Properties

Label 513.2.m.c
Level $513$
Weight $2$
Character orbit 513.m
Analytic conductor $4.096$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(107,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_1) q^{2} + (4 \beta_{2} - 4) q^{4} + (\beta_{3} - \beta_1) q^{5} + 2 q^{7} + ( - 2 \beta_{3} + 4 \beta_1) q^{8} + (2 \beta_{2} + 2) q^{10} - 4 \beta_{3} q^{11} + ( - \beta_{2} - 1) q^{13}+ \cdots + (3 \beta_{3} + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 8 q^{7} + 12 q^{10} - 6 q^{13} - 8 q^{16} - 14 q^{19} - 48 q^{22} - 6 q^{25} - 16 q^{28} + 12 q^{34} - 24 q^{40} - 22 q^{43} - 12 q^{49} + 24 q^{52} + 16 q^{55} + 72 q^{58} + 26 q^{61} - 32 q^{64}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(-1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
1.22474 + 0.707107i
−1.22474 0.707107i
1.22474 0.707107i
−1.22474 + 0.707107i
−1.22474 2.12132i 0 −2.00000 + 3.46410i −1.22474 + 0.707107i 0 2.00000 4.89898 0 3.00000 + 1.73205i
107.2 1.22474 + 2.12132i 0 −2.00000 + 3.46410i 1.22474 0.707107i 0 2.00000 −4.89898 0 3.00000 + 1.73205i
350.1 −1.22474 + 2.12132i 0 −2.00000 3.46410i −1.22474 0.707107i 0 2.00000 4.89898 0 3.00000 1.73205i
350.2 1.22474 2.12132i 0 −2.00000 3.46410i 1.22474 + 0.707107i 0 2.00000 −4.89898 0 3.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
19.d odd 6 1 inner
57.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 513.2.m.c 4
3.b odd 2 1 inner 513.2.m.c 4
19.d odd 6 1 inner 513.2.m.c 4
57.f even 6 1 inner 513.2.m.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.2.m.c 4 1.a even 1 1 trivial
513.2.m.c 4 3.b odd 2 1 inner
513.2.m.c 4 19.d odd 6 1 inner
513.2.m.c 4 57.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(513, [\chi])\):

\( T_{2}^{4} + 6T_{2}^{2} + 36 \) Copy content Toggle raw display
\( T_{5}^{4} - 2T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T - 2)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T^{2} + 7 T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 8T^{2} + 64 \) Copy content Toggle raw display
$29$ \( T^{4} + 54T^{2} + 2916 \) Copy content Toggle raw display
$31$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 11 T + 121)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 128 T^{2} + 16384 \) Copy content Toggle raw display
$53$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{4} + 54T^{2} + 2916 \) Copy content Toggle raw display
$61$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 24 T + 192)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$73$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 21 T + 147)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 96T^{2} + 9216 \) Copy content Toggle raw display
$97$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
show more
show less