0.179646\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −6.00000 + 10.3923i −0.291386 + 0.504695i
\(425\) 4.24264i 0.205798i
\(426\) 0 0
\(427\) 13.0000 22.5167i 0.629114 1.08966i
\(428\) −14.6969 + 25.4558i −0.710403 + 1.23045i
\(429\) 0 0
\(430\) 38.1051i 1.83759i
\(431\) 12.2474 21.2132i 0.589939 1.02180i −0.404301 0.914626i \(-0.632485\pi\)
0.994240 0.107178i \(-0.0341815\pi\)
\(432\) 0 0
\(433\) −25.5000 14.7224i −1.22545 0.707515i −0.259377 0.965776i \(-0.583517\pi\)
−0.966075 + 0.258261i \(0.916850\pi\)
\(434\) 7.34847 4.24264i 0.352738 0.203653i
\(435\) 0 0
\(436\) 13.8564i 0.663602i
\(437\) −4.89898 11.3137i −0.234350 0.541208i
\(438\) 0 0
\(439\) −1.50000 + 0.866025i −0.0715911 + 0.0413331i −0.535368 0.844619i \(-0.679827\pi\)
0.463777 + 0.885952i \(0.346494\pi\)
\(440\) −19.5959 33.9411i −0.934199 1.61808i
\(441\) 0 0
\(442\) −3.00000 5.19615i −0.142695 0.247156i
\(443\) −8.57321 4.94975i −0.407326 0.235170i 0.282314 0.959322i \(-0.408898\pi\)
−0.689640 + 0.724152i \(0.742231\pi\)
\(444\) 0 0
\(445\) 13.8564i 0.656857i
\(446\) 40.4166 + 23.3345i 1.91378 + 1.10492i
\(447\) 0 0
\(448\) −16.0000 −0.755929
\(449\) 14.6969 0.693591 0.346796 0.937941i \(-0.387270\pi\)
0.346796 + 0.937941i \(0.387270\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 34.2929 59.3970i 1.61300 2.79380i
\(453\) 0 0
\(454\) −33.0000 57.1577i −1.54877 2.68254i
\(455\) −4.89898 −0.229668
\(456\) 0 0
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) −23.2702 40.3051i −1.08734 1.88333i
\(459\) 0 0
\(460\) −8.00000 + 13.8564i −0.373002 + 0.646058i
\(461\) 4.89898 2.82843i 0.228168 0.131733i −0.381559 0.924345i \(-0.624613\pi\)
0.609727 + 0.792612i \(0.291279\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) −29.3939 −1.36458
\(465\) 0 0
\(466\) −51.0000 29.4449i −2.36253 1.36401i
\(467\) 35.3553i 1.63605i 0.575183 + 0.818025i \(0.304931\pi\)
−0.575183 + 0.818025i \(0.695069\pi\)
\(468\) 0 0
\(469\) 24.0000 + 13.8564i 1.10822 + 0.639829i
\(470\) 19.5959 + 33.9411i 0.903892 + 1.56559i
\(471\) 0 0
\(472\) 18.0000 + 31.1769i 0.828517 + 1.43503i
\(473\) 53.8888 31.1127i 2.47781 1.43056i
\(474\) 0 0
\(475\) 12.0000 5.19615i 0.550598 0.238416i
\(476\) 11.3137i 0.518563i
\(477\) 0 0
\(478\) 6.00000 3.46410i 0.274434 0.158444i
\(479\) 20.8207 + 12.0208i 0.951320 + 0.549245i 0.893491 0.449081i \(-0.148249\pi\)
0.0578295 + 0.998326i \(0.481582\pi\)
\(480\) 0 0
\(481\) −4.50000 + 7.79423i −0.205182 + 0.355386i
\(482\) 25.4558i 1.15948i
\(483\) 0 0
\(484\) 42.0000 72.7461i 1.90909 3.30664i
\(485\) −1.22474 + 2.12132i −0.0556128 + 0.0963242i
\(486\) 0 0
\(487\) 5.19615i 0.235460i −0.993046 0.117730i \(-0.962438\pi\)
0.993046 0.117730i \(-0.0375618\pi\)
\(488\) −31.8434 + 55.1543i −1.44148 + 2.49672i
\(489\) 0 0
\(490\) −9.00000 5.19615i −0.406579 0.234738i
\(491\) 23.2702 13.4350i 1.05017 0.606314i 0.127471 0.991842i \(-0.459314\pi\)
0.922696 + 0.385528i \(0.125981\pi\)
\(492\) 0 0
\(493\) 10.3923i 0.468046i
\(494\) −11.0227 + 14.8492i −0.495935 + 0.668099i
\(495\) 0 0
\(496\) −6.00000 + 3.46410i −0.269408 + 0.155543i
\(497\) 4.89898 + 8.48528i 0.219749 + 0.380617i
\(498\) 0 0
\(499\) 3.50000 + 6.06218i 0.156682 + 0.271380i 0.933670 0.358134i \(-0.116587\pi\)
−0.776989 + 0.629515i \(0.783254\pi\)
\(500\) −39.1918 22.6274i −1.75271 1.01193i
\(501\) 0 0
\(502\) 38.1051i 1.70071i
\(503\) −12.2474 7.07107i −0.546087 0.315283i 0.201455 0.979498i \(-0.435433\pi\)
−0.747542 + 0.664214i \(0.768766\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) −39.1918 −1.74229
\(507\) 0 0
\(508\) −24.0000 + 13.8564i −1.06483 + 0.614779i
\(509\) −8.57321 + 14.8492i −0.380001 + 0.658181i −0.991062 0.133402i \(-0.957410\pi\)
0.611061 + 0.791584i \(0.290743\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 39.1918 1.73205
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) −12.2474 21.2132i −0.539687 0.934765i
\(516\) 0 0
\(517\) −32.0000 + 55.4256i −1.40736 + 2.43762i
\(518\) 22.0454 12.7279i 0.968620 0.559233i
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 7.34847 0.321942 0.160971 0.986959i \(-0.448537\pi\)
0.160971 + 0.986959i \(0.448537\pi\)
\(522\) 0 0
\(523\) 1.50000 + 0.866025i 0.0655904 + 0.0378686i 0.532437 0.846470i \(-0.321276\pi\)
−0.466846 + 0.884339i \(0.654610\pi\)
\(524\) 79.1960i 3.45969i
\(525\) 0 0
\(526\) −51.0000 29.4449i −2.22371 1.28386i
\(527\) −1.22474 2.12132i −0.0533507 0.0924062i
\(528\) 0 0
\(529\) −7.50000 12.9904i −0.326087 0.564799i
\(530\) 7.34847 4.24264i 0.319197 0.184289i
\(531\) 0 0
\(532\) 32.0000 13.8564i 1.38738 0.600751i
\(533\) 0 0
\(534\) 0 0
\(535\) 9.00000 5.19615i 0.389104 0.224649i
\(536\) −58.7878 33.9411i −2.53924 1.46603i
\(537\) 0 0
\(538\) 21.0000 36.3731i 0.905374 1.56815i
\(539\) 16.9706i 0.730974i
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.0214967 0.0372333i −0.855077 0.518501i \(-0.826490\pi\)
0.876574 + 0.481268i \(0.159824\pi\)
\(542\) −15.9217 + 27.5772i −0.683895 + 1.18454i
\(543\) 0 0
\(544\) 0 0
\(545\) −2.44949 + 4.24264i −0.104925 + 0.181735i
\(546\) 0 0
\(547\) −22.5000 12.9904i −0.962031 0.555429i −0.0652331 0.997870i \(-0.520779\pi\)
−0.896797 + 0.442441i \(0.854112\pi\)
\(548\) 48.9898 28.2843i 2.09274 1.20824i
\(549\) 0 0
\(550\) 41.5692i 1.77252i
\(551\) −29.3939 + 12.7279i −1.25222 + 0.542228i
\(552\) 0 0
\(553\) −21.0000 + 12.1244i −0.893011 + 0.515580i
\(554\) −19.5959 33.9411i −0.832551 1.44202i
\(555\) 0 0
\(556\) 32.0000 + 55.4256i 1.35710 + 2.35057i
\(557\) −1.22474 0.707107i −0.0518941 0.0299611i 0.473828 0.880617i \(-0.342872\pi\)
−0.525723 + 0.850656i \(0.676205\pi\)
\(558\) 0 0
\(559\) 19.0526i 0.805837i
\(560\) −9.79796 5.65685i −0.414039 0.239046i
\(561\) 0 0
\(562\) −54.0000 −2.27785
\(563\) −17.1464 −0.722636 −0.361318 0.932443i \(-0.617673\pi\)
−0.361318 + 0.932443i \(0.617673\pi\)
\(564\) 0 0
\(565\) −21.0000 + 12.1244i −0.883477 + 0.510075i
\(566\) −19.5959 + 33.9411i −0.823678 + 1.42665i
\(567\) 0 0
\(568\) −12.0000 20.7846i −0.503509 0.872103i
\(569\) 2.44949 0.102688 0.0513440 0.998681i \(-0.483650\pi\)
0.0513440 + 0.998681i \(0.483650\pi\)
\(570\) 0 0
\(571\) 35.0000 1.46470 0.732352 0.680926i \(-0.238422\pi\)
0.732352 + 0.680926i \(0.238422\pi\)
\(572\) 19.5959 + 33.9411i 0.819346 + 1.41915i
\(573\) 0 0
\(574\) 0 0
\(575\) −7.34847 + 4.24264i −0.306452 + 0.176930i
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) −36.7423 −1.52828
\(579\) 0 0
\(580\) 36.0000 + 20.7846i 1.49482 + 0.863034i
\(581\) 2.82843i 0.117343i
\(582\) 0 0
\(583\) 12.0000 + 6.92820i 0.496989 + 0.286937i
\(584\) −9.79796 16.9706i −0.405442 0.702247i
\(585\) 0 0
\(586\) −3.00000 5.19615i −0.123929 0.214651i
\(587\) 1.22474 0.707107i 0.0505506 0.0291854i −0.474512 0.880249i \(-0.657375\pi\)
0.525062 + 0.851064i \(0.324042\pi\)
\(588\) 0 0
\(589\) −4.50000 + 6.06218i −0.185419 + 0.249788i
\(590\) 25.4558i 1.04800i
\(591\) 0 0
\(592\) −18.0000 + 10.3923i −0.739795 + 0.427121i
\(593\) 9.79796 + 5.65685i 0.402354 + 0.232299i 0.687499 0.726185i \(-0.258708\pi\)
−0.285145 + 0.958484i \(0.592042\pi\)
\(594\) 0 0
\(595\) 2.00000 3.46410i 0.0819920 0.142014i
\(596\) 28.2843i 1.15857i
\(597\) 0 0
\(598\) 6.00000 10.3923i 0.245358 0.424973i
\(599\) 20.8207 36.0624i 0.850709 1.47347i −0.0298600 0.999554i \(-0.509506\pi\)
0.880569 0.473918i \(-0.157161\pi\)
\(600\) 0 0
\(601\) 12.1244i 0.494563i 0.968944 + 0.247281i \(0.0795372\pi\)
−0.968944 + 0.247281i \(0.920463\pi\)
\(602\) 26.9444 46.6690i 1.09817 1.90209i
\(603\) 0 0
\(604\) −6.00000 3.46410i −0.244137 0.140952i
\(605\) −25.7196 + 14.8492i −1.04565 + 0.603708i
\(606\) 0 0
\(607\) 6.92820i 0.281207i −0.990066 0.140604i \(-0.955096\pi\)
0.990066 0.140604i \(-0.0449043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 39.0000 22.5167i 1.57906 0.911673i
\(611\) −9.79796 16.9706i −0.396383 0.686555i
\(612\) 0 0
\(613\) 15.5000 + 26.8468i 0.626039 + 1.08433i 0.988339 + 0.152270i \(0.0486583\pi\)
−0.362300 + 0.932062i \(0.618008\pi\)
\(614\) 36.7423 + 21.2132i 1.48280 + 0.856095i
\(615\) 0 0
\(616\) 55.4256i 2.23316i
\(617\) 2.44949 + 1.41421i 0.0986127 + 0.0569341i 0.548495 0.836154i \(-0.315201\pi\)
−0.449883 + 0.893088i \(0.648534\pi\)
\(618\) 0 0
\(619\) 47.0000 1.88909 0.944545 0.328383i \(-0.106504\pi\)
0.944545 + 0.328383i \(0.106504\pi\)
\(620\) 9.79796 0.393496
\(621\) 0 0
\(622\) 15.0000 8.66025i 0.601445 0.347245i
\(623\) 9.79796 16.9706i 0.392547 0.679911i
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) −12.2474 −0.489506
\(627\) 0 0
\(628\) 20.0000 0.798087
\(629\) −3.67423 6.36396i −0.146501 0.253748i
\(630\) 0 0
\(631\) −11.5000 + 19.9186i −0.457808 + 0.792946i −0.998845 0.0480524i \(-0.984699\pi\)
0.541037 + 0.840999i \(0.318032\pi\)
\(632\) 51.4393 29.6985i 2.04614 1.18134i
\(633\) 0 0
\(634\) 36.0000 1.42974
\(635\) 9.79796 0.388820
\(636\) 0 0
\(637\) 4.50000 + 2.59808i 0.178296 + 0.102940i
\(638\) 101.823i 4.03123i
\(639\) 0 0
\(640\) −24.0000 13.8564i −0.948683 0.547723i
\(641\) 19.5959 + 33.9411i 0.773992 + 1.34059i 0.935359 + 0.353699i \(0.115076\pi\)
−0.161367 + 0.986894i \(0.551590\pi\)
\(642\) 0 0
\(643\) 3.50000 + 6.06218i 0.138027 + 0.239069i 0.926750 0.375680i \(-0.122591\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) −19.5959 + 11.3137i −0.772187 + 0.445823i
\(645\) 0 0
\(646\) −6.00000 13.8564i −0.236067 0.545173i
\(647\) 9.89949i 0.389189i 0.980884 + 0.194595i \(0.0623391\pi\)
−0.980884 + 0.194595i \(0.937661\pi\)
\(648\) 0 0
\(649\) 36.0000 20.7846i 1.41312 0.815867i
\(650\) 11.0227 + 6.36396i 0.432346 + 0.249615i
\(651\) 0 0
\(652\) −34.0000 + 58.8897i −1.33154 + 2.30630i
\(653\) 28.2843i 1.10685i −0.832899 0.553425i \(-0.813321\pi\)
0.832899 0.553425i \(-0.186679\pi\)
\(654\) 0 0
\(655\) −14.0000 + 24.2487i −0.547025 + 0.947476i
\(656\) 0 0
\(657\) 0 0
\(658\) 55.4256i 2.16072i
\(659\) 7.34847 12.7279i 0.286256 0.495809i −0.686657 0.726981i \(-0.740923\pi\)
0.972913 + 0.231172i \(0.0742560\pi\)
\(660\) 0 0
\(661\) −19.5000 11.2583i −0.758462 0.437898i 0.0702812 0.997527i \(-0.477610\pi\)
−0.828743 + 0.559629i \(0.810944\pi\)
\(662\) −25.7196 + 14.8492i −0.999622 + 0.577132i
\(663\) 0 0
\(664\) 6.92820i 0.268866i
\(665\) −12.2474 1.41421i −0.474936 0.0548408i
\(666\) 0 0
\(667\) 18.0000 10.3923i 0.696963 0.402392i
\(668\) −4.89898 8.48528i −0.189547 0.328305i
\(669\) 0 0
\(670\) 24.0000 + 41.5692i 0.927201 + 1.60596i
\(671\) 63.6867 + 36.7696i 2.45860 + 1.41947i
\(672\) 0 0
\(673\) 24.2487i 0.934719i −0.884067 0.467360i \(-0.845205\pi\)
0.884067 0.467360i \(-0.154795\pi\)
\(674\) 22.0454 + 12.7279i 0.849157 + 0.490261i
\(675\) 0 0
\(676\) 40.0000 1.53846
\(677\) −41.6413 −1.60041 −0.800203 0.599729i \(-0.795275\pi\)
−0.800203 + 0.599729i \(0.795275\pi\)
\(678\) 0 0
\(679\) −3.00000 + 1.73205i −0.115129 + 0.0664700i
\(680\) −4.89898 + 8.48528i −0.187867 + 0.325396i
\(681\) 0 0
\(682\) 12.0000 + 20.7846i 0.459504 + 0.795884i
\(683\) 51.4393 1.96827 0.984135 0.177423i \(-0.0567759\pi\)
0.984135 + 0.177423i \(0.0567759\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) −24.4949 42.4264i −0.935220 1.61985i
\(687\) 0 0
\(688\) −22.0000 + 38.1051i −0.838742 + 1.45274i
\(689\) −3.67423 + 2.12132i −0.139977 + 0.0808159i
\(690\) 0 0
\(691\) −22.0000 −0.836919 −0.418460 0.908235i \(-0.637430\pi\)
−0.418460 + 0.908235i \(0.637430\pi\)
\(692\) −9.79796 −0.372463
\(693\) 0 0
\(694\) −24.0000 13.8564i −0.911028 0.525982i
\(695\) 22.6274i 0.858307i
\(696\) 0 0
\(697\) 0 0
\(698\) 13.4722 + 23.3345i 0.509930 + 0.883225i
\(699\) 0 0
\(700\) −12.0000 20.7846i −0.453557 0.785584i
\(701\) 41.6413 24.0416i 1.57277 0.908040i 0.576944 0.816784i \(-0.304245\pi\)
0.995827 0.0912559i \(-0.0290881\pi\)
\(702\) 0 0
\(703\) −13.5000 + 18.1865i −0.509162 + 0.685918i
\(704\) 45.2548i 1.70561i
\(705\) 0 0
\(706\) −39.0000 + 22.5167i −1.46778 + 0.847426i
\(707\) 19.5959 + 11.3137i 0.736980 + 0.425496i
\(708\) 0 0
\(709\) 20.0000 34.6410i 0.751116 1.30097i −0.196167 0.980571i \(-0.562849\pi\)
0.947282 0.320400i \(-0.103817\pi\)
\(710\) 16.9706i 0.636894i
\(711\) 0 0
\(712\) −24.0000 + 41.5692i −0.899438 + 1.55787i
\(713\) 2.44949 4.24264i 0.0917341 0.158888i
\(714\) 0 0
\(715\) 13.8564i 0.518200i
\(716\) −29.3939 + 50.9117i −1.09850 + 1.90266i
\(717\) 0 0
\(718\) −33.0000 19.0526i −1.23155 0.711035i
\(719\) −13.4722 + 7.77817i −0.502428 + 0.290077i −0.729716 0.683751i \(-0.760348\pi\)
0.227288 + 0.973828i \(0.427014\pi\)
\(720\) 0 0
\(721\) 34.6410i 1.29010i
\(722\) −31.8434 + 33.9411i −1.18509 + 1.26316i
\(723\) 0 0
\(724\) −42.0000 + 24.2487i −1.56092 + 0.901196i
\(725\) 11.0227 + 19.0919i 0.409373 + 0.709055i
\(726\) 0 0
\(727\) −11.5000 19.9186i −0.426511 0.738739i 0.570049 0.821611i \(-0.306924\pi\)
−0.996560 + 0.0828714i \(0.973591\pi\)
\(728\) 14.6969 + 8.48528i 0.544705 + 0.314485i
\(729\) 0 0
\(730\) 13.8564i 0.512849i
\(731\) −13.4722 7.77817i −0.498287 0.287686i
\(732\) 0 0
\(733\) −10.0000 −0.369358 −0.184679 0.982799i \(-0.559125\pi\)
−0.184679 + 0.982799i \(0.559125\pi\)
\(734\) −56.3383 −2.07948
\(735\) 0 0
\(736\) 0 0
\(737\) −39.1918 + 67.8823i −1.44365 + 2.50047i
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.0183928 + 0.0318573i 0.875075 0.483987i \(-0.160812\pi\)
−0.856683 + 0.515844i \(0.827478\pi\)
\(740\) 29.3939 1.08054
\(741\) 0 0
\(742\) 12.0000 0.440534
\(743\) −14.6969 25.4558i −0.539178 0.933884i −0.998949 0.0458464i \(-0.985402\pi\)
0.459770 0.888038i \(-0.347932\pi\)
\(744\) 0 0
\(745\) −5.00000 + 8.66025i −0.183186 + 0.317287i
\(746\) −18.3712 + 10.6066i −0.672616 + 0.388335i
\(747\) 0 0
\(748\) −32.0000 −1.17004
\(749\) 14.6969 0.537014
\(750\) 0 0
\(751\) 16.5000 + 9.52628i 0.602094 + 0.347619i 0.769865 0.638207i \(-0.220324\pi\)
−0.167771 + 0.985826i \(0.553657\pi\)
\(752\) 45.2548i 1.65027i
\(753\) 0 0
\(754\) −27.0000 15.5885i −0.983282 0.567698i
\(755\) 1.22474 + 2.12132i 0.0445730 + 0.0772028i
\(756\) 0 0
\(757\) 0.500000 + 0.866025i 0.0181728 + 0.0314762i 0.874969 0.484179i \(-0.160882\pi\)
−0.856796 + 0.515656i \(0.827548\pi\)
\(758\) −44.0908 + 25.4558i −1.60145 + 0.924598i
\(759\) 0 0
\(760\) 30.0000 + 3.46410i 1.08821 + 0.125656i
\(761\) 7.07107i 0.256326i −0.991753 0.128163i \(-0.959092\pi\)
0.991753 0.128163i \(-0.0409081\pi\)
\(762\) 0 0
\(763\) −6.00000 + 3.46410i −0.217215 + 0.125409i
\(764\) 68.5857 + 39.5980i 2.48134 + 1.43260i
\(765\) 0 0
\(766\) −45.0000 + 77.9423i −1.62592 + 2.81617i
\(767\) 12.7279i 0.459579i
\(768\) 0 0
\(769\) 9.50000 16.4545i 0.342579 0.593364i −0.642332 0.766426i \(-0.722033\pi\)
0.984911 + 0.173063i \(0.0553663\pi\)
\(770\) −19.5959 + 33.9411i −0.706188 + 1.22315i
\(771\) 0 0
\(772\) 41.5692i 1.49611i
\(773\) −6.12372 + 10.6066i −0.220255 + 0.381493i −0.954885 0.296975i \(-0.904022\pi\)
0.734630 + 0.678468i \(0.237356\pi\)
\(774\) 0 0
\(775\) 4.50000 + 2.59808i 0.161645 + 0.0933257i
\(776\) 7.34847 4.24264i 0.263795 0.152302i
\(777\) 0 0
\(778\) 38.1051i 1.36613i
\(779\) 0 0
\(780\) 0 0
\(781\) −24.0000 + 13.8564i −0.858788 + 0.495821i
\(782\) 4.89898 + 8.48528i 0.175187 + 0.303433i
\(783\) 0 0
\(784\) 6.00000 + 10.3923i 0.214286 + 0.371154i
\(785\) −6.12372 3.53553i −0.218565 0.126189i
\(786\) 0 0
\(787\) 1.73205i 0.0617409i −0.999523 0.0308705i \(-0.990172\pi\)
0.999523 0.0308705i \(-0.00982794\pi\)
\(788\) −19.5959 11.3137i −0.698076 0.403034i
\(789\) 0 0
\(790\) −42.0000 −1.49429
\(791\) −34.2929 −1.21931
\(792\) 0 0
\(793\) −19.5000 + 11.2583i −0.692465 + 0.399795i
\(794\) 20.8207 36.0624i 0.738898 1.27981i
\(795\) 0 0
\(796\) −28.0000 48.4974i −0.992434 1.71895i
\(797\) −9.79796 −0.347062 −0.173531 0.984828i \(-0.555518\pi\)
−0.173531 + 0.984828i \(0.555518\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.5959 + 11.3137i −0.691525 + 0.399252i
\(804\) 0 0
\(805\) 8.00000 0.281963
\(806\) −7.34847 −0.258839
\(807\) 0 0
\(808\) −48.0000 27.7128i −1.68863 0.974933i
\(809\) 5.65685i 0.198884i 0.995043 + 0.0994422i \(0.0317058\pi\)
−0.995043 + 0.0994422i \(0.968294\pi\)
\(810\) 0 0
\(811\) −48.0000 27.7128i −1.68551 0.973128i −0.957885 0.287151i \(-0.907292\pi\)
−0.727623 0.685978i \(-0.759375\pi\)
\(812\) 29.3939 + 50.9117i 1.03152 + 1.78665i
\(813\) 0 0
\(814\) 36.0000 + 62.3538i 1.26180 + 2.18550i
\(815\) 20.8207 12.0208i 0.729316 0.421071i
\(816\) 0 0
\(817\) −5.50000 + 47.6314i −0.192421 + 1.66641i
\(818\) 29.6985i 1.03838i
\(819\) 0 0
\(820\) 0 0
\(821\) −1.22474 0.707107i −0.0427439 0.0246782i 0.478476 0.878101i \(-0.341189\pi\)
−0.521220 + 0.853423i \(0.674523\pi\)
\(822\) 0 0
\(823\) 3.50000 6.06218i 0.122002 0.211314i −0.798555 0.601922i \(-0.794402\pi\)
0.920557 + 0.390608i \(0.127735\pi\)
\(824\) 84.8528i 2.95599i
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) −20.8207 + 36.0624i −0.724005 + 1.25401i 0.235377 + 0.971904i \(0.424368\pi\)
−0.959382 + 0.282110i \(0.908966\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i −0.983581 0.180470i \(-0.942238\pi\)
0.983581 0.180470i \(-0.0577618\pi\)
\(830\) −2.44949 + 4.24264i −0.0850230 + 0.147264i
\(831\) 0 0
\(832\) 12.0000 + 6.92820i 0.416025 + 0.240192i
\(833\) −3.67423 + 2.12132i −0.127305 + 0.0734994i
\(834\) 0 0
\(835\) 3.46410i 0.119880i
\(836\) 39.1918 + 90.5097i 1.35548 + 3.13034i
\(837\) 0 0
\(838\) −48.0000 + 27.7128i −1.65813 + 0.957323i
\(839\) 19.5959 + 33.9411i 0.676526 + 1.17178i 0.976020 + 0.217680i \(0.0698488\pi\)
−0.299494 + 0.954098i \(0.596818\pi\)
\(840\) 0 0
\(841\) −12.5000 21.6506i −0.431034 0.746574i
\(842\) 40.4166 + 23.3345i 1.39285 + 0.804161i
\(843\) 0 0
\(844\) 0 0
\(845\) −12.2474 7.07107i −0.421325 0.243252i
\(846\) 0 0
\(847\) −42.0000 −1.44314
\(848\) −9.79796 −0.336463
\(849\) 0 0
\(850\) −9.00000 + 5.19615i −0.308697 + 0.178227i
\(851\) 7.34847 12.7279i 0.251902 0.436308i
\(852\) 0 0
\(853\) 8.00000 + 13.8564i 0.273915 + 0.474434i 0.969861 0.243660i \(-0.0783480\pi\)
−0.695946 + 0.718094i \(0.745015\pi\)
\(854\) 63.6867 2.17932
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) −6.12372 10.6066i −0.209182 0.362315i 0.742275 0.670096i \(-0.233747\pi\)
−0.951457 + 0.307781i \(0.900414\pi\)
\(858\) 0 0
\(859\) 18.5000 32.0429i 0.631212 1.09329i −0.356092 0.934451i \(-0.615891\pi\)
0.987304 0.158840i \(-0.0507755\pi\)
\(860\) 53.8888 31.1127i 1.83759 1.06093i
\(861\) 0 0
\(862\) 60.0000 2.04361
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 3.00000 + 1.73205i 0.102003 + 0.0588915i
\(866\) 72.1249i 2.45090i
\(867\) 0 0
\(868\) 12.0000 + 6.92820i 0.407307 + 0.235159i
\(869\) −34.2929 59.3970i −1.16331 2.01490i
\(870\) 0 0
\(871\) −12.0000 20.7846i −0.406604 0.704260i
\(872\) 14.6969 8.48528i 0.497701 0.287348i
\(873\) 0 0
\(874\) 18.0000 24.2487i 0.608859 0.820225i
\(875\) 22.6274i 0.764946i
\(876\) 0 0
\(877\) 13.5000 7.79423i 0.455863 0.263192i −0.254440 0.967088i \(-0.581891\pi\)
0.710303 + 0.703896i \(0.248558\pi\)
\(878\) −3.67423 2.12132i −0.123999 0.0715911i
\(879\) 0 0
\(880\) 16.0000 27.7128i 0.539360 0.934199i
\(881\) 15.5563i 0.524107i −0.965053 0.262053i \(-0.915600\pi\)
0.965053 0.262053i \(-0.0843996\pi\)
\(882\) 0 0
\(883\) 6.50000 11.2583i 0.218742 0.378873i −0.735681 0.677328i \(-0.763138\pi\)
0.954424 + 0.298455i \(0.0964712\pi\)
\(884\) 4.89898 8.48528i 0.164771 0.285391i
\(885\) 0 0
\(886\) 24.2487i 0.814651i
\(887\) −1.22474 + 2.12132i −0.0411229 + 0.0712270i −0.885854 0.463964i \(-0.846427\pi\)
0.844731 + 0.535191i \(0.179760\pi\)
\(888\) 0 0
\(889\) 12.0000 + 6.92820i 0.402467 + 0.232364i
\(890\) 29.3939 16.9706i 0.985285 0.568855i
\(891\) 0 0
\(892\) 76.2102i 2.55171i
\(893\) −19.5959 45.2548i −0.655752 1.51440i
\(894\) 0 0
\(895\) 18.0000 10.3923i 0.601674 0.347376i
\(896\) −19.5959 33.9411i −0.654654 1.13389i
\(897\) 0 0
\(898\) 18.0000 + 31.1769i 0.600668 + 1.04039i
\(899\) −11.0227 6.36396i −0.367628 0.212250i
\(900\) 0 0
\(901\) 3.46410i 0.115406i
\(902\) 0 0
\(903\) 0 0
\(904\) 84.0000 2.79380
\(905\) 17.1464 0.569967
\(906\) 0 0
\(907\) 7.50000 4.33013i 0.249033 0.143780i −0.370288 0.928917i \(-0.620741\pi\)
0.619322 + 0.785137i \(0.287408\pi\)
\(908\) 53.8888 93.3381i 1.78836 3.09753i
\(909\) 0 0
\(910\) −6.00000 10.3923i −0.198898 0.344502i
\(911\) −56.3383 −1.86657 −0.933285 0.359137i \(-0.883071\pi\)
−0.933285 + 0.359137i \(0.883071\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) −15.9217 27.5772i −0.526642 0.912172i
\(915\) 0 0
\(916\) 38.0000 65.8179i 1.25556 2.17469i
\(917\) −34.2929 + 19.7990i −1.13245 + 0.653820i
\(918\) 0 0
\(919\) −37.0000 −1.22052 −0.610259 0.792202i \(-0.708935\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(920\) −19.5959 −0.646058
\(921\) 0 0
\(922\) 12.0000 + 6.92820i 0.395199 + 0.228168i
\(923\) 8.48528i 0.279296i
\(924\) 0 0
\(925\) 13.5000 + 7.79423i 0.443877 + 0.256273i
\(926\) −23.2702 40.3051i −0.764705 1.32451i
\(927\) 0 0
\(928\) 0 0
\(929\) 4.89898 2.82843i 0.160730 0.0927977i −0.417477 0.908687i \(-0.637086\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(930\) 0 0
\(931\) 10.5000 + 7.79423i 0.344124 + 0.255446i
\(932\) 96.1665i 3.15004i
\(933\) 0 0
\(934\) −75.0000 + 43.3013i −2.45407 + 1.41686i
\(935\) 9.79796 + 5.65685i 0.320428 + 0.184999i
\(936\) 0 0
\(937\) 18.5000 32.0429i 0.604369 1.04680i −0.387782 0.921751i \(-0.626759\pi\)
0.992151 0.125046i \(-0.0399079\pi\)
\(938\) 67.8823i 2.21643i
\(939\) 0 0
\(940\) −32.0000 + 55.4256i −1.04372 + 1.80778i
\(941\) −8.57321 + 14.8492i −0.279479 + 0.484071i −0.971255 0.238040i \(-0.923495\pi\)
0.691777 + 0.722112i \(0.256828\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −14.6969 + 25.4558i −0.478345 + 0.828517i
\(945\) 0 0
\(946\) 132.000 + 76.2102i 4.29169 + 2.47781i
\(947\) −6.12372 + 3.53553i −0.198994 + 0.114889i −0.596186 0.802846i \(-0.703318\pi\)
0.397192 + 0.917736i \(0.369985\pi\)
\(948\) 0 0
\(949\) 6.92820i 0.224899i
\(950\) 25.7196 + 19.0919i 0.834455 + 0.619422i
\(951\) 0 0
\(952\) −12.0000 + 6.92820i −0.388922 + 0.224544i
\(953\) −8.57321 14.8492i −0.277714 0.481014i 0.693103 0.720839i \(-0.256243\pi\)
−0.970816 + 0.239825i \(0.922910\pi\)
\(954\) 0 0
\(955\) −14.0000 24.2487i −0.453029 0.784670i
\(956\) 9.79796 + 5.65685i 0.316889 + 0.182956i
\(957\) 0 0
\(958\) 58.8897i 1.90264i
\(959\) −24.4949 14.1421i −0.790981 0.456673i
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) −22.0454 −0.710772
\(963\) 0 0
\(964\) 36.0000 20.7846i 1.15948 0.669427i
\(965\) −7.34847 + 12.7279i −0.236556 + 0.409726i
\(966\) 0 0
\(967\) −1.00000 1.73205i −0.0321578 0.0556990i 0.849499 0.527591i \(-0.176905\pi\)
−0.881656 + 0.471892i \(0.843571\pi\)
\(968\) 102.879 3.30664
\(969\) 0 0
\(970\) −6.00000 −0.192648
\(971\) −30.6186 53.0330i −0.982598 1.70191i −0.652157 0.758084i \(-0.726136\pi\)
−0.330441 0.943827i \(-0.607197\pi\)
\(972\) 0 0
\(973\) 16.0000 27.7128i 0.512936 0.888432i
\(974\) 11.0227 6.36396i 0.353190 0.203914i
\(975\) 0 0
\(976\) −52.0000 −1.66448
\(977\) −31.8434 −1.01876 −0.509380 0.860542i \(-0.670125\pi\)
−0.509380 + 0.860542i \(0.670125\pi\)
\(978\) 0 0
\(979\) 48.0000 + 27.7128i 1.53409 + 0.885705i
\(980\) 16.9706i 0.542105i
\(981\) 0 0
\(982\) 57.0000 + 32.9090i 1.81894 + 1.05017i
\(983\) 1.22474 + 2.12132i 0.0390633 + 0.0676596i 0.884896 0.465789i \(-0.154229\pi\)
−0.845833 + 0.533448i \(0.820896\pi\)
\(984\) 0 0
\(985\) 4.00000 + 6.92820i 0.127451 + 0.220751i
\(986\) 22.0454 12.7279i 0.702069 0.405340i
\(987\) 0 0
\(988\) −30.0000 3.46410i −0.954427 0.110208i
\(989\) 31.1127i 0.989326i
\(990\) 0 0
\(991\) −25.5000 + 14.7224i −0.810034 + 0.467673i −0.846968 0.531644i \(-0.821574\pi\)
0.0369336 + 0.999318i \(0.488241\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −12.0000 + 20.7846i −0.380617 + 0.659248i
\(995\) 19.7990i 0.627670i
\(996\) 0 0
\(997\) 18.5000 32.0429i 0.585901 1.01481i −0.408862 0.912596i \(-0.634074\pi\)
0.994762 0.102214i \(-0.0325925\pi\)
\(998\) −8.57321 + 14.8492i −0.271380 + 0.470045i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.m.c.107.2 yes 4
3.2 odd 2 inner 513.2.m.c.107.1 4
19.8 odd 6 inner 513.2.m.c.350.1 yes 4
57.8 even 6 inner 513.2.m.c.350.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.m.c.107.1 4 3.2 odd 2 inner
513.2.m.c.107.2 yes 4 1.1 even 1 trivial
513.2.m.c.350.1 yes 4 19.8 odd 6 inner
513.2.m.c.350.2 yes 4 57.8 even 6 inner