Properties

Label 513.2.f.h.406.5
Level $513$
Weight $2$
Character 513.406
Analytic conductor $4.096$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(163,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.5
Root \(0.792283 - 1.37227i\) of defining polynomial
Character \(\chi\) \(=\) 513.406
Dual form 513.2.f.h.163.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.792283 + 1.37227i) q^{2} +(-0.255424 + 0.442408i) q^{4} +(-0.780905 - 1.35257i) q^{5} -0.188849 q^{7} +2.35966 q^{8} +(1.23740 - 2.14323i) q^{10} +1.98564 q^{11} +(2.46073 - 4.26212i) q^{13} +(-0.149622 - 0.259153i) q^{14} +(2.38037 + 4.12291i) q^{16} +(3.67265 + 6.36121i) q^{17} +(-1.14266 - 4.20646i) q^{19} +0.797849 q^{20} +(1.57319 + 2.72484i) q^{22} +(-0.631283 + 1.09341i) q^{23} +(1.28038 - 2.21768i) q^{25} +7.79839 q^{26} +(0.0482366 - 0.0835483i) q^{28} +(-3.51165 + 6.08235i) q^{29} +3.84607 q^{31} +(-1.41219 + 2.44598i) q^{32} +(-5.81955 + 10.0798i) q^{34} +(0.147473 + 0.255431i) q^{35} -1.66426 q^{37} +(4.86711 - 4.90075i) q^{38} +(-1.84267 - 3.19160i) q^{40} +(-2.28090 - 3.95064i) q^{41} +(-0.776707 - 1.34530i) q^{43} +(-0.507181 + 0.878463i) q^{44} -2.00062 q^{46} +(2.88618 - 4.99901i) q^{47} -6.96434 q^{49} +4.05768 q^{50} +(1.25706 + 2.17730i) q^{52} +(-2.93892 + 5.09036i) q^{53} +(-1.55059 - 2.68571i) q^{55} -0.445619 q^{56} -11.1289 q^{58} +(-0.657293 - 1.13846i) q^{59} +(-5.56088 + 9.63172i) q^{61} +(3.04718 + 5.27787i) q^{62} +5.04605 q^{64} -7.68640 q^{65} +(-5.36574 + 9.29374i) q^{67} -3.75234 q^{68} +(-0.233681 + 0.404747i) q^{70} +(-2.93677 - 5.08664i) q^{71} +(-5.90339 - 10.2250i) q^{73} +(-1.31856 - 2.28382i) q^{74} +(2.15284 + 0.568911i) q^{76} -0.374986 q^{77} +(4.14124 + 7.17284i) q^{79} +(3.71768 - 6.43921i) q^{80} +(3.61424 - 6.26005i) q^{82} -11.5479 q^{83} +(5.73598 - 9.93500i) q^{85} +(1.23074 - 2.13171i) q^{86} +4.68543 q^{88} +(0.512993 - 0.888530i) q^{89} +(-0.464707 + 0.804896i) q^{91} +(-0.322490 - 0.558569i) q^{92} +9.14668 q^{94} +(-4.79721 + 4.83037i) q^{95} +(2.12169 + 3.67487i) q^{97} +(-5.51772 - 9.55698i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} + q^{10} - 4 q^{11} - 5 q^{13} + 2 q^{14} + 3 q^{16} + 10 q^{17} - 9 q^{19} - 2 q^{20} - 4 q^{22} + 3 q^{23} - 5 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.792283 + 1.37227i 0.560229 + 0.970344i 0.997476 + 0.0710032i \(0.0226201\pi\)
−0.437247 + 0.899341i \(0.644047\pi\)
\(3\) 0 0
\(4\) −0.255424 + 0.442408i −0.127712 + 0.221204i
\(5\) −0.780905 1.35257i −0.349231 0.604886i 0.636882 0.770961i \(-0.280224\pi\)
−0.986113 + 0.166075i \(0.946891\pi\)
\(6\) 0 0
\(7\) −0.188849 −0.0713782 −0.0356891 0.999363i \(-0.511363\pi\)
−0.0356891 + 0.999363i \(0.511363\pi\)
\(8\) 2.35966 0.834265
\(9\) 0 0
\(10\) 1.23740 2.14323i 0.391299 0.677749i
\(11\) 1.98564 0.598693 0.299346 0.954145i \(-0.403231\pi\)
0.299346 + 0.954145i \(0.403231\pi\)
\(12\) 0 0
\(13\) 2.46073 4.26212i 0.682485 1.18210i −0.291735 0.956499i \(-0.594233\pi\)
0.974220 0.225599i \(-0.0724340\pi\)
\(14\) −0.149622 0.259153i −0.0399881 0.0692614i
\(15\) 0 0
\(16\) 2.38037 + 4.12291i 0.595091 + 1.03073i
\(17\) 3.67265 + 6.36121i 0.890748 + 1.54282i 0.838980 + 0.544162i \(0.183152\pi\)
0.0517678 + 0.998659i \(0.483514\pi\)
\(18\) 0 0
\(19\) −1.14266 4.20646i −0.262144 0.965029i
\(20\) 0.797849 0.178404
\(21\) 0 0
\(22\) 1.57319 + 2.72484i 0.335405 + 0.580938i
\(23\) −0.631283 + 1.09341i −0.131632 + 0.227993i −0.924306 0.381653i \(-0.875355\pi\)
0.792674 + 0.609646i \(0.208688\pi\)
\(24\) 0 0
\(25\) 1.28038 2.21768i 0.256075 0.443535i
\(26\) 7.79839 1.52939
\(27\) 0 0
\(28\) 0.0482366 0.0835483i 0.00911587 0.0157891i
\(29\) −3.51165 + 6.08235i −0.652097 + 1.12946i 0.330516 + 0.943800i \(0.392777\pi\)
−0.982613 + 0.185664i \(0.940556\pi\)
\(30\) 0 0
\(31\) 3.84607 0.690775 0.345388 0.938460i \(-0.387747\pi\)
0.345388 + 0.938460i \(0.387747\pi\)
\(32\) −1.41219 + 2.44598i −0.249642 + 0.432392i
\(33\) 0 0
\(34\) −5.81955 + 10.0798i −0.998045 + 1.72866i
\(35\) 0.147473 + 0.255431i 0.0249275 + 0.0431757i
\(36\) 0 0
\(37\) −1.66426 −0.273602 −0.136801 0.990599i \(-0.543682\pi\)
−0.136801 + 0.990599i \(0.543682\pi\)
\(38\) 4.86711 4.90075i 0.789549 0.795007i
\(39\) 0 0
\(40\) −1.84267 3.19160i −0.291351 0.504635i
\(41\) −2.28090 3.95064i −0.356217 0.616987i 0.631108 0.775695i \(-0.282600\pi\)
−0.987326 + 0.158708i \(0.949267\pi\)
\(42\) 0 0
\(43\) −0.776707 1.34530i −0.118447 0.205156i 0.800706 0.599058i \(-0.204458\pi\)
−0.919152 + 0.393902i \(0.871125\pi\)
\(44\) −0.507181 + 0.878463i −0.0764604 + 0.132433i
\(45\) 0 0
\(46\) −2.00062 −0.294975
\(47\) 2.88618 4.99901i 0.420992 0.729180i −0.575044 0.818122i \(-0.695015\pi\)
0.996037 + 0.0889420i \(0.0283486\pi\)
\(48\) 0 0
\(49\) −6.96434 −0.994905
\(50\) 4.05768 0.573842
\(51\) 0 0
\(52\) 1.25706 + 2.17730i 0.174323 + 0.301937i
\(53\) −2.93892 + 5.09036i −0.403692 + 0.699215i −0.994168 0.107840i \(-0.965607\pi\)
0.590476 + 0.807055i \(0.298940\pi\)
\(54\) 0 0
\(55\) −1.55059 2.68571i −0.209082 0.362141i
\(56\) −0.445619 −0.0595483
\(57\) 0 0
\(58\) −11.1289 −1.46129
\(59\) −0.657293 1.13846i −0.0855722 0.148215i 0.820063 0.572274i \(-0.193939\pi\)
−0.905635 + 0.424058i \(0.860605\pi\)
\(60\) 0 0
\(61\) −5.56088 + 9.63172i −0.711997 + 1.23322i 0.252109 + 0.967699i \(0.418876\pi\)
−0.964106 + 0.265516i \(0.914458\pi\)
\(62\) 3.04718 + 5.27787i 0.386992 + 0.670290i
\(63\) 0 0
\(64\) 5.04605 0.630757
\(65\) −7.68640 −0.953380
\(66\) 0 0
\(67\) −5.36574 + 9.29374i −0.655530 + 1.13541i 0.326231 + 0.945290i \(0.394221\pi\)
−0.981761 + 0.190121i \(0.939112\pi\)
\(68\) −3.75234 −0.455038
\(69\) 0 0
\(70\) −0.233681 + 0.404747i −0.0279302 + 0.0483765i
\(71\) −2.93677 5.08664i −0.348531 0.603673i 0.637458 0.770485i \(-0.279986\pi\)
−0.985989 + 0.166812i \(0.946653\pi\)
\(72\) 0 0
\(73\) −5.90339 10.2250i −0.690940 1.19674i −0.971530 0.236915i \(-0.923864\pi\)
0.280591 0.959828i \(-0.409470\pi\)
\(74\) −1.31856 2.28382i −0.153280 0.265488i
\(75\) 0 0
\(76\) 2.15284 + 0.568911i 0.246947 + 0.0652585i
\(77\) −0.374986 −0.0427336
\(78\) 0 0
\(79\) 4.14124 + 7.17284i 0.465926 + 0.807008i 0.999243 0.0389078i \(-0.0123878\pi\)
−0.533317 + 0.845916i \(0.679055\pi\)
\(80\) 3.71768 6.43921i 0.415649 0.719925i
\(81\) 0 0
\(82\) 3.61424 6.26005i 0.399126 0.691307i
\(83\) −11.5479 −1.26754 −0.633772 0.773520i \(-0.718494\pi\)
−0.633772 + 0.773520i \(0.718494\pi\)
\(84\) 0 0
\(85\) 5.73598 9.93500i 0.622154 1.07760i
\(86\) 1.23074 2.13171i 0.132715 0.229868i
\(87\) 0 0
\(88\) 4.68543 0.499468
\(89\) 0.512993 0.888530i 0.0543772 0.0941840i −0.837556 0.546352i \(-0.816016\pi\)
0.891933 + 0.452168i \(0.149349\pi\)
\(90\) 0 0
\(91\) −0.464707 + 0.804896i −0.0487145 + 0.0843760i
\(92\) −0.322490 0.558569i −0.0336219 0.0582349i
\(93\) 0 0
\(94\) 9.14668 0.943408
\(95\) −4.79721 + 4.83037i −0.492184 + 0.495586i
\(96\) 0 0
\(97\) 2.12169 + 3.67487i 0.215425 + 0.373127i 0.953404 0.301697i \(-0.0975531\pi\)
−0.737979 + 0.674824i \(0.764220\pi\)
\(98\) −5.51772 9.55698i −0.557374 0.965401i
\(99\) 0 0
\(100\) 0.654078 + 1.13290i 0.0654078 + 0.113290i
\(101\) −1.52601 + 2.64313i −0.151844 + 0.263001i −0.931905 0.362702i \(-0.881854\pi\)
0.780062 + 0.625703i \(0.215188\pi\)
\(102\) 0 0
\(103\) 16.8767 1.66291 0.831455 0.555593i \(-0.187509\pi\)
0.831455 + 0.555593i \(0.187509\pi\)
\(104\) 5.80649 10.0571i 0.569373 0.986183i
\(105\) 0 0
\(106\) −9.31383 −0.904639
\(107\) −10.0432 −0.970915 −0.485457 0.874260i \(-0.661347\pi\)
−0.485457 + 0.874260i \(0.661347\pi\)
\(108\) 0 0
\(109\) −2.05395 3.55755i −0.196733 0.340752i 0.750734 0.660604i \(-0.229700\pi\)
−0.947467 + 0.319853i \(0.896367\pi\)
\(110\) 2.45702 4.25568i 0.234268 0.405763i
\(111\) 0 0
\(112\) −0.449530 0.778608i −0.0424765 0.0735715i
\(113\) 6.97901 0.656530 0.328265 0.944586i \(-0.393536\pi\)
0.328265 + 0.944586i \(0.393536\pi\)
\(114\) 0 0
\(115\) 1.97189 0.183879
\(116\) −1.79392 3.10716i −0.166561 0.288493i
\(117\) 0 0
\(118\) 1.04152 1.80397i 0.0958800 0.166069i
\(119\) −0.693576 1.20131i −0.0635800 0.110124i
\(120\) 0 0
\(121\) −7.05724 −0.641567
\(122\) −17.6231 −1.59552
\(123\) 0 0
\(124\) −0.982381 + 1.70153i −0.0882204 + 0.152802i
\(125\) −11.8085 −1.05618
\(126\) 0 0
\(127\) 8.43862 14.6161i 0.748806 1.29697i −0.199589 0.979880i \(-0.563961\pi\)
0.948395 0.317091i \(-0.102706\pi\)
\(128\) 6.82228 + 11.8165i 0.603010 + 1.04444i
\(129\) 0 0
\(130\) −6.08980 10.5478i −0.534111 0.925107i
\(131\) 5.45097 + 9.44136i 0.476254 + 0.824895i 0.999630 0.0272064i \(-0.00866112\pi\)
−0.523376 + 0.852102i \(0.675328\pi\)
\(132\) 0 0
\(133\) 0.215790 + 0.794386i 0.0187114 + 0.0688820i
\(134\) −17.0047 −1.46899
\(135\) 0 0
\(136\) 8.66619 + 15.0103i 0.743120 + 1.28712i
\(137\) −4.71932 + 8.17410i −0.403198 + 0.698360i −0.994110 0.108376i \(-0.965435\pi\)
0.590912 + 0.806736i \(0.298768\pi\)
\(138\) 0 0
\(139\) −2.33972 + 4.05252i −0.198453 + 0.343730i −0.948027 0.318190i \(-0.896925\pi\)
0.749574 + 0.661920i \(0.230258\pi\)
\(140\) −0.150673 −0.0127342
\(141\) 0 0
\(142\) 4.65351 8.06012i 0.390514 0.676390i
\(143\) 4.88613 8.46302i 0.408599 0.707714i
\(144\) 0 0
\(145\) 10.9691 0.910930
\(146\) 9.35431 16.2021i 0.774168 1.34090i
\(147\) 0 0
\(148\) 0.425092 0.736281i 0.0349424 0.0605219i
\(149\) −0.161417 0.279583i −0.0132238 0.0229043i 0.859338 0.511408i \(-0.170876\pi\)
−0.872562 + 0.488504i \(0.837543\pi\)
\(150\) 0 0
\(151\) 10.7069 0.871312 0.435656 0.900113i \(-0.356516\pi\)
0.435656 + 0.900113i \(0.356516\pi\)
\(152\) −2.69629 9.92581i −0.218698 0.805090i
\(153\) 0 0
\(154\) −0.297095 0.514583i −0.0239406 0.0414663i
\(155\) −3.00342 5.20207i −0.241240 0.417840i
\(156\) 0 0
\(157\) 7.04579 + 12.2037i 0.562315 + 0.973959i 0.997294 + 0.0735178i \(0.0234226\pi\)
−0.434979 + 0.900441i \(0.643244\pi\)
\(158\) −6.56207 + 11.3658i −0.522050 + 0.904218i
\(159\) 0 0
\(160\) 4.41114 0.348731
\(161\) 0.119217 0.206490i 0.00939563 0.0162737i
\(162\) 0 0
\(163\) −24.6568 −1.93127 −0.965636 0.259898i \(-0.916311\pi\)
−0.965636 + 0.259898i \(0.916311\pi\)
\(164\) 2.33039 0.181973
\(165\) 0 0
\(166\) −9.14918 15.8469i −0.710114 1.22995i
\(167\) 11.3586 19.6736i 0.878952 1.52239i 0.0264603 0.999650i \(-0.491576\pi\)
0.852492 0.522740i \(-0.175090\pi\)
\(168\) 0 0
\(169\) −5.61042 9.71754i −0.431571 0.747503i
\(170\) 18.1781 1.39419
\(171\) 0 0
\(172\) 0.793560 0.0605084
\(173\) 7.61902 + 13.1965i 0.579263 + 1.00331i 0.995564 + 0.0940867i \(0.0299931\pi\)
−0.416301 + 0.909227i \(0.636674\pi\)
\(174\) 0 0
\(175\) −0.241798 + 0.418806i −0.0182782 + 0.0316587i
\(176\) 4.72655 + 8.18662i 0.356277 + 0.617090i
\(177\) 0 0
\(178\) 1.62574 0.121855
\(179\) −16.4930 −1.23275 −0.616374 0.787453i \(-0.711399\pi\)
−0.616374 + 0.787453i \(0.711399\pi\)
\(180\) 0 0
\(181\) −4.49171 + 7.77987i −0.333866 + 0.578273i −0.983266 0.182174i \(-0.941687\pi\)
0.649400 + 0.760447i \(0.275020\pi\)
\(182\) −1.47272 −0.109165
\(183\) 0 0
\(184\) −1.48961 + 2.58008i −0.109816 + 0.190206i
\(185\) 1.29963 + 2.25102i 0.0955505 + 0.165498i
\(186\) 0 0
\(187\) 7.29255 + 12.6311i 0.533284 + 0.923676i
\(188\) 1.47440 + 2.55374i 0.107532 + 0.186250i
\(189\) 0 0
\(190\) −10.4293 2.75607i −0.756624 0.199946i
\(191\) −7.72534 −0.558986 −0.279493 0.960148i \(-0.590166\pi\)
−0.279493 + 0.960148i \(0.590166\pi\)
\(192\) 0 0
\(193\) 5.89636 + 10.2128i 0.424429 + 0.735133i 0.996367 0.0851641i \(-0.0271415\pi\)
−0.571938 + 0.820297i \(0.693808\pi\)
\(194\) −3.36195 + 5.82307i −0.241374 + 0.418072i
\(195\) 0 0
\(196\) 1.77886 3.08108i 0.127062 0.220077i
\(197\) −16.1567 −1.15112 −0.575558 0.817761i \(-0.695215\pi\)
−0.575558 + 0.817761i \(0.695215\pi\)
\(198\) 0 0
\(199\) −3.15688 + 5.46787i −0.223785 + 0.387607i −0.955954 0.293516i \(-0.905175\pi\)
0.732169 + 0.681123i \(0.238508\pi\)
\(200\) 3.02125 5.23296i 0.213635 0.370026i
\(201\) 0 0
\(202\) −4.83613 −0.340269
\(203\) 0.663171 1.14865i 0.0465455 0.0806192i
\(204\) 0 0
\(205\) −3.56234 + 6.17015i −0.248805 + 0.430942i
\(206\) 13.3711 + 23.1594i 0.931609 + 1.61359i
\(207\) 0 0
\(208\) 23.4298 1.62456
\(209\) −2.26891 8.35251i −0.156944 0.577756i
\(210\) 0 0
\(211\) 3.32994 + 5.76763i 0.229243 + 0.397060i 0.957584 0.288155i \(-0.0930418\pi\)
−0.728341 + 0.685215i \(0.759708\pi\)
\(212\) −1.50134 2.60041i −0.103113 0.178597i
\(213\) 0 0
\(214\) −7.95707 13.7820i −0.543934 0.942122i
\(215\) −1.21307 + 2.10110i −0.0827306 + 0.143294i
\(216\) 0 0
\(217\) −0.726327 −0.0493063
\(218\) 3.25462 5.63718i 0.220431 0.381798i
\(219\) 0 0
\(220\) 1.58424 0.106809
\(221\) 36.1496 2.43169
\(222\) 0 0
\(223\) −13.6703 23.6776i −0.915431 1.58557i −0.806269 0.591549i \(-0.798517\pi\)
−0.109161 0.994024i \(-0.534817\pi\)
\(224\) 0.266690 0.461921i 0.0178190 0.0308634i
\(225\) 0 0
\(226\) 5.52935 + 9.57712i 0.367807 + 0.637061i
\(227\) 0.489669 0.0325005 0.0162502 0.999868i \(-0.494827\pi\)
0.0162502 + 0.999868i \(0.494827\pi\)
\(228\) 0 0
\(229\) 17.7207 1.17102 0.585508 0.810666i \(-0.300895\pi\)
0.585508 + 0.810666i \(0.300895\pi\)
\(230\) 1.56229 + 2.70597i 0.103015 + 0.178426i
\(231\) 0 0
\(232\) −8.28629 + 14.3523i −0.544022 + 0.942273i
\(233\) 6.72955 + 11.6559i 0.440867 + 0.763604i 0.997754 0.0669840i \(-0.0213376\pi\)
−0.556887 + 0.830588i \(0.688004\pi\)
\(234\) 0 0
\(235\) −9.01532 −0.588095
\(236\) 0.671554 0.0437145
\(237\) 0 0
\(238\) 1.09902 1.90355i 0.0712387 0.123389i
\(239\) −0.766796 −0.0495999 −0.0248000 0.999692i \(-0.507895\pi\)
−0.0248000 + 0.999692i \(0.507895\pi\)
\(240\) 0 0
\(241\) −6.05505 + 10.4877i −0.390040 + 0.675570i −0.992454 0.122614i \(-0.960872\pi\)
0.602414 + 0.798184i \(0.294206\pi\)
\(242\) −5.59133 9.68447i −0.359424 0.622541i
\(243\) 0 0
\(244\) −2.84077 4.92035i −0.181861 0.314993i
\(245\) 5.43848 + 9.41973i 0.347452 + 0.601804i
\(246\) 0 0
\(247\) −20.7402 5.48083i −1.31967 0.348737i
\(248\) 9.07542 0.576290
\(249\) 0 0
\(250\) −9.35564 16.2044i −0.591702 1.02486i
\(251\) 14.0093 24.2648i 0.884259 1.53158i 0.0376993 0.999289i \(-0.487997\pi\)
0.846560 0.532293i \(-0.178670\pi\)
\(252\) 0 0
\(253\) −1.25350 + 2.17113i −0.0788069 + 0.136498i
\(254\) 26.7431 1.67801
\(255\) 0 0
\(256\) −5.76429 + 9.98405i −0.360268 + 0.624003i
\(257\) −14.0221 + 24.2870i −0.874675 + 1.51498i −0.0175655 + 0.999846i \(0.505592\pi\)
−0.857109 + 0.515135i \(0.827742\pi\)
\(258\) 0 0
\(259\) 0.314293 0.0195292
\(260\) 1.96329 3.40052i 0.121758 0.210891i
\(261\) 0 0
\(262\) −8.63742 + 14.9605i −0.533622 + 0.924260i
\(263\) 0.961003 + 1.66451i 0.0592580 + 0.102638i 0.894133 0.447802i \(-0.147793\pi\)
−0.834875 + 0.550440i \(0.814460\pi\)
\(264\) 0 0
\(265\) 9.18007 0.563927
\(266\) −0.919148 + 0.925502i −0.0563566 + 0.0567462i
\(267\) 0 0
\(268\) −2.74108 4.74769i −0.167438 0.290012i
\(269\) 7.45127 + 12.9060i 0.454312 + 0.786892i 0.998648 0.0519753i \(-0.0165517\pi\)
−0.544336 + 0.838867i \(0.683218\pi\)
\(270\) 0 0
\(271\) 5.80402 + 10.0529i 0.352569 + 0.610667i 0.986699 0.162559i \(-0.0519749\pi\)
−0.634130 + 0.773227i \(0.718642\pi\)
\(272\) −17.4845 + 30.2840i −1.06015 + 1.83624i
\(273\) 0 0
\(274\) −14.9561 −0.903533
\(275\) 2.54236 4.40350i 0.153310 0.265541i
\(276\) 0 0
\(277\) −18.0840 −1.08656 −0.543281 0.839551i \(-0.682818\pi\)
−0.543281 + 0.839551i \(0.682818\pi\)
\(278\) −7.41489 −0.444716
\(279\) 0 0
\(280\) 0.347986 + 0.602729i 0.0207961 + 0.0360200i
\(281\) −3.07901 + 5.33300i −0.183678 + 0.318140i −0.943130 0.332423i \(-0.892134\pi\)
0.759452 + 0.650563i \(0.225467\pi\)
\(282\) 0 0
\(283\) −4.73497 8.20121i −0.281465 0.487511i 0.690281 0.723541i \(-0.257487\pi\)
−0.971746 + 0.236030i \(0.924154\pi\)
\(284\) 3.00049 0.178047
\(285\) 0 0
\(286\) 15.4848 0.915635
\(287\) 0.430746 + 0.746075i 0.0254262 + 0.0440394i
\(288\) 0 0
\(289\) −18.4767 + 32.0026i −1.08686 + 1.88250i
\(290\) 8.69059 + 15.0525i 0.510329 + 0.883916i
\(291\) 0 0
\(292\) 6.03148 0.352966
\(293\) −16.7675 −0.979570 −0.489785 0.871843i \(-0.662925\pi\)
−0.489785 + 0.871843i \(0.662925\pi\)
\(294\) 0 0
\(295\) −1.02657 + 1.77806i −0.0597690 + 0.103523i
\(296\) −3.92708 −0.228257
\(297\) 0 0
\(298\) 0.255776 0.443017i 0.0148167 0.0256633i
\(299\) 3.10684 + 5.38120i 0.179673 + 0.311203i
\(300\) 0 0
\(301\) 0.146680 + 0.254058i 0.00845451 + 0.0146436i
\(302\) 8.48286 + 14.6927i 0.488134 + 0.845472i
\(303\) 0 0
\(304\) 14.6229 14.7240i 0.838683 0.844480i
\(305\) 17.3701 0.994607
\(306\) 0 0
\(307\) 2.23267 + 3.86710i 0.127425 + 0.220707i 0.922678 0.385570i \(-0.125995\pi\)
−0.795253 + 0.606278i \(0.792662\pi\)
\(308\) 0.0957805 0.165897i 0.00545760 0.00945284i
\(309\) 0 0
\(310\) 4.75911 8.24302i 0.270299 0.468172i
\(311\) 25.0358 1.41965 0.709826 0.704377i \(-0.248774\pi\)
0.709826 + 0.704377i \(0.248774\pi\)
\(312\) 0 0
\(313\) 17.3728 30.0906i 0.981971 1.70082i 0.327277 0.944928i \(-0.393869\pi\)
0.654693 0.755895i \(-0.272798\pi\)
\(314\) −11.1645 + 19.3375i −0.630050 + 1.09128i
\(315\) 0 0
\(316\) −4.23110 −0.238018
\(317\) 5.20174 9.00968i 0.292159 0.506034i −0.682161 0.731202i \(-0.738960\pi\)
0.974320 + 0.225168i \(0.0722931\pi\)
\(318\) 0 0
\(319\) −6.97287 + 12.0774i −0.390406 + 0.676202i
\(320\) −3.94049 6.82512i −0.220280 0.381536i
\(321\) 0 0
\(322\) 0.377815 0.0210548
\(323\) 22.5616 22.7176i 1.25536 1.26404i
\(324\) 0 0
\(325\) −6.30133 10.9142i −0.349535 0.605412i
\(326\) −19.5352 33.8359i −1.08195 1.87400i
\(327\) 0 0
\(328\) −5.38216 9.32217i −0.297180 0.514731i
\(329\) −0.545052 + 0.944057i −0.0300497 + 0.0520476i
\(330\) 0 0
\(331\) 7.28326 0.400324 0.200162 0.979763i \(-0.435853\pi\)
0.200162 + 0.979763i \(0.435853\pi\)
\(332\) 2.94961 5.10887i 0.161881 0.280386i
\(333\) 0 0
\(334\) 35.9968 1.96966
\(335\) 16.7605 0.915726
\(336\) 0 0
\(337\) 10.6604 + 18.4644i 0.580711 + 1.00582i 0.995395 + 0.0958555i \(0.0305587\pi\)
−0.414684 + 0.909965i \(0.636108\pi\)
\(338\) 8.89008 15.3981i 0.483557 0.837545i
\(339\) 0 0
\(340\) 2.93022 + 5.07528i 0.158913 + 0.275246i
\(341\) 7.63691 0.413562
\(342\) 0 0
\(343\) 2.63715 0.142393
\(344\) −1.83276 3.17444i −0.0988160 0.171154i
\(345\) 0 0
\(346\) −12.0728 + 20.9108i −0.649040 + 1.12417i
\(347\) −12.8833 22.3146i −0.691613 1.19791i −0.971309 0.237820i \(-0.923567\pi\)
0.279697 0.960088i \(-0.409766\pi\)
\(348\) 0 0
\(349\) 27.7113 1.48335 0.741677 0.670758i \(-0.234031\pi\)
0.741677 + 0.670758i \(0.234031\pi\)
\(350\) −0.766288 −0.0409598
\(351\) 0 0
\(352\) −2.80409 + 4.85683i −0.149459 + 0.258870i
\(353\) −27.0547 −1.43998 −0.719988 0.693986i \(-0.755853\pi\)
−0.719988 + 0.693986i \(0.755853\pi\)
\(354\) 0 0
\(355\) −4.58668 + 7.94436i −0.243436 + 0.421643i
\(356\) 0.262062 + 0.453905i 0.0138893 + 0.0240569i
\(357\) 0 0
\(358\) −13.0672 22.6330i −0.690621 1.19619i
\(359\) 18.0023 + 31.1809i 0.950126 + 1.64567i 0.745146 + 0.666901i \(0.232380\pi\)
0.204980 + 0.978766i \(0.434287\pi\)
\(360\) 0 0
\(361\) −16.3887 + 9.61312i −0.862561 + 0.505954i
\(362\) −14.2348 −0.748166
\(363\) 0 0
\(364\) −0.237395 0.411180i −0.0124429 0.0215517i
\(365\) −9.21997 + 15.9695i −0.482596 + 0.835880i
\(366\) 0 0
\(367\) 8.02937 13.9073i 0.419130 0.725954i −0.576723 0.816940i \(-0.695669\pi\)
0.995852 + 0.0909864i \(0.0290020\pi\)
\(368\) −6.01074 −0.313331
\(369\) 0 0
\(370\) −2.05934 + 3.56689i −0.107060 + 0.185434i
\(371\) 0.555012 0.961309i 0.0288148 0.0499087i
\(372\) 0 0
\(373\) 27.2757 1.41228 0.706142 0.708071i \(-0.250434\pi\)
0.706142 + 0.708071i \(0.250434\pi\)
\(374\) −11.5555 + 20.0148i −0.597522 + 1.03494i
\(375\) 0 0
\(376\) 6.81039 11.7959i 0.351219 0.608330i
\(377\) 17.2825 + 29.9341i 0.890092 + 1.54168i
\(378\) 0 0
\(379\) 20.6347 1.05993 0.529967 0.848018i \(-0.322204\pi\)
0.529967 + 0.848018i \(0.322204\pi\)
\(380\) −0.911670 3.35612i −0.0467677 0.172165i
\(381\) 0 0
\(382\) −6.12065 10.6013i −0.313160 0.542409i
\(383\) −13.6896 23.7112i −0.699508 1.21158i −0.968637 0.248480i \(-0.920069\pi\)
0.269129 0.963104i \(-0.413264\pi\)
\(384\) 0 0
\(385\) 0.292828 + 0.507193i 0.0149239 + 0.0258490i
\(386\) −9.34317 + 16.1828i −0.475555 + 0.823685i
\(387\) 0 0
\(388\) −2.16772 −0.110049
\(389\) 11.9769 20.7447i 0.607255 1.05180i −0.384436 0.923152i \(-0.625604\pi\)
0.991691 0.128645i \(-0.0410626\pi\)
\(390\) 0 0
\(391\) −9.27392 −0.469002
\(392\) −16.4335 −0.830015
\(393\) 0 0
\(394\) −12.8007 22.1714i −0.644888 1.11698i
\(395\) 6.46783 11.2026i 0.325432 0.563665i
\(396\) 0 0
\(397\) −14.6385 25.3547i −0.734687 1.27252i −0.954860 0.297055i \(-0.903996\pi\)
0.220173 0.975461i \(-0.429338\pi\)
\(398\) −10.0046 −0.501483
\(399\) 0 0
\(400\) 12.1910 0.609552
\(401\) −11.3551 19.6675i −0.567045 0.982151i −0.996856 0.0792318i \(-0.974753\pi\)
0.429811 0.902919i \(-0.358580\pi\)
\(402\) 0 0
\(403\) 9.46416 16.3924i 0.471443 0.816564i
\(404\) −0.779560 1.35024i −0.0387846 0.0671768i
\(405\) 0 0
\(406\) 2.10168 0.104304
\(407\) −3.30461 −0.163804
\(408\) 0 0
\(409\) 12.4691 21.5972i 0.616559 1.06791i −0.373549 0.927610i \(-0.621859\pi\)
0.990109 0.140302i \(-0.0448073\pi\)
\(410\) −11.2895 −0.557550
\(411\) 0 0
\(412\) −4.31072 + 7.46638i −0.212374 + 0.367842i
\(413\) 0.124129 + 0.214998i 0.00610799 + 0.0105794i
\(414\) 0 0
\(415\) 9.01779 + 15.6193i 0.442666 + 0.766720i
\(416\) 6.95004 + 12.0378i 0.340754 + 0.590202i
\(417\) 0 0
\(418\) 9.66432 9.73112i 0.472697 0.475965i
\(419\) −20.7909 −1.01570 −0.507852 0.861444i \(-0.669560\pi\)
−0.507852 + 0.861444i \(0.669560\pi\)
\(420\) 0 0
\(421\) 5.74359 + 9.94819i 0.279926 + 0.484845i 0.971366 0.237588i \(-0.0763569\pi\)
−0.691440 + 0.722433i \(0.743024\pi\)
\(422\) −5.27651 + 9.13918i −0.256857 + 0.444889i
\(423\) 0 0
\(424\) −6.93485 + 12.0115i −0.336786 + 0.583331i
\(425\) 18.8095 0.912394
\(426\) 0 0
\(427\) 1.05017 1.81894i 0.0508211 0.0880247i
\(428\) 2.56528 4.44320i 0.123998 0.214770i
\(429\) 0 0
\(430\) −3.84437 −0.185392
\(431\) 18.6968 32.3838i 0.900593 1.55987i 0.0738670 0.997268i \(-0.476466\pi\)
0.826726 0.562605i \(-0.190201\pi\)
\(432\) 0 0
\(433\) 19.0405 32.9791i 0.915027 1.58487i 0.108165 0.994133i \(-0.465503\pi\)
0.806862 0.590740i \(-0.201164\pi\)
\(434\) −0.575456 0.996720i −0.0276228 0.0478441i
\(435\) 0 0
\(436\) 2.09852 0.100501
\(437\) 5.32075 + 1.40607i 0.254526 + 0.0672613i
\(438\) 0 0
\(439\) 6.51854 + 11.2904i 0.311113 + 0.538863i 0.978604 0.205755i \(-0.0659650\pi\)
−0.667491 + 0.744618i \(0.732632\pi\)
\(440\) −3.65887 6.33736i −0.174430 0.302122i
\(441\) 0 0
\(442\) 28.6407 + 49.6072i 1.36230 + 2.35957i
\(443\) 1.47355 2.55226i 0.0700103 0.121261i −0.828895 0.559404i \(-0.811030\pi\)
0.898906 + 0.438142i \(0.144363\pi\)
\(444\) 0 0
\(445\) −1.60240 −0.0759608
\(446\) 21.6615 37.5188i 1.02570 1.77657i
\(447\) 0 0
\(448\) −0.952942 −0.0450223
\(449\) −41.0478 −1.93717 −0.968584 0.248687i \(-0.920001\pi\)
−0.968584 + 0.248687i \(0.920001\pi\)
\(450\) 0 0
\(451\) −4.52905 7.84455i −0.213265 0.369385i
\(452\) −1.78261 + 3.08757i −0.0838469 + 0.145227i
\(453\) 0 0
\(454\) 0.387956 + 0.671960i 0.0182077 + 0.0315367i
\(455\) 1.45157 0.0680505
\(456\) 0 0
\(457\) −12.2116 −0.571235 −0.285617 0.958344i \(-0.592199\pi\)
−0.285617 + 0.958344i \(0.592199\pi\)
\(458\) 14.0398 + 24.3177i 0.656037 + 1.13629i
\(459\) 0 0
\(460\) −0.503668 + 0.872379i −0.0234837 + 0.0406749i
\(461\) −0.592471 1.02619i −0.0275941 0.0477944i 0.851899 0.523707i \(-0.175451\pi\)
−0.879493 + 0.475912i \(0.842118\pi\)
\(462\) 0 0
\(463\) −7.16475 −0.332974 −0.166487 0.986044i \(-0.553242\pi\)
−0.166487 + 0.986044i \(0.553242\pi\)
\(464\) −33.4360 −1.55223
\(465\) 0 0
\(466\) −10.6634 + 18.4696i −0.493973 + 0.855586i
\(467\) −17.6967 −0.818905 −0.409452 0.912332i \(-0.634280\pi\)
−0.409452 + 0.912332i \(0.634280\pi\)
\(468\) 0 0
\(469\) 1.01331 1.75511i 0.0467905 0.0810436i
\(470\) −7.14268 12.3715i −0.329467 0.570654i
\(471\) 0 0
\(472\) −1.55099 2.68639i −0.0713899 0.123651i
\(473\) −1.54226 2.67127i −0.0709132 0.122825i
\(474\) 0 0
\(475\) −10.7916 2.85180i −0.495153 0.130850i
\(476\) 0.708625 0.0324798
\(477\) 0 0
\(478\) −0.607519 1.05225i −0.0277873 0.0481290i
\(479\) 5.74972 9.95881i 0.262711 0.455030i −0.704250 0.709952i \(-0.748717\pi\)
0.966962 + 0.254922i \(0.0820499\pi\)
\(480\) 0 0
\(481\) −4.09530 + 7.09326i −0.186729 + 0.323425i
\(482\) −19.1893 −0.874047
\(483\) 0 0
\(484\) 1.80259 3.12218i 0.0819359 0.141917i
\(485\) 3.31367 5.73945i 0.150466 0.260615i
\(486\) 0 0
\(487\) −22.9323 −1.03916 −0.519580 0.854422i \(-0.673912\pi\)
−0.519580 + 0.854422i \(0.673912\pi\)
\(488\) −13.1218 + 22.7276i −0.593994 + 1.02883i
\(489\) 0 0
\(490\) −8.61763 + 14.9262i −0.389305 + 0.674296i
\(491\) −12.7364 22.0600i −0.574784 0.995556i −0.996065 0.0886254i \(-0.971753\pi\)
0.421281 0.906930i \(-0.361581\pi\)
\(492\) 0 0
\(493\) −51.5882 −2.32342
\(494\) −8.91092 32.8036i −0.400921 1.47591i
\(495\) 0 0
\(496\) 9.15506 + 15.8570i 0.411074 + 0.712002i
\(497\) 0.554606 + 0.960607i 0.0248775 + 0.0430891i
\(498\) 0 0
\(499\) −3.45927 5.99162i −0.154858 0.268222i 0.778149 0.628079i \(-0.216159\pi\)
−0.933007 + 0.359857i \(0.882825\pi\)
\(500\) 3.01617 5.22415i 0.134887 0.233631i
\(501\) 0 0
\(502\) 44.3973 1.98155
\(503\) −6.65543 + 11.5275i −0.296751 + 0.513988i −0.975391 0.220484i \(-0.929236\pi\)
0.678640 + 0.734471i \(0.262570\pi\)
\(504\) 0 0
\(505\) 4.76667 0.212114
\(506\) −3.97251 −0.176599
\(507\) 0 0
\(508\) 4.31086 + 7.46663i 0.191263 + 0.331278i
\(509\) −7.41563 + 12.8442i −0.328692 + 0.569311i −0.982253 0.187563i \(-0.939941\pi\)
0.653561 + 0.756874i \(0.273274\pi\)
\(510\) 0 0
\(511\) 1.11485 + 1.93098i 0.0493180 + 0.0854213i
\(512\) 9.02130 0.398689
\(513\) 0 0
\(514\) −44.4379 −1.96007
\(515\) −13.1791 22.8268i −0.580740 1.00587i
\(516\) 0 0
\(517\) 5.73091 9.92622i 0.252045 0.436555i
\(518\) 0.249009 + 0.431297i 0.0109408 + 0.0189501i
\(519\) 0 0
\(520\) −18.1373 −0.795372
\(521\) 22.4237 0.982399 0.491199 0.871047i \(-0.336559\pi\)
0.491199 + 0.871047i \(0.336559\pi\)
\(522\) 0 0
\(523\) 7.50603 13.0008i 0.328216 0.568486i −0.653942 0.756544i \(-0.726886\pi\)
0.982158 + 0.188058i \(0.0602194\pi\)
\(524\) −5.56924 −0.243294
\(525\) 0 0
\(526\) −1.52277 + 2.63752i −0.0663960 + 0.115001i
\(527\) 14.1253 + 24.4657i 0.615307 + 1.06574i
\(528\) 0 0
\(529\) 10.7030 + 18.5381i 0.465346 + 0.806003i
\(530\) 7.27321 + 12.5976i 0.315928 + 0.547204i
\(531\) 0 0
\(532\) −0.406561 0.107438i −0.0176266 0.00465804i
\(533\) −22.4508 −0.972452
\(534\) 0 0
\(535\) 7.84280 + 13.5841i 0.339074 + 0.587293i
\(536\) −12.6613 + 21.9300i −0.546885 + 0.947233i
\(537\) 0 0
\(538\) −11.8070 + 20.4504i −0.509037 + 0.881679i
\(539\) −13.8287 −0.595642
\(540\) 0 0
\(541\) −5.20352 + 9.01276i −0.223717 + 0.387489i −0.955934 0.293583i \(-0.905152\pi\)
0.732217 + 0.681072i \(0.238486\pi\)
\(542\) −9.19685 + 15.9294i −0.395038 + 0.684227i
\(543\) 0 0
\(544\) −20.7459 −0.889472
\(545\) −3.20788 + 5.55622i −0.137411 + 0.238002i
\(546\) 0 0
\(547\) 10.5544 18.2807i 0.451272 0.781625i −0.547194 0.837006i \(-0.684304\pi\)
0.998465 + 0.0553807i \(0.0176373\pi\)
\(548\) −2.41086 4.17573i −0.102987 0.178378i
\(549\) 0 0
\(550\) 8.05708 0.343555
\(551\) 29.5978 + 7.82155i 1.26091 + 0.333209i
\(552\) 0 0
\(553\) −0.782070 1.35458i −0.0332570 0.0576028i
\(554\) −14.3276 24.8162i −0.608723 1.05434i
\(555\) 0 0
\(556\) −1.19525 2.07023i −0.0506897 0.0877971i
\(557\) −7.32112 + 12.6806i −0.310206 + 0.537292i −0.978407 0.206688i \(-0.933731\pi\)
0.668201 + 0.743981i \(0.267065\pi\)
\(558\) 0 0
\(559\) −7.64508 −0.323352
\(560\) −0.702080 + 1.21604i −0.0296683 + 0.0513870i
\(561\) 0 0
\(562\) −9.75778 −0.411607
\(563\) 33.9139 1.42930 0.714651 0.699481i \(-0.246585\pi\)
0.714651 + 0.699481i \(0.246585\pi\)
\(564\) 0 0
\(565\) −5.44994 9.43958i −0.229281 0.397126i
\(566\) 7.50287 12.9954i 0.315369 0.546236i
\(567\) 0 0
\(568\) −6.92978 12.0027i −0.290767 0.503623i
\(569\) 44.9621 1.88491 0.942454 0.334337i \(-0.108512\pi\)
0.942454 + 0.334337i \(0.108512\pi\)
\(570\) 0 0
\(571\) −11.8519 −0.495986 −0.247993 0.968762i \(-0.579771\pi\)
−0.247993 + 0.968762i \(0.579771\pi\)
\(572\) 2.49607 + 4.32333i 0.104366 + 0.180767i
\(573\) 0 0
\(574\) −0.682546 + 1.18220i −0.0284889 + 0.0493443i
\(575\) 1.61656 + 2.79996i 0.0674151 + 0.116766i
\(576\) 0 0
\(577\) −26.8524 −1.11788 −0.558939 0.829209i \(-0.688792\pi\)
−0.558939 + 0.829209i \(0.688792\pi\)
\(578\) −58.5551 −2.43557
\(579\) 0 0
\(580\) −2.80176 + 4.85280i −0.116337 + 0.201501i
\(581\) 2.18080 0.0904750
\(582\) 0 0
\(583\) −5.83564 + 10.1076i −0.241687 + 0.418615i
\(584\) −13.9300 24.1274i −0.576427 0.998401i
\(585\) 0 0
\(586\) −13.2846 23.0097i −0.548783 0.950520i
\(587\) −14.9660 25.9218i −0.617711 1.06991i −0.989902 0.141751i \(-0.954727\pi\)
0.372191 0.928156i \(-0.378607\pi\)
\(588\) 0 0
\(589\) −4.39476 16.1784i −0.181083 0.666618i
\(590\) −3.25332 −0.133937
\(591\) 0 0
\(592\) −3.96154 6.86159i −0.162818 0.282010i
\(593\) 8.23480 14.2631i 0.338163 0.585715i −0.645924 0.763401i \(-0.723528\pi\)
0.984087 + 0.177686i \(0.0568612\pi\)
\(594\) 0 0
\(595\) −1.08323 + 1.87622i −0.0444082 + 0.0769173i
\(596\) 0.164920 0.00675537
\(597\) 0 0
\(598\) −4.92299 + 8.52687i −0.201316 + 0.348690i
\(599\) −3.75683 + 6.50702i −0.153500 + 0.265869i −0.932512 0.361140i \(-0.882388\pi\)
0.779012 + 0.627009i \(0.215721\pi\)
\(600\) 0 0
\(601\) −3.48062 −0.141978 −0.0709888 0.997477i \(-0.522615\pi\)
−0.0709888 + 0.997477i \(0.522615\pi\)
\(602\) −0.232425 + 0.402571i −0.00947292 + 0.0164076i
\(603\) 0 0
\(604\) −2.73479 + 4.73680i −0.111277 + 0.192738i
\(605\) 5.51103 + 9.54539i 0.224055 + 0.388075i
\(606\) 0 0
\(607\) −8.49878 −0.344955 −0.172477 0.985013i \(-0.555177\pi\)
−0.172477 + 0.985013i \(0.555177\pi\)
\(608\) 11.9026 + 3.14539i 0.482713 + 0.127562i
\(609\) 0 0
\(610\) 13.7620 + 23.8365i 0.557207 + 0.965111i
\(611\) −14.2042 24.6025i −0.574642 0.995309i
\(612\) 0 0
\(613\) −1.45063 2.51256i −0.0585902 0.101481i 0.835243 0.549882i \(-0.185327\pi\)
−0.893833 + 0.448400i \(0.851994\pi\)
\(614\) −3.53782 + 6.12768i −0.142775 + 0.247293i
\(615\) 0 0
\(616\) −0.884838 −0.0356512
\(617\) 5.06258 8.76864i 0.203812 0.353012i −0.745942 0.666011i \(-0.768000\pi\)
0.949753 + 0.312999i \(0.101334\pi\)
\(618\) 0 0
\(619\) 1.22046 0.0490543 0.0245272 0.999699i \(-0.492192\pi\)
0.0245272 + 0.999699i \(0.492192\pi\)
\(620\) 3.06858 0.123237
\(621\) 0 0
\(622\) 19.8355 + 34.3560i 0.795329 + 1.37755i
\(623\) −0.0968782 + 0.167798i −0.00388134 + 0.00672268i
\(624\) 0 0
\(625\) 2.81940 + 4.88334i 0.112776 + 0.195334i
\(626\) 55.0568 2.20051
\(627\) 0 0
\(628\) −7.19867 −0.287258
\(629\) −6.11223 10.5867i −0.243711 0.422119i
\(630\) 0 0
\(631\) 21.1876 36.6980i 0.843465 1.46092i −0.0434829 0.999054i \(-0.513845\pi\)
0.886948 0.461870i \(-0.152821\pi\)
\(632\) 9.77192 + 16.9255i 0.388706 + 0.673259i
\(633\) 0 0
\(634\) 16.4850 0.654703
\(635\) −26.3590 −1.04603
\(636\) 0 0
\(637\) −17.1374 + 29.6828i −0.679008 + 1.17608i
\(638\) −22.0979 −0.874865
\(639\) 0 0
\(640\) 10.6551 18.4552i 0.421180 0.729505i
\(641\) 13.8600 + 24.0062i 0.547437 + 0.948188i 0.998449 + 0.0556704i \(0.0177296\pi\)
−0.451013 + 0.892518i \(0.648937\pi\)
\(642\) 0 0
\(643\) 8.67071 + 15.0181i 0.341939 + 0.592256i 0.984793 0.173733i \(-0.0555829\pi\)
−0.642854 + 0.765989i \(0.722250\pi\)
\(644\) 0.0609019 + 0.105485i 0.00239987 + 0.00415670i
\(645\) 0 0
\(646\) 49.0499 + 12.9620i 1.92984 + 0.509982i
\(647\) −22.2177 −0.873468 −0.436734 0.899591i \(-0.643865\pi\)
−0.436734 + 0.899591i \(0.643865\pi\)
\(648\) 0 0
\(649\) −1.30515 2.26058i −0.0512315 0.0887355i
\(650\) 9.98487 17.2943i 0.391639 0.678338i
\(651\) 0 0
\(652\) 6.29796 10.9084i 0.246647 0.427205i
\(653\) 28.3472 1.10931 0.554656 0.832080i \(-0.312850\pi\)
0.554656 + 0.832080i \(0.312850\pi\)
\(654\) 0 0
\(655\) 8.51338 14.7456i 0.332645 0.576158i
\(656\) 10.8588 18.8079i 0.423964 0.734327i
\(657\) 0 0
\(658\) −1.72734 −0.0673387
\(659\) 8.31334 14.3991i 0.323842 0.560910i −0.657435 0.753511i \(-0.728359\pi\)
0.981277 + 0.192600i \(0.0616921\pi\)
\(660\) 0 0
\(661\) 5.96426 10.3304i 0.231983 0.401806i −0.726409 0.687263i \(-0.758812\pi\)
0.958392 + 0.285457i \(0.0921454\pi\)
\(662\) 5.77040 + 9.99462i 0.224273 + 0.388452i
\(663\) 0 0
\(664\) −27.2490 −1.05747
\(665\) 0.905948 0.912211i 0.0351312 0.0353740i
\(666\) 0 0
\(667\) −4.43369 7.67937i −0.171673 0.297347i
\(668\) 5.80251 + 10.0502i 0.224506 + 0.388856i
\(669\) 0 0
\(670\) 13.2791 + 23.0000i 0.513016 + 0.888569i
\(671\) −11.0419 + 19.1251i −0.426267 + 0.738317i
\(672\) 0 0
\(673\) 13.6535 0.526305 0.263152 0.964754i \(-0.415238\pi\)
0.263152 + 0.964754i \(0.415238\pi\)
\(674\) −16.8922 + 29.2581i −0.650662 + 1.12698i
\(675\) 0 0
\(676\) 5.73215 0.220467
\(677\) 16.9365 0.650922 0.325461 0.945555i \(-0.394481\pi\)
0.325461 + 0.945555i \(0.394481\pi\)
\(678\) 0 0
\(679\) −0.400678 0.693996i −0.0153766 0.0266331i
\(680\) 13.5349 23.4432i 0.519041 0.899006i
\(681\) 0 0
\(682\) 6.05059 + 10.4799i 0.231689 + 0.401298i
\(683\) 1.16439 0.0445542 0.0222771 0.999752i \(-0.492908\pi\)
0.0222771 + 0.999752i \(0.492908\pi\)
\(684\) 0 0
\(685\) 14.7413 0.563238
\(686\) 2.08937 + 3.61889i 0.0797725 + 0.138170i
\(687\) 0 0
\(688\) 3.69769 6.40459i 0.140973 0.244173i
\(689\) 14.4638 + 25.0520i 0.551027 + 0.954407i
\(690\) 0 0
\(691\) 35.6996 1.35808 0.679038 0.734103i \(-0.262397\pi\)
0.679038 + 0.734103i \(0.262397\pi\)
\(692\) −7.78434 −0.295916
\(693\) 0 0
\(694\) 20.4145 35.3589i 0.774922 1.34220i
\(695\) 7.30841 0.277224
\(696\) 0 0
\(697\) 16.7539 29.0186i 0.634600 1.09916i
\(698\) 21.9552 + 38.0275i 0.831017 + 1.43936i
\(699\) 0 0
\(700\) −0.123522 0.213946i −0.00466869 0.00808641i
\(701\) 1.70437 + 2.95205i 0.0643732 + 0.111498i 0.896416 0.443214i \(-0.146162\pi\)
−0.832043 + 0.554712i \(0.812829\pi\)
\(702\) 0 0
\(703\) 1.90168 + 7.00064i 0.0717233 + 0.264034i
\(704\) 10.0196 0.377629
\(705\) 0 0
\(706\) −21.4350 37.1265i −0.806716 1.39727i
\(707\) 0.288185 0.499152i 0.0108383 0.0187725i
\(708\) 0 0
\(709\) −12.1346 + 21.0178i −0.455725 + 0.789338i −0.998730 0.0503912i \(-0.983953\pi\)
0.543005 + 0.839730i \(0.317287\pi\)
\(710\) −14.5358 −0.545519
\(711\) 0 0
\(712\) 1.21049 2.09663i 0.0453650 0.0785744i
\(713\) −2.42796 + 4.20535i −0.0909278 + 0.157492i
\(714\) 0 0
\(715\) −15.2624 −0.570782
\(716\) 4.21273 7.29666i 0.157437 0.272689i
\(717\) 0 0
\(718\) −28.5259 + 49.4083i −1.06458 + 1.84390i
\(719\) 19.9862 + 34.6171i 0.745360 + 1.29100i 0.950026 + 0.312170i \(0.101056\pi\)
−0.204666 + 0.978832i \(0.565611\pi\)
\(720\) 0 0
\(721\) −3.18714 −0.118695
\(722\) −26.1763 14.8734i −0.974181 0.553531i
\(723\) 0 0
\(724\) −2.29459 3.97434i −0.0852776 0.147705i
\(725\) 8.99246 + 15.5754i 0.333971 + 0.578456i
\(726\) 0 0
\(727\) −17.8431 30.9051i −0.661764 1.14621i −0.980152 0.198248i \(-0.936475\pi\)
0.318388 0.947960i \(-0.396858\pi\)
\(728\) −1.09655 + 1.89928i −0.0406408 + 0.0703920i
\(729\) 0 0
\(730\) −29.2193 −1.08146
\(731\) 5.70515 9.88160i 0.211012 0.365484i
\(732\) 0 0
\(733\) 49.0097 1.81021 0.905107 0.425183i \(-0.139790\pi\)
0.905107 + 0.425183i \(0.139790\pi\)
\(734\) 25.4461 0.939233
\(735\) 0 0
\(736\) −1.78298 3.08821i −0.0657215 0.113833i
\(737\) −10.6544 + 18.4540i −0.392461 + 0.679762i
\(738\) 0 0
\(739\) 2.82997 + 4.90164i 0.104102 + 0.180310i 0.913371 0.407128i \(-0.133470\pi\)
−0.809269 + 0.587438i \(0.800137\pi\)
\(740\) −1.32783 −0.0488118
\(741\) 0 0
\(742\) 1.75891 0.0645715
\(743\) 9.61471 + 16.6532i 0.352729 + 0.610945i 0.986727 0.162390i \(-0.0519203\pi\)
−0.633997 + 0.773335i \(0.718587\pi\)
\(744\) 0 0
\(745\) −0.252103 + 0.436655i −0.00923634 + 0.0159978i
\(746\) 21.6101 + 37.4298i 0.791201 + 1.37040i
\(747\) 0 0
\(748\) −7.45078 −0.272428
\(749\) 1.89665 0.0693021
\(750\) 0 0
\(751\) 5.22708 9.05357i 0.190739 0.330369i −0.754756 0.656005i \(-0.772245\pi\)
0.945495 + 0.325636i \(0.105578\pi\)
\(752\) 27.4806 1.00212
\(753\) 0 0
\(754\) −27.3852 + 47.4326i −0.997310 + 1.72739i
\(755\) −8.36104 14.4817i −0.304289 0.527044i
\(756\) 0 0
\(757\) −5.30205 9.18342i −0.192706 0.333777i 0.753440 0.657517i \(-0.228393\pi\)
−0.946146 + 0.323740i \(0.895060\pi\)
\(758\) 16.3485 + 28.3165i 0.593805 + 1.02850i
\(759\) 0 0
\(760\) −11.3198 + 11.3980i −0.410612 + 0.413450i
\(761\) −13.2950 −0.481944 −0.240972 0.970532i \(-0.577466\pi\)
−0.240972 + 0.970532i \(0.577466\pi\)
\(762\) 0 0
\(763\) 0.387887 + 0.671840i 0.0140425 + 0.0243222i
\(764\) 1.97324 3.41775i 0.0713893 0.123650i
\(765\) 0 0
\(766\) 21.6922 37.5719i 0.783769 1.35753i
\(767\) −6.46969 −0.233607
\(768\) 0 0
\(769\) −1.75226 + 3.03501i −0.0631882 + 0.109445i −0.895889 0.444278i \(-0.853460\pi\)
0.832701 + 0.553723i \(0.186794\pi\)
\(770\) −0.464006 + 0.803681i −0.0167216 + 0.0289627i
\(771\) 0 0
\(772\) −6.02430 −0.216819
\(773\) 24.0034 41.5750i 0.863341 1.49535i −0.00534399 0.999986i \(-0.501701\pi\)
0.868685 0.495365i \(-0.164966\pi\)
\(774\) 0 0
\(775\) 4.92442 8.52934i 0.176890 0.306383i
\(776\) 5.00646 + 8.67144i 0.179721 + 0.311287i
\(777\) 0 0
\(778\) 37.9565 1.36081
\(779\) −14.0119 + 14.1088i −0.502029 + 0.505500i
\(780\) 0 0
\(781\) −5.83137 10.1002i −0.208663 0.361415i
\(782\) −7.34757 12.7264i −0.262749 0.455094i
\(783\) 0 0
\(784\) −16.5777 28.7134i −0.592059 1.02548i
\(785\) 11.0042 19.0598i 0.392756 0.680274i
\(786\) 0 0
\(787\) −44.9965 −1.60395 −0.801976 0.597356i \(-0.796218\pi\)
−0.801976 + 0.597356i \(0.796218\pi\)
\(788\) 4.12681 7.14784i 0.147011 0.254631i
\(789\) 0 0
\(790\) 20.4974 0.729265
\(791\) −1.31798 −0.0468620
\(792\) 0 0
\(793\) 27.3677 + 47.4022i 0.971854 + 1.68330i
\(794\) 23.1957 40.1762i 0.823186 1.42580i
\(795\) 0 0
\(796\) −1.61269 2.79325i −0.0571601 0.0990043i
\(797\) −42.0439 −1.48927 −0.744636 0.667471i \(-0.767377\pi\)
−0.744636 + 0.667471i \(0.767377\pi\)
\(798\) 0 0
\(799\) 42.3997 1.49999
\(800\) 3.61626 + 6.26355i 0.127854 + 0.221450i
\(801\) 0 0
\(802\) 17.9928 31.1645i 0.635350 1.10046i
\(803\) −11.7220 20.3031i −0.413661 0.716481i
\(804\) 0 0
\(805\) −0.372389 −0.0131250
\(806\) 29.9932 1.05646
\(807\) 0 0
\(808\) −3.60086 + 6.23687i −0.126678 + 0.219412i
\(809\) −37.6699 −1.32440 −0.662202 0.749325i \(-0.730378\pi\)
−0.662202 + 0.749325i \(0.730378\pi\)
\(810\) 0 0
\(811\) 16.0198 27.7471i 0.562532 0.974334i −0.434743 0.900555i \(-0.643161\pi\)
0.997275 0.0737793i \(-0.0235060\pi\)
\(812\) 0.338780 + 0.586784i 0.0118889 + 0.0205921i
\(813\) 0 0
\(814\) −2.61819 4.53484i −0.0917675 0.158946i
\(815\) 19.2546 + 33.3500i 0.674461 + 1.16820i
\(816\) 0 0
\(817\) −4.77143 + 4.80441i −0.166931 + 0.168085i
\(818\) 39.5163 1.38166
\(819\) 0 0
\(820\) −1.81982 3.15201i −0.0635507 0.110073i
\(821\) −12.9111 + 22.3626i −0.450600 + 0.780461i −0.998423 0.0561324i \(-0.982123\pi\)
0.547824 + 0.836594i \(0.315456\pi\)
\(822\) 0 0
\(823\) −17.5559 + 30.4077i −0.611961 + 1.05995i 0.378949 + 0.925418i \(0.376286\pi\)
−0.990910 + 0.134530i \(0.957048\pi\)
\(824\) 39.8232 1.38731
\(825\) 0 0
\(826\) −0.196691 + 0.340678i −0.00684374 + 0.0118537i
\(827\) 8.57009 14.8438i 0.298011 0.516170i −0.677670 0.735366i \(-0.737010\pi\)
0.975681 + 0.219196i \(0.0703434\pi\)
\(828\) 0 0
\(829\) 41.3825 1.43727 0.718636 0.695386i \(-0.244767\pi\)
0.718636 + 0.695386i \(0.244767\pi\)
\(830\) −14.2893 + 24.7498i −0.495988 + 0.859077i
\(831\) 0 0
\(832\) 12.4170 21.5069i 0.430482 0.745616i
\(833\) −25.5776 44.3016i −0.886210 1.53496i
\(834\) 0 0
\(835\) −35.4798 −1.22783
\(836\) 4.27476 + 1.12965i 0.147846 + 0.0390698i
\(837\) 0 0
\(838\) −16.4723 28.5309i −0.569027 0.985583i
\(839\) 21.5126 + 37.2609i 0.742698 + 1.28639i 0.951263 + 0.308382i \(0.0997875\pi\)
−0.208565 + 0.978009i \(0.566879\pi\)
\(840\) 0 0
\(841\) −10.1634 17.6034i −0.350460 0.607015i
\(842\) −9.10110 + 15.7636i −0.313645 + 0.543248i
\(843\) 0 0
\(844\) −3.40219 −0.117108
\(845\) −8.76241 + 15.1769i −0.301436 + 0.522103i
\(846\) 0 0
\(847\) 1.33275 0.0457939
\(848\) −27.9828 −0.960934
\(849\) 0 0
\(850\) 14.9024 + 25.8118i 0.511149 + 0.885336i
\(851\) 1.05062 1.81972i 0.0360147 0.0623793i
\(852\) 0 0
\(853\) 16.8625 + 29.2067i 0.577361 + 1.00002i 0.995781 + 0.0917646i \(0.0292507\pi\)
−0.418420 + 0.908254i \(0.637416\pi\)
\(854\) 3.32811 0.113886
\(855\) 0 0
\(856\) −23.6986 −0.810000
\(857\) 8.14798 + 14.1127i 0.278330 + 0.482081i 0.970970 0.239202i \(-0.0768859\pi\)
−0.692640 + 0.721283i \(0.743553\pi\)
\(858\) 0 0
\(859\) 2.49290 4.31783i 0.0850567 0.147322i −0.820359 0.571849i \(-0.806226\pi\)
0.905415 + 0.424527i \(0.139560\pi\)
\(860\) −0.619695 1.07334i −0.0211314 0.0366007i
\(861\) 0 0
\(862\) 59.2526 2.01815
\(863\) 14.0770 0.479187 0.239593 0.970873i \(-0.422986\pi\)
0.239593 + 0.970873i \(0.422986\pi\)
\(864\) 0 0
\(865\) 11.8995 20.6105i 0.404594 0.700777i
\(866\) 60.3418 2.05050
\(867\) 0 0
\(868\) 0.185522 0.321333i 0.00629701 0.0109067i
\(869\) 8.22301 + 14.2427i 0.278947 + 0.483150i
\(870\) 0 0
\(871\) 26.4073 + 45.7388i 0.894778 + 1.54980i
\(872\) −4.84663 8.39461i −0.164128 0.284277i
\(873\) 0 0
\(874\) 2.28603 + 8.41553i 0.0773261 + 0.284659i
\(875\) 2.23001 0.0753882
\(876\) 0 0
\(877\) −10.3417 17.9123i −0.349214 0.604857i 0.636896 0.770950i \(-0.280218\pi\)
−0.986110 + 0.166093i \(0.946885\pi\)
\(878\) −10.3290 + 17.8904i −0.348589 + 0.603773i
\(879\) 0 0
\(880\) 7.38197 12.7859i 0.248846 0.431014i
\(881\) −13.0479 −0.439594 −0.219797 0.975546i \(-0.570539\pi\)
−0.219797 + 0.975546i \(0.570539\pi\)
\(882\) 0 0
\(883\) −28.1464 + 48.7510i −0.947201 + 1.64060i −0.195918 + 0.980620i \(0.562769\pi\)
−0.751283 + 0.659980i \(0.770565\pi\)
\(884\) −9.23350 + 15.9929i −0.310556 + 0.537899i
\(885\) 0 0
\(886\) 4.66986 0.156887
\(887\) 15.8246 27.4090i 0.531338 0.920304i −0.467993 0.883732i \(-0.655023\pi\)
0.999331 0.0365721i \(-0.0116439\pi\)
\(888\) 0 0
\(889\) −1.59362 + 2.76024i −0.0534484 + 0.0925754i
\(890\) −1.26955 2.19893i −0.0425554 0.0737081i
\(891\) 0 0
\(892\) 13.9669 0.467647
\(893\) −24.3261 6.42843i −0.814041 0.215119i
\(894\) 0 0
\(895\) 12.8795 + 22.3079i 0.430514 + 0.745672i
\(896\) −1.28838 2.23154i −0.0430418 0.0745505i
\(897\) 0 0
\(898\) −32.5215 56.3289i −1.08526 1.87972i
\(899\) −13.5061 + 23.3932i −0.450452 + 0.780206i
\(900\) 0 0
\(901\) −43.1745 −1.43835
\(902\) 7.17658 12.4302i 0.238954 0.413881i
\(903\) 0 0
\(904\) 16.4681 0.547720
\(905\) 14.0304 0.466386
\(906\) 0 0
\(907\) 18.4800 + 32.0084i 0.613620 + 1.06282i 0.990625 + 0.136610i \(0.0436206\pi\)
−0.377005 + 0.926211i \(0.623046\pi\)
\(908\) −0.125073 + 0.216634i −0.00415071 + 0.00718924i
\(909\) 0 0
\(910\) 1.15005 + 1.99195i 0.0381239 + 0.0660325i
\(911\) 3.15788 0.104625 0.0523126 0.998631i \(-0.483341\pi\)
0.0523126 + 0.998631i \(0.483341\pi\)
\(912\) 0 0
\(913\) −22.9299 −0.758869
\(914\) −9.67505 16.7577i −0.320022 0.554295i
\(915\) 0 0
\(916\) −4.52630 + 7.83978i −0.149553 + 0.259034i
\(917\) −1.02941 1.78299i −0.0339941 0.0588795i
\(918\) 0 0
\(919\) −20.6780 −0.682104 −0.341052 0.940044i \(-0.610783\pi\)
−0.341052 + 0.940044i \(0.610783\pi\)
\(920\) 4.65298 0.153404
\(921\) 0 0
\(922\) 0.938809 1.62606i 0.0309180 0.0535516i
\(923\) −28.9065 −0.951468
\(924\) 0 0
\(925\) −2.13087 + 3.69078i −0.0700627 + 0.121352i
\(926\) −5.67651 9.83200i −0.186542 0.323100i
\(927\) 0 0
\(928\) −9.91821 17.1789i −0.325581 0.563923i
\(929\) 22.6072 + 39.1568i 0.741717 + 1.28469i 0.951713 + 0.306989i \(0.0993215\pi\)
−0.209996 + 0.977702i \(0.567345\pi\)
\(930\) 0 0
\(931\) 7.95788 + 29.2952i 0.260809 + 0.960112i
\(932\) −6.87556 −0.225216
\(933\) 0 0
\(934\) −14.0208 24.2847i −0.458774 0.794620i
\(935\) 11.3896 19.7273i 0.372479 0.645153i
\(936\) 0 0
\(937\) 0.855365 1.48154i 0.0279435 0.0483996i −0.851715 0.524005i \(-0.824437\pi\)
0.879659 + 0.475605i \(0.157771\pi\)
\(938\) 3.21133 0.104854
\(939\) 0 0
\(940\) 2.30273 3.98845i 0.0751069 0.130089i
\(941\) −17.6978 + 30.6536i −0.576933 + 0.999278i 0.418895 + 0.908034i \(0.362417\pi\)
−0.995829 + 0.0912431i \(0.970916\pi\)
\(942\) 0 0
\(943\) 5.75959 0.187558
\(944\) 3.12919 5.41992i 0.101847 0.176403i
\(945\) 0 0
\(946\) 2.44381 4.23281i 0.0794552 0.137620i
\(947\) 3.27579 + 5.67384i 0.106449 + 0.184375i 0.914329 0.404972i \(-0.132719\pi\)
−0.807880 + 0.589347i \(0.799385\pi\)
\(948\) 0 0
\(949\) −58.1067 −1.88622
\(950\) −4.63655 17.0685i −0.150430 0.553774i
\(951\) 0 0
\(952\) −1.63660 2.83468i −0.0530426 0.0918724i
\(953\) −6.93938 12.0194i −0.224789 0.389345i 0.731467 0.681877i \(-0.238836\pi\)
−0.956256 + 0.292531i \(0.905503\pi\)
\(954\) 0 0
\(955\) 6.03275 + 10.4490i 0.195215 + 0.338123i
\(956\) 0.195858 0.339237i 0.00633451 0.0109717i
\(957\) 0 0
\(958\) 18.2216 0.588714
\(959\) 0.891238 1.54367i 0.0287796 0.0498477i
\(960\) 0 0
\(961\) −16.2077 −0.522830
\(962\) −12.9785 −0.418445
\(963\) 0 0
\(964\) −3.09322 5.35761i −0.0996258 0.172557i
\(965\) 9.20899 15.9504i 0.296448 0.513463i
\(966\) 0 0
\(967\) −7.92561 13.7276i −0.254870 0.441448i 0.709990 0.704212i \(-0.248699\pi\)
−0.964860 + 0.262763i \(0.915366\pi\)
\(968\) −16.6527 −0.535237
\(969\) 0 0
\(970\) 10.5015 0.337182
\(971\) 4.22725 + 7.32181i 0.135659 + 0.234968i 0.925849 0.377894i \(-0.123352\pi\)
−0.790190 + 0.612862i \(0.790018\pi\)
\(972\) 0 0
\(973\) 0.441854 0.765314i 0.0141652 0.0245349i
\(974\) −18.1688 31.4694i −0.582167 1.00834i
\(975\) 0 0
\(976\) −52.9477 −1.69481
\(977\) −29.4345 −0.941693 −0.470847 0.882215i \(-0.656051\pi\)
−0.470847 + 0.882215i \(0.656051\pi\)
\(978\) 0 0
\(979\) 1.01862 1.76430i 0.0325552 0.0563873i
\(980\) −5.55649 −0.177495
\(981\) 0 0
\(982\) 20.1816 34.9556i 0.644021 1.11548i
\(983\) −3.89757 6.75078i −0.124313 0.215317i 0.797151 0.603780i \(-0.206339\pi\)
−0.921464 + 0.388463i \(0.873006\pi\)
\(984\) 0 0
\(985\) 12.6168 + 21.8530i 0.402005 + 0.696294i
\(986\) −40.8725 70.7932i −1.30164 2.25451i
\(987\) 0 0
\(988\) 7.72232 7.77570i 0.245680 0.247378i
\(989\) 1.96129 0.0623653
\(990\) 0 0
\(991\) 4.41893 + 7.65382i 0.140372 + 0.243132i 0.927637 0.373484i \(-0.121837\pi\)
−0.787265 + 0.616615i \(0.788503\pi\)
\(992\) −5.43138 + 9.40742i −0.172446 + 0.298686i
\(993\) 0 0
\(994\) −0.878810 + 1.52214i −0.0278742 + 0.0482795i
\(995\) 9.86088 0.312611
\(996\) 0 0
\(997\) −25.5217 + 44.2049i −0.808280 + 1.39998i 0.105774 + 0.994390i \(0.466268\pi\)
−0.914054 + 0.405592i \(0.867065\pi\)
\(998\) 5.48143 9.49412i 0.173512 0.300531i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.f.h.406.5 yes 12
3.2 odd 2 513.2.f.f.406.2 yes 12
19.7 even 3 9747.2.a.bl.1.2 6
19.11 even 3 inner 513.2.f.h.163.5 yes 12
19.12 odd 6 9747.2.a.br.1.5 6
57.11 odd 6 513.2.f.f.163.2 12
57.26 odd 6 9747.2.a.bs.1.5 6
57.50 even 6 9747.2.a.bm.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.f.f.163.2 12 57.11 odd 6
513.2.f.f.406.2 yes 12 3.2 odd 2
513.2.f.h.163.5 yes 12 19.11 even 3 inner
513.2.f.h.406.5 yes 12 1.1 even 1 trivial
9747.2.a.bl.1.2 6 19.7 even 3
9747.2.a.bm.1.2 6 57.50 even 6
9747.2.a.br.1.5 6 19.12 odd 6
9747.2.a.bs.1.5 6 57.26 odd 6