Properties

Label 513.2.f.h.163.6
Level $513$
Weight $2$
Character 513.163
Analytic conductor $4.096$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(163,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.6
Root \(1.24972 + 2.16459i\) of defining polynomial
Character \(\chi\) \(=\) 513.163
Dual form 513.2.f.h.406.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24972 - 2.16459i) q^{2} +(-2.12362 - 3.67822i) q^{4} +(0.535221 - 0.927030i) q^{5} -0.193560 q^{7} -5.61687 q^{8} +(-1.33776 - 2.31706i) q^{10} +0.571729 q^{11} +(-2.84366 - 4.92536i) q^{13} +(-0.241896 + 0.418977i) q^{14} +(-2.77229 + 4.80175i) q^{16} +(-1.02257 + 1.77114i) q^{17} +(-1.50783 - 4.08980i) q^{19} -4.54643 q^{20} +(0.714503 - 1.23756i) q^{22} +(0.777117 + 1.34601i) q^{23} +(1.92708 + 3.33780i) q^{25} -14.2151 q^{26} +(0.411048 + 0.711956i) q^{28} +(3.04941 + 5.28174i) q^{29} +5.86981 q^{31} +(1.31234 + 2.27304i) q^{32} +(2.55586 + 4.42688i) q^{34} +(-0.103597 + 0.179436i) q^{35} +9.36668 q^{37} +(-10.7371 - 1.84730i) q^{38} +(-3.00627 + 5.20701i) q^{40} +(-0.964779 + 1.67105i) q^{41} +(1.60603 - 2.78173i) q^{43} +(-1.21414 - 2.10294i) q^{44} +3.88473 q^{46} +(5.30880 + 9.19512i) q^{47} -6.96253 q^{49} +9.63326 q^{50} +(-12.0777 + 20.9192i) q^{52} +(-3.84829 - 6.66544i) q^{53} +(0.306001 - 0.530010i) q^{55} +1.08720 q^{56} +15.2437 q^{58} +(5.89826 - 10.2161i) q^{59} +(-4.01155 - 6.94820i) q^{61} +(7.33564 - 12.7057i) q^{62} -4.52893 q^{64} -6.08794 q^{65} +(3.37013 + 5.83724i) q^{67} +8.68621 q^{68} +(0.258936 + 0.448490i) q^{70} +(-3.50280 + 6.06703i) q^{71} +(4.03676 - 6.99188i) q^{73} +(11.7058 - 20.2750i) q^{74} +(-11.8411 + 14.2313i) q^{76} -0.110664 q^{77} +(2.44019 - 4.22653i) q^{79} +(2.96758 + 5.14000i) q^{80} +(2.41142 + 4.17669i) q^{82} +6.02879 q^{83} +(1.09460 + 1.89591i) q^{85} +(-4.01419 - 6.95278i) q^{86} -3.21133 q^{88} +(8.79523 + 15.2338i) q^{89} +(0.550418 + 0.953351i) q^{91} +(3.30061 - 5.71682i) q^{92} +26.5382 q^{94} +(-4.59839 - 0.791145i) q^{95} +(3.79512 - 6.57333i) q^{97} +(-8.70125 + 15.0710i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} + q^{10} - 4 q^{11} - 5 q^{13} + 2 q^{14} + 3 q^{16} + 10 q^{17} - 9 q^{19} - 2 q^{20} - 4 q^{22} + 3 q^{23} - 5 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24972 2.16459i 0.883689 1.53059i 0.0364791 0.999334i \(-0.488386\pi\)
0.847209 0.531259i \(-0.178281\pi\)
\(3\) 0 0
\(4\) −2.12362 3.67822i −1.06181 1.83911i
\(5\) 0.535221 0.927030i 0.239358 0.414580i −0.721172 0.692756i \(-0.756396\pi\)
0.960530 + 0.278175i \(0.0897297\pi\)
\(6\) 0 0
\(7\) −0.193560 −0.0731588 −0.0365794 0.999331i \(-0.511646\pi\)
−0.0365794 + 0.999331i \(0.511646\pi\)
\(8\) −5.61687 −1.98586
\(9\) 0 0
\(10\) −1.33776 2.31706i −0.423036 0.732720i
\(11\) 0.571729 0.172383 0.0861914 0.996279i \(-0.472530\pi\)
0.0861914 + 0.996279i \(0.472530\pi\)
\(12\) 0 0
\(13\) −2.84366 4.92536i −0.788688 1.36605i −0.926771 0.375627i \(-0.877427\pi\)
0.138083 0.990421i \(-0.455906\pi\)
\(14\) −0.241896 + 0.418977i −0.0646495 + 0.111976i
\(15\) 0 0
\(16\) −2.77229 + 4.80175i −0.693074 + 1.20044i
\(17\) −1.02257 + 1.77114i −0.248010 + 0.429565i −0.962973 0.269596i \(-0.913110\pi\)
0.714964 + 0.699161i \(0.246443\pi\)
\(18\) 0 0
\(19\) −1.50783 4.08980i −0.345919 0.938264i
\(20\) −4.54643 −1.01661
\(21\) 0 0
\(22\) 0.714503 1.23756i 0.152333 0.263848i
\(23\) 0.777117 + 1.34601i 0.162040 + 0.280662i 0.935600 0.353061i \(-0.114859\pi\)
−0.773560 + 0.633723i \(0.781526\pi\)
\(24\) 0 0
\(25\) 1.92708 + 3.33780i 0.385415 + 0.667559i
\(26\) −14.2151 −2.78782
\(27\) 0 0
\(28\) 0.411048 + 0.711956i 0.0776808 + 0.134547i
\(29\) 3.04941 + 5.28174i 0.566262 + 0.980794i 0.996931 + 0.0782841i \(0.0249441\pi\)
−0.430670 + 0.902510i \(0.641723\pi\)
\(30\) 0 0
\(31\) 5.86981 1.05425 0.527124 0.849788i \(-0.323270\pi\)
0.527124 + 0.849788i \(0.323270\pi\)
\(32\) 1.31234 + 2.27304i 0.231991 + 0.401820i
\(33\) 0 0
\(34\) 2.55586 + 4.42688i 0.438327 + 0.759204i
\(35\) −0.103597 + 0.179436i −0.0175111 + 0.0303302i
\(36\) 0 0
\(37\) 9.36668 1.53987 0.769937 0.638120i \(-0.220288\pi\)
0.769937 + 0.638120i \(0.220288\pi\)
\(38\) −10.7371 1.84730i −1.74179 0.299671i
\(39\) 0 0
\(40\) −3.00627 + 5.20701i −0.475332 + 0.823300i
\(41\) −0.964779 + 1.67105i −0.150673 + 0.260974i −0.931475 0.363805i \(-0.881477\pi\)
0.780802 + 0.624779i \(0.214811\pi\)
\(42\) 0 0
\(43\) 1.60603 2.78173i 0.244917 0.424209i −0.717191 0.696877i \(-0.754572\pi\)
0.962108 + 0.272667i \(0.0879058\pi\)
\(44\) −1.21414 2.10294i −0.183038 0.317031i
\(45\) 0 0
\(46\) 3.88473 0.572772
\(47\) 5.30880 + 9.19512i 0.774368 + 1.34125i 0.935149 + 0.354255i \(0.115266\pi\)
−0.160780 + 0.986990i \(0.551401\pi\)
\(48\) 0 0
\(49\) −6.96253 −0.994648
\(50\) 9.63326 1.36235
\(51\) 0 0
\(52\) −12.0777 + 20.9192i −1.67488 + 2.90097i
\(53\) −3.84829 6.66544i −0.528604 0.915569i −0.999444 0.0333501i \(-0.989382\pi\)
0.470840 0.882219i \(-0.343951\pi\)
\(54\) 0 0
\(55\) 0.306001 0.530010i 0.0412612 0.0714665i
\(56\) 1.08720 0.145283
\(57\) 0 0
\(58\) 15.2437 2.00160
\(59\) 5.89826 10.2161i 0.767888 1.33002i −0.170818 0.985303i \(-0.554641\pi\)
0.938706 0.344718i \(-0.112026\pi\)
\(60\) 0 0
\(61\) −4.01155 6.94820i −0.513626 0.889626i −0.999875 0.0158062i \(-0.994969\pi\)
0.486249 0.873820i \(-0.338365\pi\)
\(62\) 7.33564 12.7057i 0.931628 1.61363i
\(63\) 0 0
\(64\) −4.52893 −0.566117
\(65\) −6.08794 −0.755116
\(66\) 0 0
\(67\) 3.37013 + 5.83724i 0.411727 + 0.713132i 0.995079 0.0990878i \(-0.0315925\pi\)
−0.583352 + 0.812220i \(0.698259\pi\)
\(68\) 8.68621 1.05336
\(69\) 0 0
\(70\) 0.258936 + 0.448490i 0.0309488 + 0.0536049i
\(71\) −3.50280 + 6.06703i −0.415706 + 0.720024i −0.995502 0.0947376i \(-0.969799\pi\)
0.579796 + 0.814761i \(0.303132\pi\)
\(72\) 0 0
\(73\) 4.03676 6.99188i 0.472467 0.818337i −0.527036 0.849843i \(-0.676697\pi\)
0.999504 + 0.0315056i \(0.0100302\pi\)
\(74\) 11.7058 20.2750i 1.36077 2.35692i
\(75\) 0 0
\(76\) −11.8411 + 14.2313i −1.35827 + 1.63244i
\(77\) −0.110664 −0.0126113
\(78\) 0 0
\(79\) 2.44019 4.22653i 0.274542 0.475522i −0.695477 0.718548i \(-0.744807\pi\)
0.970020 + 0.243027i \(0.0781403\pi\)
\(80\) 2.96758 + 5.14000i 0.331786 + 0.574669i
\(81\) 0 0
\(82\) 2.41142 + 4.17669i 0.266296 + 0.461239i
\(83\) 6.02879 0.661746 0.330873 0.943675i \(-0.392657\pi\)
0.330873 + 0.943675i \(0.392657\pi\)
\(84\) 0 0
\(85\) 1.09460 + 1.89591i 0.118726 + 0.205640i
\(86\) −4.01419 6.95278i −0.432861 0.749738i
\(87\) 0 0
\(88\) −3.21133 −0.342328
\(89\) 8.79523 + 15.2338i 0.932293 + 1.61478i 0.779392 + 0.626537i \(0.215528\pi\)
0.152901 + 0.988242i \(0.451138\pi\)
\(90\) 0 0
\(91\) 0.550418 + 0.953351i 0.0576994 + 0.0999384i
\(92\) 3.30061 5.71682i 0.344112 0.596020i
\(93\) 0 0
\(94\) 26.5382 2.73720
\(95\) −4.59839 0.791145i −0.471785 0.0811697i
\(96\) 0 0
\(97\) 3.79512 6.57333i 0.385336 0.667421i −0.606480 0.795099i \(-0.707419\pi\)
0.991816 + 0.127678i \(0.0407524\pi\)
\(98\) −8.70125 + 15.0710i −0.878959 + 1.52240i
\(99\) 0 0
\(100\) 8.18477 14.1764i 0.818477 1.41764i
\(101\) 3.62114 + 6.27200i 0.360317 + 0.624087i 0.988013 0.154371i \(-0.0493352\pi\)
−0.627696 + 0.778459i \(0.716002\pi\)
\(102\) 0 0
\(103\) 4.75198 0.468227 0.234113 0.972209i \(-0.424781\pi\)
0.234113 + 0.972209i \(0.424781\pi\)
\(104\) 15.9724 + 27.6651i 1.56623 + 2.71278i
\(105\) 0 0
\(106\) −19.2372 −1.86848
\(107\) 3.66421 0.354233 0.177117 0.984190i \(-0.443323\pi\)
0.177117 + 0.984190i \(0.443323\pi\)
\(108\) 0 0
\(109\) −6.16947 + 10.6858i −0.590928 + 1.02352i 0.403180 + 0.915121i \(0.367905\pi\)
−0.994108 + 0.108397i \(0.965428\pi\)
\(110\) −0.764834 1.32473i −0.0729241 0.126308i
\(111\) 0 0
\(112\) 0.536605 0.929427i 0.0507044 0.0878226i
\(113\) −16.6031 −1.56189 −0.780943 0.624602i \(-0.785261\pi\)
−0.780943 + 0.624602i \(0.785261\pi\)
\(114\) 0 0
\(115\) 1.66372 0.155143
\(116\) 12.9516 22.4328i 1.20253 2.08283i
\(117\) 0 0
\(118\) −14.7424 25.5346i −1.35715 2.35065i
\(119\) 0.197929 0.342822i 0.0181441 0.0314265i
\(120\) 0 0
\(121\) −10.6731 −0.970284
\(122\) −20.0533 −1.81554
\(123\) 0 0
\(124\) −12.4653 21.5905i −1.11941 1.93888i
\(125\) 9.47786 0.847725
\(126\) 0 0
\(127\) 1.78674 + 3.09472i 0.158547 + 0.274612i 0.934345 0.356370i \(-0.115986\pi\)
−0.775798 + 0.630982i \(0.782652\pi\)
\(128\) −8.28459 + 14.3493i −0.732262 + 1.26831i
\(129\) 0 0
\(130\) −7.60824 + 13.1779i −0.667287 + 1.15577i
\(131\) 4.88169 8.45533i 0.426515 0.738746i −0.570046 0.821613i \(-0.693074\pi\)
0.996561 + 0.0828675i \(0.0264078\pi\)
\(132\) 0 0
\(133\) 0.291855 + 0.791621i 0.0253070 + 0.0686422i
\(134\) 16.8469 1.45535
\(135\) 0 0
\(136\) 5.74364 9.94828i 0.492513 0.853058i
\(137\) 11.2337 + 19.4574i 0.959763 + 1.66236i 0.723071 + 0.690774i \(0.242730\pi\)
0.236692 + 0.971585i \(0.423937\pi\)
\(138\) 0 0
\(139\) −9.25493 16.0300i −0.784993 1.35965i −0.929003 0.370072i \(-0.879333\pi\)
0.144010 0.989576i \(-0.454000\pi\)
\(140\) 0.880006 0.0743741
\(141\) 0 0
\(142\) 8.75507 + 15.1642i 0.734709 + 1.27255i
\(143\) −1.62580 2.81597i −0.135956 0.235483i
\(144\) 0 0
\(145\) 6.52844 0.542157
\(146\) −10.0897 17.4758i −0.835028 1.44631i
\(147\) 0 0
\(148\) −19.8913 34.4527i −1.63505 2.83200i
\(149\) −7.44955 + 12.9030i −0.610291 + 1.05706i 0.380900 + 0.924616i \(0.375614\pi\)
−0.991191 + 0.132439i \(0.957719\pi\)
\(150\) 0 0
\(151\) −8.14617 −0.662926 −0.331463 0.943468i \(-0.607542\pi\)
−0.331463 + 0.943468i \(0.607542\pi\)
\(152\) 8.46927 + 22.9719i 0.686949 + 1.86326i
\(153\) 0 0
\(154\) −0.138299 + 0.239541i −0.0111445 + 0.0193028i
\(155\) 3.14165 5.44149i 0.252343 0.437071i
\(156\) 0 0
\(157\) −4.69850 + 8.13804i −0.374981 + 0.649486i −0.990324 0.138773i \(-0.955684\pi\)
0.615343 + 0.788259i \(0.289017\pi\)
\(158\) −6.09912 10.5640i −0.485220 0.840426i
\(159\) 0 0
\(160\) 2.80956 0.222116
\(161\) −0.150419 0.260533i −0.0118547 0.0205329i
\(162\) 0 0
\(163\) −4.38809 −0.343702 −0.171851 0.985123i \(-0.554975\pi\)
−0.171851 + 0.985123i \(0.554975\pi\)
\(164\) 8.19530 0.639946
\(165\) 0 0
\(166\) 7.53432 13.0498i 0.584777 1.01286i
\(167\) −8.58819 14.8752i −0.664574 1.15108i −0.979401 0.201926i \(-0.935280\pi\)
0.314827 0.949149i \(-0.398054\pi\)
\(168\) 0 0
\(169\) −9.67275 + 16.7537i −0.744058 + 1.28875i
\(170\) 5.47180 0.419668
\(171\) 0 0
\(172\) −13.6424 −1.04022
\(173\) −3.79450 + 6.57226i −0.288490 + 0.499680i −0.973450 0.228902i \(-0.926487\pi\)
0.684959 + 0.728581i \(0.259820\pi\)
\(174\) 0 0
\(175\) −0.373005 0.646063i −0.0281965 0.0488378i
\(176\) −1.58500 + 2.74530i −0.119474 + 0.206935i
\(177\) 0 0
\(178\) 43.9665 3.29543
\(179\) 23.5346 1.75906 0.879530 0.475844i \(-0.157857\pi\)
0.879530 + 0.475844i \(0.157857\pi\)
\(180\) 0 0
\(181\) 1.22414 + 2.12028i 0.0909897 + 0.157599i 0.907928 0.419127i \(-0.137664\pi\)
−0.816938 + 0.576725i \(0.804330\pi\)
\(182\) 2.75148 0.203953
\(183\) 0 0
\(184\) −4.36497 7.56034i −0.321790 0.557356i
\(185\) 5.01325 8.68320i 0.368581 0.638401i
\(186\) 0 0
\(187\) −0.584633 + 1.01261i −0.0427526 + 0.0740496i
\(188\) 22.5478 39.0539i 1.64447 2.84830i
\(189\) 0 0
\(190\) −7.45922 + 8.96489i −0.541148 + 0.650382i
\(191\) −15.8473 −1.14667 −0.573334 0.819322i \(-0.694350\pi\)
−0.573334 + 0.819322i \(0.694350\pi\)
\(192\) 0 0
\(193\) 9.00617 15.5992i 0.648279 1.12285i −0.335255 0.942127i \(-0.608823\pi\)
0.983534 0.180724i \(-0.0578441\pi\)
\(194\) −9.48569 16.4297i −0.681033 1.17958i
\(195\) 0 0
\(196\) 14.7858 + 25.6097i 1.05613 + 1.82927i
\(197\) −15.0865 −1.07487 −0.537433 0.843306i \(-0.680606\pi\)
−0.537433 + 0.843306i \(0.680606\pi\)
\(198\) 0 0
\(199\) 8.82097 + 15.2784i 0.625302 + 1.08305i 0.988482 + 0.151336i \(0.0483576\pi\)
−0.363180 + 0.931719i \(0.618309\pi\)
\(200\) −10.8241 18.7480i −0.765382 1.32568i
\(201\) 0 0
\(202\) 18.1017 1.27363
\(203\) −0.590244 1.02233i −0.0414270 0.0717536i
\(204\) 0 0
\(205\) 1.03274 + 1.78876i 0.0721297 + 0.124932i
\(206\) 5.93867 10.2861i 0.413767 0.716665i
\(207\) 0 0
\(208\) 31.5338 2.18648
\(209\) −0.862069 2.33826i −0.0596305 0.161741i
\(210\) 0 0
\(211\) −7.92083 + 13.7193i −0.545292 + 0.944474i 0.453296 + 0.891360i \(0.350248\pi\)
−0.998588 + 0.0531140i \(0.983085\pi\)
\(212\) −16.3446 + 28.3098i −1.12255 + 1.94432i
\(213\) 0 0
\(214\) 4.57926 7.93151i 0.313032 0.542187i
\(215\) −1.71916 2.97768i −0.117246 0.203076i
\(216\) 0 0
\(217\) −1.13616 −0.0771275
\(218\) 15.4203 + 26.7087i 1.04439 + 1.80894i
\(219\) 0 0
\(220\) −2.59932 −0.175246
\(221\) 11.6313 0.782409
\(222\) 0 0
\(223\) −7.99178 + 13.8422i −0.535169 + 0.926940i 0.463986 + 0.885843i \(0.346419\pi\)
−0.999155 + 0.0410976i \(0.986915\pi\)
\(224\) −0.254016 0.439969i −0.0169722 0.0293966i
\(225\) 0 0
\(226\) −20.7493 + 35.9388i −1.38022 + 2.39061i
\(227\) 9.49687 0.630330 0.315165 0.949037i \(-0.397940\pi\)
0.315165 + 0.949037i \(0.397940\pi\)
\(228\) 0 0
\(229\) −12.4620 −0.823513 −0.411757 0.911294i \(-0.635085\pi\)
−0.411757 + 0.911294i \(0.635085\pi\)
\(230\) 2.07919 3.60126i 0.137098 0.237460i
\(231\) 0 0
\(232\) −17.1281 29.6668i −1.12452 1.94772i
\(233\) 0.398235 0.689764i 0.0260893 0.0451879i −0.852686 0.522424i \(-0.825028\pi\)
0.878775 + 0.477236i \(0.158361\pi\)
\(234\) 0 0
\(235\) 11.3655 0.741405
\(236\) −50.1027 −3.26141
\(237\) 0 0
\(238\) −0.494712 0.856867i −0.0320674 0.0555424i
\(239\) −7.61127 −0.492332 −0.246166 0.969228i \(-0.579171\pi\)
−0.246166 + 0.969228i \(0.579171\pi\)
\(240\) 0 0
\(241\) 13.9134 + 24.0987i 0.896240 + 1.55233i 0.832263 + 0.554381i \(0.187045\pi\)
0.0639766 + 0.997951i \(0.479622\pi\)
\(242\) −13.3385 + 23.1029i −0.857429 + 1.48511i
\(243\) 0 0
\(244\) −17.0380 + 29.5107i −1.09075 + 1.88923i
\(245\) −3.72649 + 6.45448i −0.238077 + 0.412361i
\(246\) 0 0
\(247\) −15.8560 + 19.0566i −1.00889 + 1.21254i
\(248\) −32.9700 −2.09359
\(249\) 0 0
\(250\) 11.8447 20.5156i 0.749125 1.29752i
\(251\) −4.03898 6.99572i −0.254938 0.441566i 0.709940 0.704262i \(-0.248722\pi\)
−0.964879 + 0.262696i \(0.915389\pi\)
\(252\) 0 0
\(253\) 0.444300 + 0.769551i 0.0279329 + 0.0483812i
\(254\) 8.93172 0.560426
\(255\) 0 0
\(256\) 16.1780 + 28.0211i 1.01112 + 1.75132i
\(257\) 0.186398 + 0.322850i 0.0116272 + 0.0201388i 0.871780 0.489897i \(-0.162966\pi\)
−0.860153 + 0.510036i \(0.829632\pi\)
\(258\) 0 0
\(259\) −1.81301 −0.112655
\(260\) 12.9285 + 22.3928i 0.801790 + 1.38874i
\(261\) 0 0
\(262\) −12.2015 21.1337i −0.753813 1.30564i
\(263\) 5.57101 9.64928i 0.343523 0.595000i −0.641561 0.767072i \(-0.721713\pi\)
0.985084 + 0.172072i \(0.0550462\pi\)
\(264\) 0 0
\(265\) −8.23875 −0.506103
\(266\) 2.07827 + 0.357563i 0.127427 + 0.0219236i
\(267\) 0 0
\(268\) 14.3138 24.7922i 0.874352 1.51442i
\(269\) −12.3204 + 21.3396i −0.751191 + 1.30110i 0.196055 + 0.980593i \(0.437187\pi\)
−0.947246 + 0.320508i \(0.896146\pi\)
\(270\) 0 0
\(271\) −0.0196243 + 0.0339902i −0.00119209 + 0.00206476i −0.866621 0.498967i \(-0.833713\pi\)
0.865429 + 0.501032i \(0.167046\pi\)
\(272\) −5.66973 9.82026i −0.343778 0.595441i
\(273\) 0 0
\(274\) 56.1563 3.39253
\(275\) 1.10177 + 1.90831i 0.0664390 + 0.115076i
\(276\) 0 0
\(277\) −8.82444 −0.530209 −0.265105 0.964220i \(-0.585407\pi\)
−0.265105 + 0.964220i \(0.585407\pi\)
\(278\) −46.2645 −2.77476
\(279\) 0 0
\(280\) 0.581892 1.00787i 0.0347747 0.0602316i
\(281\) 0.708321 + 1.22685i 0.0422549 + 0.0731876i 0.886379 0.462960i \(-0.153213\pi\)
−0.844124 + 0.536147i \(0.819879\pi\)
\(282\) 0 0
\(283\) −6.65237 + 11.5223i −0.395443 + 0.684927i −0.993158 0.116782i \(-0.962742\pi\)
0.597715 + 0.801709i \(0.296075\pi\)
\(284\) 29.7545 1.76560
\(285\) 0 0
\(286\) −8.12721 −0.480572
\(287\) 0.186742 0.323447i 0.0110231 0.0190925i
\(288\) 0 0
\(289\) 6.40870 + 11.1002i 0.376982 + 0.652953i
\(290\) 8.15875 14.1314i 0.479098 0.829822i
\(291\) 0 0
\(292\) −34.2902 −2.00668
\(293\) −16.5875 −0.969051 −0.484526 0.874777i \(-0.661008\pi\)
−0.484526 + 0.874777i \(0.661008\pi\)
\(294\) 0 0
\(295\) −6.31374 10.9357i −0.367600 0.636702i
\(296\) −52.6114 −3.05798
\(297\) 0 0
\(298\) 18.6198 + 32.2504i 1.07861 + 1.86822i
\(299\) 4.41971 7.65516i 0.255598 0.442709i
\(300\) 0 0
\(301\) −0.310863 + 0.538431i −0.0179178 + 0.0310346i
\(302\) −10.1805 + 17.6331i −0.585820 + 1.01467i
\(303\) 0 0
\(304\) 23.8184 + 4.09791i 1.36608 + 0.235031i
\(305\) −8.58826 −0.491762
\(306\) 0 0
\(307\) 15.6001 27.0201i 0.890342 1.54212i 0.0508769 0.998705i \(-0.483798\pi\)
0.839465 0.543413i \(-0.182868\pi\)
\(308\) 0.235008 + 0.407046i 0.0133908 + 0.0231936i
\(309\) 0 0
\(310\) −7.85238 13.6007i −0.445985 0.772469i
\(311\) 16.1732 0.917101 0.458550 0.888668i \(-0.348369\pi\)
0.458550 + 0.888668i \(0.348369\pi\)
\(312\) 0 0
\(313\) −4.98259 8.63010i −0.281633 0.487802i 0.690154 0.723662i \(-0.257543\pi\)
−0.971787 + 0.235860i \(0.924209\pi\)
\(314\) 11.7437 + 20.3406i 0.662733 + 1.14789i
\(315\) 0 0
\(316\) −20.7281 −1.16605
\(317\) −5.38021 9.31879i −0.302183 0.523395i 0.674448 0.738323i \(-0.264382\pi\)
−0.976630 + 0.214927i \(0.931049\pi\)
\(318\) 0 0
\(319\) 1.74344 + 3.01972i 0.0976137 + 0.169072i
\(320\) −2.42398 + 4.19846i −0.135505 + 0.234701i
\(321\) 0 0
\(322\) −0.751928 −0.0419033
\(323\) 8.78548 + 1.51153i 0.488837 + 0.0841036i
\(324\) 0 0
\(325\) 10.9599 18.9831i 0.607945 1.05299i
\(326\) −5.48391 + 9.49841i −0.303726 + 0.526068i
\(327\) 0 0
\(328\) 5.41904 9.38605i 0.299216 0.518258i
\(329\) −1.02757 1.77981i −0.0566518 0.0981238i
\(330\) 0 0
\(331\) −3.66316 −0.201346 −0.100673 0.994920i \(-0.532100\pi\)
−0.100673 + 0.994920i \(0.532100\pi\)
\(332\) −12.8029 22.1752i −0.702649 1.21702i
\(333\) 0 0
\(334\) −42.9315 −2.34910
\(335\) 7.21506 0.394201
\(336\) 0 0
\(337\) 4.89465 8.47779i 0.266629 0.461814i −0.701360 0.712807i \(-0.747424\pi\)
0.967989 + 0.250992i \(0.0807569\pi\)
\(338\) 24.1765 + 41.8750i 1.31503 + 2.27770i
\(339\) 0 0
\(340\) 4.64904 8.05237i 0.252130 0.436701i
\(341\) 3.35594 0.181734
\(342\) 0 0
\(343\) 2.70259 0.145926
\(344\) −9.02086 + 15.6246i −0.486372 + 0.842422i
\(345\) 0 0
\(346\) 9.48415 + 16.4270i 0.509871 + 0.883123i
\(347\) 1.22366 2.11944i 0.0656895 0.113778i −0.831310 0.555809i \(-0.812409\pi\)
0.897000 + 0.442031i \(0.145742\pi\)
\(348\) 0 0
\(349\) 10.1049 0.540905 0.270453 0.962733i \(-0.412827\pi\)
0.270453 + 0.962733i \(0.412827\pi\)
\(350\) −1.86461 −0.0996677
\(351\) 0 0
\(352\) 0.750302 + 1.29956i 0.0399912 + 0.0692668i
\(353\) −9.94896 −0.529529 −0.264765 0.964313i \(-0.585294\pi\)
−0.264765 + 0.964313i \(0.585294\pi\)
\(354\) 0 0
\(355\) 3.74954 + 6.49440i 0.199005 + 0.344687i
\(356\) 37.3555 64.7016i 1.97984 3.42918i
\(357\) 0 0
\(358\) 29.4118 50.9427i 1.55446 2.69240i
\(359\) −0.112962 + 0.195656i −0.00596191 + 0.0103263i −0.868991 0.494828i \(-0.835231\pi\)
0.863029 + 0.505154i \(0.168564\pi\)
\(360\) 0 0
\(361\) −14.4529 + 12.3334i −0.760679 + 0.649128i
\(362\) 6.11936 0.321626
\(363\) 0 0
\(364\) 2.33776 4.04911i 0.122532 0.212231i
\(365\) −4.32112 7.48440i −0.226178 0.391751i
\(366\) 0 0
\(367\) −3.09327 5.35770i −0.161467 0.279670i 0.773928 0.633274i \(-0.218289\pi\)
−0.935395 + 0.353604i \(0.884956\pi\)
\(368\) −8.61759 −0.449223
\(369\) 0 0
\(370\) −12.5304 21.7032i −0.651422 1.12830i
\(371\) 0.744875 + 1.29016i 0.0386720 + 0.0669819i
\(372\) 0 0
\(373\) 14.4281 0.747059 0.373530 0.927618i \(-0.378147\pi\)
0.373530 + 0.927618i \(0.378147\pi\)
\(374\) 1.46126 + 2.53098i 0.0755599 + 0.130874i
\(375\) 0 0
\(376\) −29.8188 51.6478i −1.53779 2.66353i
\(377\) 17.3430 30.0389i 0.893208 1.54708i
\(378\) 0 0
\(379\) −16.6715 −0.856358 −0.428179 0.903694i \(-0.640845\pi\)
−0.428179 + 0.903694i \(0.640845\pi\)
\(380\) 6.85523 + 18.5940i 0.351666 + 0.953851i
\(381\) 0 0
\(382\) −19.8047 + 34.3028i −1.01330 + 1.75508i
\(383\) 14.8521 25.7246i 0.758908 1.31447i −0.184500 0.982833i \(-0.559067\pi\)
0.943408 0.331635i \(-0.107600\pi\)
\(384\) 0 0
\(385\) −0.0592296 + 0.102589i −0.00301862 + 0.00522840i
\(386\) −22.5105 38.9893i −1.14575 1.98450i
\(387\) 0 0
\(388\) −32.2376 −1.63661
\(389\) −13.1780 22.8249i −0.668150 1.15727i −0.978421 0.206622i \(-0.933753\pi\)
0.310271 0.950648i \(-0.399580\pi\)
\(390\) 0 0
\(391\) −3.17863 −0.160750
\(392\) 39.1076 1.97523
\(393\) 0 0
\(394\) −18.8539 + 32.6560i −0.949847 + 1.64518i
\(395\) −2.61208 4.52425i −0.131428 0.227640i
\(396\) 0 0
\(397\) 5.54142 9.59802i 0.278116 0.481711i −0.692801 0.721129i \(-0.743623\pi\)
0.970916 + 0.239418i \(0.0769568\pi\)
\(398\) 44.0951 2.21029
\(399\) 0 0
\(400\) −21.3697 −1.06849
\(401\) −13.0893 + 22.6713i −0.653647 + 1.13215i 0.328584 + 0.944475i \(0.393429\pi\)
−0.982231 + 0.187676i \(0.939905\pi\)
\(402\) 0 0
\(403\) −16.6917 28.9109i −0.831474 1.44015i
\(404\) 15.3799 26.6387i 0.765177 1.32533i
\(405\) 0 0
\(406\) −2.95057 −0.146434
\(407\) 5.35520 0.265448
\(408\) 0 0
\(409\) −5.40845 9.36771i −0.267431 0.463204i 0.700767 0.713390i \(-0.252841\pi\)
−0.968198 + 0.250187i \(0.919508\pi\)
\(410\) 5.16256 0.254961
\(411\) 0 0
\(412\) −10.0914 17.4788i −0.497168 0.861120i
\(413\) −1.14167 + 1.97742i −0.0561777 + 0.0973026i
\(414\) 0 0
\(415\) 3.22673 5.58887i 0.158394 0.274347i
\(416\) 7.46368 12.9275i 0.365937 0.633821i
\(417\) 0 0
\(418\) −6.13870 1.05615i −0.300254 0.0516582i
\(419\) 12.5477 0.612996 0.306498 0.951871i \(-0.400843\pi\)
0.306498 + 0.951871i \(0.400843\pi\)
\(420\) 0 0
\(421\) −3.97623 + 6.88704i −0.193790 + 0.335654i −0.946503 0.322695i \(-0.895411\pi\)
0.752713 + 0.658348i \(0.228745\pi\)
\(422\) 19.7977 + 34.2906i 0.963737 + 1.66924i
\(423\) 0 0
\(424\) 21.6154 + 37.4389i 1.04974 + 1.81819i
\(425\) −7.88229 −0.382347
\(426\) 0 0
\(427\) 0.776475 + 1.34489i 0.0375762 + 0.0650840i
\(428\) −7.78141 13.4778i −0.376128 0.651474i
\(429\) 0 0
\(430\) −8.59392 −0.414435
\(431\) 0.516348 + 0.894341i 0.0248716 + 0.0430789i 0.878193 0.478306i \(-0.158749\pi\)
−0.853322 + 0.521385i \(0.825416\pi\)
\(432\) 0 0
\(433\) 8.22588 + 14.2476i 0.395310 + 0.684698i 0.993141 0.116925i \(-0.0373037\pi\)
−0.597830 + 0.801623i \(0.703970\pi\)
\(434\) −1.41989 + 2.45932i −0.0681567 + 0.118051i
\(435\) 0 0
\(436\) 52.4065 2.50982
\(437\) 4.33314 5.20780i 0.207282 0.249123i
\(438\) 0 0
\(439\) 12.4617 21.5842i 0.594763 1.03016i −0.398818 0.917030i \(-0.630579\pi\)
0.993580 0.113129i \(-0.0360873\pi\)
\(440\) −1.71877 + 2.97699i −0.0819391 + 0.141923i
\(441\) 0 0
\(442\) 14.5360 25.1771i 0.691406 1.19755i
\(443\) 0.348840 + 0.604209i 0.0165739 + 0.0287069i 0.874193 0.485578i \(-0.161391\pi\)
−0.857619 + 0.514285i \(0.828057\pi\)
\(444\) 0 0
\(445\) 18.8296 0.892607
\(446\) 19.9750 + 34.5978i 0.945846 + 1.63825i
\(447\) 0 0
\(448\) 0.876620 0.0414164
\(449\) −19.7227 −0.930771 −0.465385 0.885108i \(-0.654084\pi\)
−0.465385 + 0.885108i \(0.654084\pi\)
\(450\) 0 0
\(451\) −0.551592 + 0.955385i −0.0259735 + 0.0449873i
\(452\) 35.2586 + 61.0698i 1.65843 + 2.87248i
\(453\) 0 0
\(454\) 11.8685 20.5568i 0.557015 0.964779i
\(455\) 1.17838 0.0552433
\(456\) 0 0
\(457\) 20.7346 0.969924 0.484962 0.874535i \(-0.338833\pi\)
0.484962 + 0.874535i \(0.338833\pi\)
\(458\) −15.5741 + 26.9751i −0.727729 + 1.26046i
\(459\) 0 0
\(460\) −3.53311 6.11952i −0.164732 0.285324i
\(461\) −10.9954 + 19.0445i −0.512105 + 0.886992i 0.487797 + 0.872957i \(0.337801\pi\)
−0.999902 + 0.0140344i \(0.995533\pi\)
\(462\) 0 0
\(463\) −10.1268 −0.470631 −0.235316 0.971919i \(-0.575612\pi\)
−0.235316 + 0.971919i \(0.575612\pi\)
\(464\) −33.8155 −1.56984
\(465\) 0 0
\(466\) −0.995369 1.72403i −0.0461096 0.0798641i
\(467\) −37.7532 −1.74701 −0.873506 0.486814i \(-0.838159\pi\)
−0.873506 + 0.486814i \(0.838159\pi\)
\(468\) 0 0
\(469\) −0.652322 1.12985i −0.0301214 0.0521718i
\(470\) 14.2038 24.6017i 0.655171 1.13479i
\(471\) 0 0
\(472\) −33.1297 + 57.3824i −1.52492 + 2.64124i
\(473\) 0.918214 1.59039i 0.0422195 0.0731264i
\(474\) 0 0
\(475\) 10.7452 12.9142i 0.493024 0.592543i
\(476\) −1.68130 −0.0770623
\(477\) 0 0
\(478\) −9.51199 + 16.4752i −0.435068 + 0.753560i
\(479\) −21.3890 37.0469i −0.977289 1.69271i −0.672164 0.740402i \(-0.734635\pi\)
−0.305125 0.952312i \(-0.598698\pi\)
\(480\) 0 0
\(481\) −26.6356 46.1343i −1.21448 2.10354i
\(482\) 69.5516 3.16799
\(483\) 0 0
\(484\) 22.6657 + 39.2581i 1.03026 + 1.78446i
\(485\) −4.06245 7.03637i −0.184466 0.319505i
\(486\) 0 0
\(487\) 40.8764 1.85229 0.926144 0.377170i \(-0.123103\pi\)
0.926144 + 0.377170i \(0.123103\pi\)
\(488\) 22.5323 + 39.0272i 1.01999 + 1.76668i
\(489\) 0 0
\(490\) 9.31418 + 16.1326i 0.420772 + 0.728798i
\(491\) −14.7667 + 25.5766i −0.666410 + 1.15426i 0.312491 + 0.949921i \(0.398837\pi\)
−0.978901 + 0.204335i \(0.934497\pi\)
\(492\) 0 0
\(493\) −12.4729 −0.561753
\(494\) 21.4340 + 58.1371i 0.964361 + 2.61571i
\(495\) 0 0
\(496\) −16.2728 + 28.1854i −0.730672 + 1.26556i
\(497\) 0.678002 1.17433i 0.0304125 0.0526760i
\(498\) 0 0
\(499\) −5.40313 + 9.35849i −0.241877 + 0.418944i −0.961249 0.275682i \(-0.911096\pi\)
0.719372 + 0.694625i \(0.244430\pi\)
\(500\) −20.1274 34.8617i −0.900124 1.55906i
\(501\) 0 0
\(502\) −20.1905 −0.901145
\(503\) −18.1255 31.3943i −0.808175 1.39980i −0.914126 0.405429i \(-0.867122\pi\)
0.105951 0.994371i \(-0.466211\pi\)
\(504\) 0 0
\(505\) 7.75244 0.344979
\(506\) 2.22101 0.0987360
\(507\) 0 0
\(508\) 7.58871 13.1440i 0.336695 0.583172i
\(509\) 16.8203 + 29.1336i 0.745546 + 1.29132i 0.949939 + 0.312435i \(0.101145\pi\)
−0.204393 + 0.978889i \(0.565522\pi\)
\(510\) 0 0
\(511\) −0.781355 + 1.35335i −0.0345651 + 0.0598685i
\(512\) 47.7337 2.10955
\(513\) 0 0
\(514\) 0.931782 0.0410991
\(515\) 2.54336 4.40523i 0.112074 0.194118i
\(516\) 0 0
\(517\) 3.03520 + 5.25711i 0.133488 + 0.231208i
\(518\) −2.26577 + 3.92443i −0.0995521 + 0.172429i
\(519\) 0 0
\(520\) 34.1951 1.49956
\(521\) −11.4164 −0.500162 −0.250081 0.968225i \(-0.580457\pi\)
−0.250081 + 0.968225i \(0.580457\pi\)
\(522\) 0 0
\(523\) 8.31606 + 14.4038i 0.363636 + 0.629836i 0.988556 0.150853i \(-0.0482019\pi\)
−0.624920 + 0.780688i \(0.714869\pi\)
\(524\) −41.4674 −1.81151
\(525\) 0 0
\(526\) −13.9245 24.1179i −0.607135 1.05159i
\(527\) −6.00229 + 10.3963i −0.261464 + 0.452869i
\(528\) 0 0
\(529\) 10.2922 17.8266i 0.447486 0.775068i
\(530\) −10.2962 + 17.8335i −0.447237 + 0.774637i
\(531\) 0 0
\(532\) 2.29197 2.75461i 0.0993694 0.119427i
\(533\) 10.9740 0.475337
\(534\) 0 0
\(535\) 1.96116 3.39684i 0.0847885 0.146858i
\(536\) −18.9296 32.7870i −0.817633 1.41618i
\(537\) 0 0
\(538\) 30.7943 + 53.3373i 1.32764 + 2.29954i
\(539\) −3.98068 −0.171460
\(540\) 0 0
\(541\) −3.67947 6.37302i −0.158193 0.273998i 0.776024 0.630703i \(-0.217233\pi\)
−0.934217 + 0.356705i \(0.883900\pi\)
\(542\) 0.0490498 + 0.0849568i 0.00210687 + 0.00364921i
\(543\) 0 0
\(544\) −5.36783 −0.230144
\(545\) 6.60406 + 11.4386i 0.282887 + 0.489974i
\(546\) 0 0
\(547\) 19.3523 + 33.5191i 0.827443 + 1.43317i 0.900038 + 0.435812i \(0.143539\pi\)
−0.0725944 + 0.997362i \(0.523128\pi\)
\(548\) 47.7124 82.6403i 2.03817 3.53022i
\(549\) 0 0
\(550\) 5.50761 0.234845
\(551\) 17.0033 20.4354i 0.724363 0.870579i
\(552\) 0 0
\(553\) −0.472322 + 0.818086i −0.0200852 + 0.0347886i
\(554\) −11.0281 + 19.1013i −0.468540 + 0.811535i
\(555\) 0 0
\(556\) −39.3079 + 68.0834i −1.66703 + 2.88738i
\(557\) 7.68267 + 13.3068i 0.325525 + 0.563826i 0.981619 0.190854i \(-0.0611256\pi\)
−0.656093 + 0.754680i \(0.727792\pi\)
\(558\) 0 0
\(559\) −18.2680 −0.772654
\(560\) −0.574404 0.994898i −0.0242730 0.0420421i
\(561\) 0 0
\(562\) 3.54082 0.149361
\(563\) 32.6963 1.37799 0.688993 0.724768i \(-0.258053\pi\)
0.688993 + 0.724768i \(0.258053\pi\)
\(564\) 0 0
\(565\) −8.88631 + 15.3915i −0.373850 + 0.647527i
\(566\) 16.6273 + 28.7993i 0.698896 + 1.21052i
\(567\) 0 0
\(568\) 19.6748 34.0777i 0.825535 1.42987i
\(569\) −20.7445 −0.869655 −0.434827 0.900514i \(-0.643191\pi\)
−0.434827 + 0.900514i \(0.643191\pi\)
\(570\) 0 0
\(571\) 16.9043 0.707421 0.353710 0.935355i \(-0.384920\pi\)
0.353710 + 0.935355i \(0.384920\pi\)
\(572\) −6.90517 + 11.9601i −0.288720 + 0.500077i
\(573\) 0 0
\(574\) −0.466753 0.808440i −0.0194819 0.0337436i
\(575\) −2.99513 + 5.18772i −0.124906 + 0.216343i
\(576\) 0 0
\(577\) −17.8528 −0.743221 −0.371610 0.928389i \(-0.621194\pi\)
−0.371610 + 0.928389i \(0.621194\pi\)
\(578\) 32.0364 1.33254
\(579\) 0 0
\(580\) −13.8639 24.0130i −0.575668 0.997087i
\(581\) −1.16693 −0.0484125
\(582\) 0 0
\(583\) −2.20018 3.81083i −0.0911222 0.157828i
\(584\) −22.6740 + 39.2724i −0.938255 + 1.62511i
\(585\) 0 0
\(586\) −20.7298 + 35.9050i −0.856340 + 1.48322i
\(587\) 9.49336 16.4430i 0.391833 0.678675i −0.600858 0.799355i \(-0.705174\pi\)
0.992691 + 0.120681i \(0.0385078\pi\)
\(588\) 0 0
\(589\) −8.85066 24.0063i −0.364685 0.989164i
\(590\) −31.5617 −1.29938
\(591\) 0 0
\(592\) −25.9672 + 44.9765i −1.06725 + 1.84852i
\(593\) 19.1067 + 33.0938i 0.784618 + 1.35900i 0.929227 + 0.369510i \(0.120474\pi\)
−0.144609 + 0.989489i \(0.546192\pi\)
\(594\) 0 0
\(595\) −0.211871 0.366971i −0.00868586 0.0150444i
\(596\) 63.2801 2.59206
\(597\) 0 0
\(598\) −11.0468 19.1337i −0.451739 0.782434i
\(599\) −19.8987 34.4656i −0.813041 1.40823i −0.910726 0.413010i \(-0.864477\pi\)
0.0976858 0.995217i \(-0.468856\pi\)
\(600\) 0 0
\(601\) 37.9672 1.54871 0.774357 0.632748i \(-0.218073\pi\)
0.774357 + 0.632748i \(0.218073\pi\)
\(602\) 0.776986 + 1.34578i 0.0316676 + 0.0548499i
\(603\) 0 0
\(604\) 17.2994 + 29.9634i 0.703902 + 1.21919i
\(605\) −5.71248 + 9.89431i −0.232245 + 0.402261i
\(606\) 0 0
\(607\) 13.4994 0.547924 0.273962 0.961740i \(-0.411666\pi\)
0.273962 + 0.961740i \(0.411666\pi\)
\(608\) 7.31748 8.79455i 0.296763 0.356666i
\(609\) 0 0
\(610\) −10.7330 + 18.5900i −0.434565 + 0.752688i
\(611\) 30.1928 52.2955i 1.22147 2.11565i
\(612\) 0 0
\(613\) −1.53078 + 2.65140i −0.0618278 + 0.107089i −0.895282 0.445499i \(-0.853026\pi\)
0.833455 + 0.552588i \(0.186360\pi\)
\(614\) −38.9915 67.5353i −1.57357 2.72550i
\(615\) 0 0
\(616\) 0.621584 0.0250443
\(617\) −5.51398 9.55050i −0.221985 0.384489i 0.733426 0.679769i \(-0.237920\pi\)
−0.955411 + 0.295281i \(0.904587\pi\)
\(618\) 0 0
\(619\) −7.94478 −0.319328 −0.159664 0.987171i \(-0.551041\pi\)
−0.159664 + 0.987171i \(0.551041\pi\)
\(620\) −26.6867 −1.07176
\(621\) 0 0
\(622\) 20.2121 35.0084i 0.810431 1.40371i
\(623\) −1.70240 2.94865i −0.0682054 0.118135i
\(624\) 0 0
\(625\) −4.56264 + 7.90272i −0.182505 + 0.316109i
\(626\) −24.9074 −0.995502
\(627\) 0 0
\(628\) 39.9113 1.59264
\(629\) −9.57809 + 16.5897i −0.381904 + 0.661476i
\(630\) 0 0
\(631\) −4.27495 7.40443i −0.170183 0.294766i 0.768301 0.640089i \(-0.221103\pi\)
−0.938484 + 0.345323i \(0.887769\pi\)
\(632\) −13.7062 + 23.7399i −0.545204 + 0.944321i
\(633\) 0 0
\(634\) −26.8951 −1.06814
\(635\) 3.82520 0.151798
\(636\) 0 0
\(637\) 19.7990 + 34.2930i 0.784467 + 1.35874i
\(638\) 8.71526 0.345040
\(639\) 0 0
\(640\) 8.86818 + 15.3601i 0.350545 + 0.607163i
\(641\) 17.3272 30.0116i 0.684384 1.18539i −0.289247 0.957255i \(-0.593405\pi\)
0.973630 0.228132i \(-0.0732619\pi\)
\(642\) 0 0
\(643\) 18.9184 32.7677i 0.746069 1.29223i −0.203624 0.979049i \(-0.565272\pi\)
0.949693 0.313181i \(-0.101395\pi\)
\(644\) −0.638865 + 1.10655i −0.0251748 + 0.0436040i
\(645\) 0 0
\(646\) 14.2513 17.1279i 0.560708 0.673890i
\(647\) 7.50137 0.294909 0.147455 0.989069i \(-0.452892\pi\)
0.147455 + 0.989069i \(0.452892\pi\)
\(648\) 0 0
\(649\) 3.37220 5.84083i 0.132371 0.229273i
\(650\) −27.3937 47.4472i −1.07447 1.86103i
\(651\) 0 0
\(652\) 9.31865 + 16.1404i 0.364947 + 0.632106i
\(653\) 25.0757 0.981287 0.490644 0.871360i \(-0.336762\pi\)
0.490644 + 0.871360i \(0.336762\pi\)
\(654\) 0 0
\(655\) −5.22556 9.05094i −0.204180 0.353649i
\(656\) −5.34930 9.26526i −0.208855 0.361748i
\(657\) 0 0
\(658\) −5.13672 −0.200250
\(659\) 7.74250 + 13.4104i 0.301605 + 0.522395i 0.976500 0.215519i \(-0.0691443\pi\)
−0.674895 + 0.737914i \(0.735811\pi\)
\(660\) 0 0
\(661\) 2.87978 + 4.98792i 0.112010 + 0.194008i 0.916581 0.399850i \(-0.130938\pi\)
−0.804570 + 0.593857i \(0.797604\pi\)
\(662\) −4.57794 + 7.92923i −0.177927 + 0.308178i
\(663\) 0 0
\(664\) −33.8629 −1.31414
\(665\) 0.890063 + 0.153134i 0.0345152 + 0.00593828i
\(666\) 0 0
\(667\) −4.73950 + 8.20906i −0.183514 + 0.317856i
\(668\) −36.4761 + 63.1785i −1.41130 + 2.44445i
\(669\) 0 0
\(670\) 9.01683 15.6176i 0.348351 0.603361i
\(671\) −2.29352 3.97249i −0.0885403 0.153356i
\(672\) 0 0
\(673\) −12.5871 −0.485198 −0.242599 0.970127i \(-0.578000\pi\)
−0.242599 + 0.970127i \(0.578000\pi\)
\(674\) −12.2339 21.1898i −0.471233 0.816200i
\(675\) 0 0
\(676\) 82.1651 3.16019
\(677\) −12.0664 −0.463749 −0.231875 0.972746i \(-0.574486\pi\)
−0.231875 + 0.972746i \(0.574486\pi\)
\(678\) 0 0
\(679\) −0.734582 + 1.27233i −0.0281907 + 0.0488277i
\(680\) −6.14824 10.6491i −0.235774 0.408373i
\(681\) 0 0
\(682\) 4.19400 7.26422i 0.160597 0.278161i
\(683\) 36.8458 1.40987 0.704933 0.709274i \(-0.250977\pi\)
0.704933 + 0.709274i \(0.250977\pi\)
\(684\) 0 0
\(685\) 24.0501 0.918908
\(686\) 3.37749 5.84998i 0.128953 0.223353i
\(687\) 0 0
\(688\) 8.90478 + 15.4235i 0.339492 + 0.588017i
\(689\) −21.8864 + 37.9084i −0.833807 + 1.44420i
\(690\) 0 0
\(691\) −41.0406 −1.56126 −0.780629 0.624995i \(-0.785101\pi\)
−0.780629 + 0.624995i \(0.785101\pi\)
\(692\) 32.2323 1.22529
\(693\) 0 0
\(694\) −3.05848 5.29744i −0.116098 0.201088i
\(695\) −19.8137 −0.751578
\(696\) 0 0
\(697\) −1.97311 3.41752i −0.0747368 0.129448i
\(698\) 12.6284 21.8730i 0.477992 0.827906i
\(699\) 0 0
\(700\) −1.58424 + 2.74399i −0.0598787 + 0.103713i
\(701\) 18.0662 31.2916i 0.682352 1.18187i −0.291909 0.956446i \(-0.594290\pi\)
0.974261 0.225423i \(-0.0723763\pi\)
\(702\) 0 0
\(703\) −14.1233 38.3079i −0.532672 1.44481i
\(704\) −2.58932 −0.0975887
\(705\) 0 0
\(706\) −12.4335 + 21.5354i −0.467939 + 0.810494i
\(707\) −0.700907 1.21401i −0.0263603 0.0456574i
\(708\) 0 0
\(709\) −14.4051 24.9503i −0.540994 0.937030i −0.998847 0.0480019i \(-0.984715\pi\)
0.457853 0.889028i \(-0.348619\pi\)
\(710\) 18.7436 0.703434
\(711\) 0 0
\(712\) −49.4017 85.5662i −1.85141 3.20673i
\(713\) 4.56153 + 7.90080i 0.170831 + 0.295887i
\(714\) 0 0
\(715\) −3.48065 −0.130169
\(716\) −49.9786 86.5655i −1.86779 3.23510i
\(717\) 0 0
\(718\) 0.282343 + 0.489032i 0.0105369 + 0.0182505i
\(719\) 2.58283 4.47360i 0.0963235 0.166837i −0.813837 0.581094i \(-0.802625\pi\)
0.910160 + 0.414256i \(0.135958\pi\)
\(720\) 0 0
\(721\) −0.919793 −0.0342549
\(722\) 8.63461 + 46.6979i 0.321347 + 1.73792i
\(723\) 0 0
\(724\) 5.19923 9.00532i 0.193228 0.334680i
\(725\) −11.7529 + 20.3566i −0.436492 + 0.756026i
\(726\) 0 0
\(727\) 5.32376 9.22103i 0.197447 0.341989i −0.750253 0.661151i \(-0.770068\pi\)
0.947700 + 0.319162i \(0.103401\pi\)
\(728\) −3.09162 5.35485i −0.114583 0.198464i
\(729\) 0 0
\(730\) −21.6008 −0.799482
\(731\) 3.28456 + 5.68902i 0.121484 + 0.210416i
\(732\) 0 0
\(733\) −31.4643 −1.16216 −0.581080 0.813846i \(-0.697370\pi\)
−0.581080 + 0.813846i \(0.697370\pi\)
\(734\) −15.4629 −0.570747
\(735\) 0 0
\(736\) −2.03968 + 3.53283i −0.0751837 + 0.130222i
\(737\) 1.92680 + 3.33732i 0.0709746 + 0.122932i
\(738\) 0 0
\(739\) −2.36895 + 4.10314i −0.0871433 + 0.150937i −0.906302 0.422630i \(-0.861107\pi\)
0.819159 + 0.573566i \(0.194440\pi\)
\(740\) −42.5849 −1.56545
\(741\) 0 0
\(742\) 3.72356 0.136696
\(743\) −21.0744 + 36.5020i −0.773145 + 1.33913i 0.162685 + 0.986678i \(0.447984\pi\)
−0.935831 + 0.352449i \(0.885349\pi\)
\(744\) 0 0
\(745\) 7.97432 + 13.8119i 0.292156 + 0.506030i
\(746\) 18.0312 31.2309i 0.660168 1.14344i
\(747\) 0 0
\(748\) 4.96616 0.181581
\(749\) −0.709245 −0.0259152
\(750\) 0 0
\(751\) 22.5468 + 39.0522i 0.822745 + 1.42504i 0.903630 + 0.428313i \(0.140892\pi\)
−0.0808849 + 0.996723i \(0.525775\pi\)
\(752\) −58.8703 −2.14678
\(753\) 0 0
\(754\) −43.3478 75.0806i −1.57863 2.73428i
\(755\) −4.36000 + 7.55174i −0.158677 + 0.274836i
\(756\) 0 0
\(757\) 21.0271 36.4201i 0.764244 1.32371i −0.176401 0.984318i \(-0.556446\pi\)
0.940645 0.339391i \(-0.110221\pi\)
\(758\) −20.8348 + 36.0869i −0.756753 + 1.31074i
\(759\) 0 0
\(760\) 25.8285 + 4.44376i 0.936899 + 0.161192i
\(761\) 4.42852 0.160534 0.0802668 0.996773i \(-0.474423\pi\)
0.0802668 + 0.996773i \(0.474423\pi\)
\(762\) 0 0
\(763\) 1.19416 2.06835i 0.0432316 0.0748793i
\(764\) 33.6536 + 58.2898i 1.21755 + 2.10885i
\(765\) 0 0
\(766\) −37.1221 64.2974i −1.34128 2.32316i
\(767\) −67.0905 −2.42250
\(768\) 0 0
\(769\) −2.09080 3.62136i −0.0753960 0.130590i 0.825862 0.563872i \(-0.190689\pi\)
−0.901258 + 0.433282i \(0.857355\pi\)
\(770\) 0.148041 + 0.256415i 0.00533504 + 0.00924055i
\(771\) 0 0
\(772\) −76.5028 −2.75340
\(773\) −10.7251 18.5764i −0.385754 0.668146i 0.606119 0.795374i \(-0.292725\pi\)
−0.991874 + 0.127228i \(0.959392\pi\)
\(774\) 0 0
\(775\) 11.3116 + 19.5922i 0.406324 + 0.703773i
\(776\) −21.3167 + 36.9215i −0.765224 + 1.32541i
\(777\) 0 0
\(778\) −65.8754 −2.36175
\(779\) 8.28896 + 1.42610i 0.296983 + 0.0510954i
\(780\) 0 0
\(781\) −2.00265 + 3.46870i −0.0716605 + 0.124120i
\(782\) −3.97241 + 6.88041i −0.142053 + 0.246043i
\(783\) 0 0
\(784\) 19.3022 33.4324i 0.689364 1.19401i
\(785\) 5.02947 + 8.71129i 0.179509 + 0.310919i
\(786\) 0 0
\(787\) −0.147232 −0.00524825 −0.00262412 0.999997i \(-0.500835\pi\)
−0.00262412 + 0.999997i \(0.500835\pi\)
\(788\) 32.0379 + 55.4913i 1.14130 + 1.97680i
\(789\) 0 0
\(790\) −13.0575 −0.464565
\(791\) 3.21369 0.114266
\(792\) 0 0
\(793\) −22.8149 + 39.5166i −0.810182 + 1.40328i
\(794\) −13.8505 23.9897i −0.491535 0.851364i
\(795\) 0 0
\(796\) 37.4648 64.8910i 1.32790 2.30000i
\(797\) −9.20825 −0.326173 −0.163087 0.986612i \(-0.552145\pi\)
−0.163087 + 0.986612i \(0.552145\pi\)
\(798\) 0 0
\(799\) −21.7145 −0.768203
\(800\) −5.05795 + 8.76063i −0.178826 + 0.309735i
\(801\) 0 0
\(802\) 32.7160 + 56.6657i 1.15524 + 2.00094i
\(803\) 2.30793 3.99746i 0.0814452 0.141067i
\(804\) 0 0
\(805\) −0.322029 −0.0113500
\(806\) −83.4402 −2.93905
\(807\) 0 0
\(808\) −20.3395 35.2290i −0.715540 1.23935i
\(809\) −44.5084 −1.56483 −0.782417 0.622755i \(-0.786013\pi\)
−0.782417 + 0.622755i \(0.786013\pi\)
\(810\) 0 0
\(811\) −9.73582 16.8629i −0.341871 0.592137i 0.642909 0.765942i \(-0.277727\pi\)
−0.984780 + 0.173805i \(0.944394\pi\)
\(812\) −2.50691 + 4.34209i −0.0879752 + 0.152378i
\(813\) 0 0
\(814\) 6.69253 11.5918i 0.234573 0.406292i
\(815\) −2.34860 + 4.06789i −0.0822679 + 0.142492i
\(816\) 0 0
\(817\) −13.7983 2.37398i −0.482742 0.0830550i
\(818\) −27.0363 −0.945302
\(819\) 0 0
\(820\) 4.38630 7.59729i 0.153176 0.265309i
\(821\) −1.67892 2.90798i −0.0585949 0.101489i 0.835240 0.549886i \(-0.185329\pi\)
−0.893835 + 0.448396i \(0.851995\pi\)
\(822\) 0 0
\(823\) 16.4823 + 28.5481i 0.574535 + 0.995125i 0.996092 + 0.0883224i \(0.0281506\pi\)
−0.421557 + 0.906802i \(0.638516\pi\)
\(824\) −26.6913 −0.929834
\(825\) 0 0
\(826\) 2.85354 + 4.94247i 0.0992872 + 0.171970i
\(827\) 19.6587 + 34.0498i 0.683599 + 1.18403i 0.973875 + 0.227086i \(0.0729198\pi\)
−0.290275 + 0.956943i \(0.593747\pi\)
\(828\) 0 0
\(829\) −34.4755 −1.19738 −0.598692 0.800980i \(-0.704313\pi\)
−0.598692 + 0.800980i \(0.704313\pi\)
\(830\) −8.06506 13.9691i −0.279942 0.484874i
\(831\) 0 0
\(832\) 12.8787 + 22.3066i 0.446489 + 0.773342i
\(833\) 7.11968 12.3316i 0.246682 0.427266i
\(834\) 0 0
\(835\) −18.3863 −0.636284
\(836\) −6.76991 + 8.13645i −0.234142 + 0.281405i
\(837\) 0 0
\(838\) 15.6812 27.1606i 0.541697 0.938247i
\(839\) −15.2482 + 26.4107i −0.526426 + 0.911797i 0.473100 + 0.881009i \(0.343135\pi\)
−0.999526 + 0.0307883i \(0.990198\pi\)
\(840\) 0 0
\(841\) −4.09782 + 7.09764i −0.141304 + 0.244746i
\(842\) 9.93839 + 17.2138i 0.342500 + 0.593227i
\(843\) 0 0
\(844\) 67.2834 2.31599
\(845\) 10.3541 + 17.9339i 0.356193 + 0.616944i
\(846\) 0 0
\(847\) 2.06589 0.0709848
\(848\) 42.6744 1.46545
\(849\) 0 0
\(850\) −9.85068 + 17.0619i −0.337876 + 0.585218i
\(851\) 7.27901 + 12.6076i 0.249521 + 0.432184i
\(852\) 0 0
\(853\) −11.9320 + 20.6669i −0.408545 + 0.707621i −0.994727 0.102558i \(-0.967297\pi\)
0.586182 + 0.810180i \(0.300631\pi\)
\(854\) 3.88152 0.132823
\(855\) 0 0
\(856\) −20.5814 −0.703458
\(857\) 17.7312 30.7114i 0.605688 1.04908i −0.386255 0.922392i \(-0.626231\pi\)
0.991942 0.126690i \(-0.0404353\pi\)
\(858\) 0 0
\(859\) 17.8160 + 30.8582i 0.607875 + 1.05287i 0.991590 + 0.129418i \(0.0413110\pi\)
−0.383715 + 0.923451i \(0.625356\pi\)
\(860\) −7.30170 + 12.6469i −0.248986 + 0.431256i
\(861\) 0 0
\(862\) 2.58117 0.0879151
\(863\) −25.5558 −0.869931 −0.434965 0.900447i \(-0.643239\pi\)
−0.434965 + 0.900447i \(0.643239\pi\)
\(864\) 0 0
\(865\) 4.06179 + 7.03522i 0.138105 + 0.239205i
\(866\) 41.1203 1.39733
\(867\) 0 0
\(868\) 2.41277 + 4.17905i 0.0818949 + 0.141846i
\(869\) 1.39513 2.41643i 0.0473264 0.0819717i
\(870\) 0 0
\(871\) 19.1670 33.1982i 0.649448 1.12488i
\(872\) 34.6531 60.0210i 1.17350 2.03257i
\(873\) 0 0
\(874\) −5.85750 15.8878i −0.198133 0.537412i
\(875\) −1.83453 −0.0620185
\(876\) 0 0
\(877\) 4.75134 8.22956i 0.160441 0.277892i −0.774586 0.632469i \(-0.782042\pi\)
0.935027 + 0.354577i \(0.115375\pi\)
\(878\) −31.1473 53.9487i −1.05117 1.82068i
\(879\) 0 0
\(880\) 1.69665 + 2.93869i 0.0571941 + 0.0990631i
\(881\) 0.392087 0.0132097 0.00660487 0.999978i \(-0.497898\pi\)
0.00660487 + 0.999978i \(0.497898\pi\)
\(882\) 0 0
\(883\) 2.32394 + 4.02518i 0.0782068 + 0.135458i 0.902476 0.430739i \(-0.141747\pi\)
−0.824269 + 0.566198i \(0.808414\pi\)
\(884\) −24.7006 42.7827i −0.830771 1.43894i
\(885\) 0 0
\(886\) 1.74382 0.0585847
\(887\) 19.4700 + 33.7231i 0.653740 + 1.13231i 0.982208 + 0.187796i \(0.0601344\pi\)
−0.328468 + 0.944515i \(0.606532\pi\)
\(888\) 0 0
\(889\) −0.345841 0.599014i −0.0115991 0.0200903i
\(890\) 23.5318 40.7582i 0.788787 1.36622i
\(891\) 0 0
\(892\) 67.8861 2.27299
\(893\) 29.6014 35.5766i 0.990574 1.19053i
\(894\) 0 0
\(895\) 12.5962 21.8173i 0.421045 0.729271i
\(896\) 1.60356 2.77746i 0.0535713 0.0927883i
\(897\) 0 0
\(898\) −24.6479 + 42.6914i −0.822512 + 1.42463i
\(899\) 17.8995 + 31.0028i 0.596981 + 1.03400i
\(900\) 0 0
\(901\) 15.7406 0.524396
\(902\) 1.37868 + 2.38794i 0.0459049 + 0.0795096i
\(903\) 0 0
\(904\) 93.2573 3.10169
\(905\) 2.62074 0.0871165
\(906\) 0 0
\(907\) 21.6183 37.4440i 0.717823 1.24331i −0.244037 0.969766i \(-0.578472\pi\)
0.961860 0.273541i \(-0.0881948\pi\)
\(908\) −20.1678 34.9316i −0.669291 1.15925i
\(909\) 0 0
\(910\) 1.47265 2.55070i 0.0488179 0.0845550i
\(911\) 36.6276 1.21353 0.606763 0.794883i \(-0.292468\pi\)
0.606763 + 0.794883i \(0.292468\pi\)
\(912\) 0 0
\(913\) 3.44683 0.114074
\(914\) 25.9125 44.8818i 0.857110 1.48456i
\(915\) 0 0
\(916\) 26.4646 + 45.8380i 0.874415 + 1.51453i
\(917\) −0.944899 + 1.63661i −0.0312033 + 0.0540457i
\(918\) 0 0
\(919\) −25.3513 −0.836262 −0.418131 0.908387i \(-0.637315\pi\)
−0.418131 + 0.908387i \(0.637315\pi\)
\(920\) −9.34489 −0.308092
\(921\) 0 0
\(922\) 27.4823 + 47.6008i 0.905082 + 1.56765i
\(923\) 39.8430 1.31145
\(924\) 0 0
\(925\) 18.0503 + 31.2641i 0.593491 + 1.02796i
\(926\) −12.6557 + 21.9203i −0.415891 + 0.720345i
\(927\) 0 0
\(928\) −8.00372 + 13.8628i −0.262735 + 0.455070i
\(929\) −11.9781 + 20.7467i −0.392989 + 0.680676i −0.992842 0.119433i \(-0.961892\pi\)
0.599854 + 0.800110i \(0.295226\pi\)
\(930\) 0 0
\(931\) 10.4983 + 28.4754i 0.344068 + 0.933242i
\(932\) −3.38280 −0.110807
\(933\) 0 0
\(934\) −47.1811 + 81.7201i −1.54381 + 2.67396i
\(935\) 0.625815 + 1.08394i 0.0204664 + 0.0354488i
\(936\) 0 0
\(937\) −3.49569 6.05471i −0.114199 0.197799i 0.803260 0.595628i \(-0.203097\pi\)
−0.917459 + 0.397830i \(0.869764\pi\)
\(938\) −3.26089 −0.106472
\(939\) 0 0
\(940\) −24.1361 41.8049i −0.787232 1.36353i
\(941\) −18.4128 31.8919i −0.600241 1.03965i −0.992784 0.119914i \(-0.961738\pi\)
0.392543 0.919733i \(-0.371595\pi\)
\(942\) 0 0
\(943\) −2.99899 −0.0976604
\(944\) 32.7034 + 56.6440i 1.06441 + 1.84360i
\(945\) 0 0
\(946\) −2.29503 3.97511i −0.0746178 0.129242i
\(947\) 6.62804 11.4801i 0.215382 0.373053i −0.738009 0.674791i \(-0.764234\pi\)
0.953391 + 0.301738i \(0.0975669\pi\)
\(948\) 0 0
\(949\) −45.9166 −1.49052
\(950\) −14.5253 39.3981i −0.471263 1.27824i
\(951\) 0 0
\(952\) −1.11174 + 1.92559i −0.0360317 + 0.0624087i
\(953\) 11.9032 20.6169i 0.385582 0.667847i −0.606268 0.795260i \(-0.707334\pi\)
0.991850 + 0.127413i \(0.0406675\pi\)
\(954\) 0 0
\(955\) −8.48179 + 14.6909i −0.274464 + 0.475386i
\(956\) 16.1635 + 27.9959i 0.522763 + 0.905453i
\(957\) 0 0
\(958\) −106.921 −3.45448
\(959\) −2.17440 3.76617i −0.0702151 0.121616i
\(960\) 0 0
\(961\) 3.45467 0.111441
\(962\) −133.149 −4.29289
\(963\) 0 0
\(964\) 59.0935 102.353i 1.90327 3.29657i
\(965\) −9.64059 16.6980i −0.310341 0.537527i
\(966\) 0 0
\(967\) −18.2018 + 31.5265i −0.585332 + 1.01382i 0.409502 + 0.912309i \(0.365702\pi\)
−0.994834 + 0.101515i \(0.967631\pi\)
\(968\) 59.9496 1.92685
\(969\) 0 0
\(970\) −20.3078 −0.652043
\(971\) 10.1594 17.5965i 0.326029 0.564699i −0.655691 0.755029i \(-0.727623\pi\)
0.981720 + 0.190330i \(0.0609559\pi\)
\(972\) 0 0
\(973\) 1.79138 + 3.10277i 0.0574291 + 0.0994701i
\(974\) 51.0843 88.4806i 1.63685 2.83510i
\(975\) 0 0
\(976\) 44.4848 1.42392
\(977\) 43.5229 1.39242 0.696210 0.717838i \(-0.254868\pi\)
0.696210 + 0.717838i \(0.254868\pi\)
\(978\) 0 0
\(979\) 5.02849 + 8.70960i 0.160711 + 0.278360i
\(980\) 31.6547 1.01117
\(981\) 0 0
\(982\) 36.9085 + 63.9274i 1.17780 + 2.04001i
\(983\) −1.90199 + 3.29435i −0.0606642 + 0.105073i −0.894762 0.446542i \(-0.852655\pi\)
0.834098 + 0.551616i \(0.185989\pi\)
\(984\) 0 0
\(985\) −8.07459 + 13.9856i −0.257278 + 0.445618i
\(986\) −15.5877 + 26.9988i −0.496415 + 0.859816i
\(987\) 0 0
\(988\) 103.766 + 17.8528i 3.30125 + 0.567974i
\(989\) 4.99230 0.158746
\(990\) 0 0
\(991\) −19.5767 + 33.9079i −0.621875 + 1.07712i 0.367262 + 0.930118i \(0.380295\pi\)
−0.989136 + 0.147001i \(0.953038\pi\)
\(992\) 7.70318 + 13.3423i 0.244576 + 0.423618i
\(993\) 0 0
\(994\) −1.69463 2.93519i −0.0537504 0.0930984i
\(995\) 18.8847 0.598684
\(996\) 0 0
\(997\) 18.7197 + 32.4234i 0.592858 + 1.02686i 0.993845 + 0.110776i \(0.0353336\pi\)
−0.400988 + 0.916083i \(0.631333\pi\)
\(998\) 13.5048 + 23.3911i 0.427488 + 0.740431i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.f.h.163.6 yes 12
3.2 odd 2 513.2.f.f.163.1 12
19.7 even 3 inner 513.2.f.h.406.6 yes 12
19.8 odd 6 9747.2.a.br.1.6 6
19.11 even 3 9747.2.a.bl.1.1 6
57.8 even 6 9747.2.a.bm.1.1 6
57.11 odd 6 9747.2.a.bs.1.6 6
57.26 odd 6 513.2.f.f.406.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.f.f.163.1 12 3.2 odd 2
513.2.f.f.406.1 yes 12 57.26 odd 6
513.2.f.h.163.6 yes 12 1.1 even 1 trivial
513.2.f.h.406.6 yes 12 19.7 even 3 inner
9747.2.a.bl.1.1 6 19.11 even 3
9747.2.a.bm.1.1 6 57.8 even 6
9747.2.a.br.1.6 6 19.8 odd 6
9747.2.a.bs.1.6 6 57.11 odd 6