Properties

Label 513.2.f.h.163.1
Level $513$
Weight $2$
Character 513.163
Analytic conductor $4.096$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(163,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-3,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 8x^{10} - x^{9} + 41x^{8} - 7x^{7} + 91x^{6} + 9x^{5} + 135x^{4} - 12x^{3} + 45x^{2} + 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(-0.963952 - 1.66961i\) of defining polynomial
Character \(\chi\) \(=\) 513.163
Dual form 513.2.f.h.406.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.963952 + 1.66961i) q^{2} +(-0.858406 - 1.48680i) q^{4} +(0.100478 - 0.174033i) q^{5} +3.71133 q^{7} -0.545959 q^{8} +(0.193712 + 0.335518i) q^{10} +1.10424 q^{11} +(0.126543 + 0.219179i) q^{13} +(-3.57755 + 6.19649i) q^{14} +(2.24309 - 3.88515i) q^{16} +(1.77914 - 3.08156i) q^{17} +(4.04150 - 1.63288i) q^{19} -0.345003 q^{20} +(-1.06443 + 1.84365i) q^{22} +(3.67802 + 6.37053i) q^{23} +(2.47981 + 4.29515i) q^{25} -0.487925 q^{26} +(-3.18583 - 5.51802i) q^{28} +(0.934935 + 1.61935i) q^{29} -4.12338 q^{31} +(3.77850 + 6.54456i) q^{32} +(3.43001 + 5.94095i) q^{34} +(0.372907 - 0.645893i) q^{35} -7.85784 q^{37} +(-1.16954 + 8.32176i) q^{38} +(-0.0548567 + 0.0950146i) q^{40} +(-1.39952 + 2.42404i) q^{41} +(-1.21088 + 2.09730i) q^{43} +(-0.947882 - 1.64178i) q^{44} -14.1818 q^{46} +(1.26067 + 2.18354i) q^{47} +6.77400 q^{49} -9.56166 q^{50} +(0.217250 - 0.376289i) q^{52} +(-2.85436 - 4.94389i) q^{53} +(0.110951 - 0.192173i) q^{55} -2.02624 q^{56} -3.60493 q^{58} +(7.21720 - 12.5005i) q^{59} +(2.47619 + 4.28889i) q^{61} +(3.97474 - 6.88445i) q^{62} -5.59682 q^{64} +0.0508590 q^{65} +(2.59984 + 4.50306i) q^{67} -6.10889 q^{68} +(0.718928 + 1.24522i) q^{70} +(0.350284 - 0.606709i) q^{71} +(-0.444681 + 0.770211i) q^{73} +(7.57458 - 13.1196i) q^{74} +(-5.89701 - 4.60724i) q^{76} +4.09819 q^{77} +(-6.09274 + 10.5529i) q^{79} +(-0.450762 - 0.780742i) q^{80} +(-2.69814 - 4.67332i) q^{82} -16.5557 q^{83} +(-0.357528 - 0.619256i) q^{85} +(-2.33446 - 4.04340i) q^{86} -0.602867 q^{88} +(-0.534540 - 0.925851i) q^{89} +(0.469643 + 0.813445i) q^{91} +(6.31448 - 10.9370i) q^{92} -4.86089 q^{94} +(0.121907 - 0.867421i) q^{95} +(3.19691 - 5.53720i) q^{97} +(-6.52981 + 11.3100i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 3 q^{4} + 5 q^{5} + 2 q^{7} - 12 q^{8} + q^{10} - 4 q^{11} - 5 q^{13} + 2 q^{14} + 3 q^{16} + 10 q^{17} - 9 q^{19} - 2 q^{20} - 4 q^{22} + 3 q^{23} - 5 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.963952 + 1.66961i −0.681617 + 1.18060i 0.292870 + 0.956152i \(0.405390\pi\)
−0.974487 + 0.224443i \(0.927944\pi\)
\(3\) 0 0
\(4\) −0.858406 1.48680i −0.429203 0.743402i
\(5\) 0.100478 0.174033i 0.0449350 0.0778298i −0.842683 0.538410i \(-0.819025\pi\)
0.887618 + 0.460580i \(0.152359\pi\)
\(6\) 0 0
\(7\) 3.71133 1.40275 0.701376 0.712791i \(-0.252569\pi\)
0.701376 + 0.712791i \(0.252569\pi\)
\(8\) −0.545959 −0.193026
\(9\) 0 0
\(10\) 0.193712 + 0.335518i 0.0612570 + 0.106100i
\(11\) 1.10424 0.332939 0.166470 0.986047i \(-0.446763\pi\)
0.166470 + 0.986047i \(0.446763\pi\)
\(12\) 0 0
\(13\) 0.126543 + 0.219179i 0.0350967 + 0.0607892i 0.883040 0.469297i \(-0.155493\pi\)
−0.847944 + 0.530087i \(0.822159\pi\)
\(14\) −3.57755 + 6.19649i −0.956140 + 1.65608i
\(15\) 0 0
\(16\) 2.24309 3.88515i 0.560773 0.971287i
\(17\) 1.77914 3.08156i 0.431504 0.747388i −0.565499 0.824749i \(-0.691316\pi\)
0.997003 + 0.0773616i \(0.0246496\pi\)
\(18\) 0 0
\(19\) 4.04150 1.63288i 0.927183 0.374608i
\(20\) −0.345003 −0.0771450
\(21\) 0 0
\(22\) −1.06443 + 1.84365i −0.226937 + 0.393067i
\(23\) 3.67802 + 6.37053i 0.766921 + 1.32835i 0.939225 + 0.343303i \(0.111546\pi\)
−0.172304 + 0.985044i \(0.555121\pi\)
\(24\) 0 0
\(25\) 2.47981 + 4.29515i 0.495962 + 0.859031i
\(26\) −0.487925 −0.0956899
\(27\) 0 0
\(28\) −3.18583 5.51802i −0.602066 1.04281i
\(29\) 0.934935 + 1.61935i 0.173613 + 0.300707i 0.939680 0.342054i \(-0.111122\pi\)
−0.766067 + 0.642760i \(0.777789\pi\)
\(30\) 0 0
\(31\) −4.12338 −0.740581 −0.370291 0.928916i \(-0.620742\pi\)
−0.370291 + 0.928916i \(0.620742\pi\)
\(32\) 3.77850 + 6.54456i 0.667951 + 1.15693i
\(33\) 0 0
\(34\) 3.43001 + 5.94095i 0.588241 + 1.01886i
\(35\) 0.372907 0.645893i 0.0630327 0.109176i
\(36\) 0 0
\(37\) −7.85784 −1.29182 −0.645911 0.763413i \(-0.723522\pi\)
−0.645911 + 0.763413i \(0.723522\pi\)
\(38\) −1.16954 + 8.32176i −0.189724 + 1.34997i
\(39\) 0 0
\(40\) −0.0548567 + 0.0950146i −0.00867361 + 0.0150231i
\(41\) −1.39952 + 2.42404i −0.218569 + 0.378572i −0.954371 0.298625i \(-0.903472\pi\)
0.735802 + 0.677197i \(0.236805\pi\)
\(42\) 0 0
\(43\) −1.21088 + 2.09730i −0.184657 + 0.319836i −0.943461 0.331484i \(-0.892451\pi\)
0.758804 + 0.651319i \(0.225784\pi\)
\(44\) −0.947882 1.64178i −0.142899 0.247508i
\(45\) 0 0
\(46\) −14.1818 −2.09099
\(47\) 1.26067 + 2.18354i 0.183887 + 0.318502i 0.943201 0.332223i \(-0.107799\pi\)
−0.759314 + 0.650725i \(0.774465\pi\)
\(48\) 0 0
\(49\) 6.77400 0.967714
\(50\) −9.56166 −1.35222
\(51\) 0 0
\(52\) 0.217250 0.376289i 0.0301272 0.0521818i
\(53\) −2.85436 4.94389i −0.392076 0.679096i 0.600647 0.799514i \(-0.294910\pi\)
−0.992723 + 0.120419i \(0.961576\pi\)
\(54\) 0 0
\(55\) 0.110951 0.192173i 0.0149606 0.0259126i
\(56\) −2.02624 −0.270767
\(57\) 0 0
\(58\) −3.60493 −0.473350
\(59\) 7.21720 12.5005i 0.939599 1.62743i 0.173378 0.984855i \(-0.444532\pi\)
0.766221 0.642577i \(-0.222135\pi\)
\(60\) 0 0
\(61\) 2.47619 + 4.28889i 0.317044 + 0.549136i 0.979870 0.199637i \(-0.0639765\pi\)
−0.662826 + 0.748773i \(0.730643\pi\)
\(62\) 3.97474 6.88445i 0.504793 0.874326i
\(63\) 0 0
\(64\) −5.59682 −0.699602
\(65\) 0.0508590 0.00630828
\(66\) 0 0
\(67\) 2.59984 + 4.50306i 0.317621 + 0.550136i 0.979991 0.199041i \(-0.0637826\pi\)
−0.662370 + 0.749177i \(0.730449\pi\)
\(68\) −6.10889 −0.740812
\(69\) 0 0
\(70\) 0.718928 + 1.24522i 0.0859284 + 0.148832i
\(71\) 0.350284 0.606709i 0.0415710 0.0720031i −0.844491 0.535569i \(-0.820097\pi\)
0.886062 + 0.463566i \(0.153430\pi\)
\(72\) 0 0
\(73\) −0.444681 + 0.770211i −0.0520460 + 0.0901463i −0.890875 0.454249i \(-0.849908\pi\)
0.838829 + 0.544396i \(0.183241\pi\)
\(74\) 7.57458 13.1196i 0.880527 1.52512i
\(75\) 0 0
\(76\) −5.89701 4.60724i −0.676434 0.528487i
\(77\) 4.09819 0.467032
\(78\) 0 0
\(79\) −6.09274 + 10.5529i −0.685487 + 1.18730i 0.287797 + 0.957691i \(0.407077\pi\)
−0.973284 + 0.229606i \(0.926256\pi\)
\(80\) −0.450762 0.780742i −0.0503967 0.0872896i
\(81\) 0 0
\(82\) −2.69814 4.67332i −0.297960 0.516082i
\(83\) −16.5557 −1.81723 −0.908615 0.417636i \(-0.862859\pi\)
−0.908615 + 0.417636i \(0.862859\pi\)
\(84\) 0 0
\(85\) −0.357528 0.619256i −0.0387793 0.0671678i
\(86\) −2.33446 4.04340i −0.251731 0.436011i
\(87\) 0 0
\(88\) −0.602867 −0.0642658
\(89\) −0.534540 0.925851i −0.0566612 0.0981400i 0.836304 0.548267i \(-0.184712\pi\)
−0.892965 + 0.450127i \(0.851379\pi\)
\(90\) 0 0
\(91\) 0.469643 + 0.813445i 0.0492319 + 0.0852722i
\(92\) 6.31448 10.9370i 0.658330 1.14026i
\(93\) 0 0
\(94\) −4.86089 −0.501363
\(95\) 0.121907 0.867421i 0.0125074 0.0889955i
\(96\) 0 0
\(97\) 3.19691 5.53720i 0.324597 0.562218i −0.656834 0.754035i \(-0.728105\pi\)
0.981431 + 0.191817i \(0.0614381\pi\)
\(98\) −6.52981 + 11.3100i −0.659610 + 1.14248i
\(99\) 0 0
\(100\) 4.25737 7.37397i 0.425737 0.737397i
\(101\) 2.03917 + 3.53195i 0.202905 + 0.351442i 0.949463 0.313878i \(-0.101628\pi\)
−0.746558 + 0.665320i \(0.768295\pi\)
\(102\) 0 0
\(103\) 14.6274 1.44128 0.720641 0.693308i \(-0.243848\pi\)
0.720641 + 0.693308i \(0.243848\pi\)
\(104\) −0.0690872 0.119662i −0.00677455 0.0117339i
\(105\) 0 0
\(106\) 11.0058 1.06898
\(107\) 10.6993 1.03434 0.517170 0.855883i \(-0.326985\pi\)
0.517170 + 0.855883i \(0.326985\pi\)
\(108\) 0 0
\(109\) 4.93290 8.54403i 0.472486 0.818370i −0.527018 0.849854i \(-0.676690\pi\)
0.999504 + 0.0314842i \(0.0100234\pi\)
\(110\) 0.213903 + 0.370491i 0.0203949 + 0.0353249i
\(111\) 0 0
\(112\) 8.32486 14.4191i 0.786625 1.36247i
\(113\) 15.0356 1.41443 0.707213 0.707001i \(-0.249952\pi\)
0.707213 + 0.707001i \(0.249952\pi\)
\(114\) 0 0
\(115\) 1.47824 0.137847
\(116\) 1.60511 2.78013i 0.149031 0.258128i
\(117\) 0 0
\(118\) 13.9141 + 24.0999i 1.28089 + 2.21857i
\(119\) 6.60298 11.4367i 0.605294 1.04840i
\(120\) 0 0
\(121\) −9.78066 −0.889151
\(122\) −9.54772 −0.864410
\(123\) 0 0
\(124\) 3.53954 + 6.13066i 0.317860 + 0.550549i
\(125\) 2.00144 0.179014
\(126\) 0 0
\(127\) −8.25515 14.2983i −0.732526 1.26877i −0.955800 0.294017i \(-0.905008\pi\)
0.223274 0.974756i \(-0.428325\pi\)
\(128\) −2.16194 + 3.74460i −0.191091 + 0.330979i
\(129\) 0 0
\(130\) −0.0490256 + 0.0849149i −0.00429983 + 0.00744753i
\(131\) 3.81895 6.61462i 0.333663 0.577922i −0.649564 0.760307i \(-0.725048\pi\)
0.983227 + 0.182385i \(0.0583818\pi\)
\(132\) 0 0
\(133\) 14.9994 6.06015i 1.30061 0.525482i
\(134\) −10.0245 −0.865984
\(135\) 0 0
\(136\) −0.971336 + 1.68240i −0.0832914 + 0.144265i
\(137\) 1.09192 + 1.89126i 0.0932888 + 0.161581i 0.908893 0.417029i \(-0.136929\pi\)
−0.815604 + 0.578610i \(0.803595\pi\)
\(138\) 0 0
\(139\) −8.45796 14.6496i −0.717395 1.24256i −0.962029 0.272948i \(-0.912001\pi\)
0.244634 0.969615i \(-0.421332\pi\)
\(140\) −1.28042 −0.108215
\(141\) 0 0
\(142\) 0.675313 + 1.16968i 0.0566710 + 0.0981571i
\(143\) 0.139733 + 0.242025i 0.0116851 + 0.0202391i
\(144\) 0 0
\(145\) 0.375761 0.0312052
\(146\) −0.857303 1.48489i −0.0709509 0.122891i
\(147\) 0 0
\(148\) 6.74522 + 11.6831i 0.554454 + 0.960342i
\(149\) 10.6794 18.4973i 0.874890 1.51535i 0.0180106 0.999838i \(-0.494267\pi\)
0.856880 0.515517i \(-0.172400\pi\)
\(150\) 0 0
\(151\) −16.0232 −1.30395 −0.651975 0.758240i \(-0.726059\pi\)
−0.651975 + 0.758240i \(0.726059\pi\)
\(152\) −2.20649 + 0.891483i −0.178970 + 0.0723088i
\(153\) 0 0
\(154\) −3.95045 + 6.84239i −0.318337 + 0.551375i
\(155\) −0.414308 + 0.717603i −0.0332780 + 0.0576393i
\(156\) 0 0
\(157\) −10.5440 + 18.2627i −0.841502 + 1.45752i 0.0471233 + 0.998889i \(0.484995\pi\)
−0.888625 + 0.458635i \(0.848339\pi\)
\(158\) −11.7462 20.3450i −0.934478 1.61856i
\(159\) 0 0
\(160\) 1.51862 0.120058
\(161\) 13.6504 + 23.6432i 1.07580 + 1.86334i
\(162\) 0 0
\(163\) 16.6930 1.30749 0.653747 0.756713i \(-0.273196\pi\)
0.653747 + 0.756713i \(0.273196\pi\)
\(164\) 4.80543 0.375241
\(165\) 0 0
\(166\) 15.9589 27.6417i 1.23865 2.14541i
\(167\) −7.56635 13.1053i −0.585502 1.01412i −0.994813 0.101724i \(-0.967564\pi\)
0.409311 0.912395i \(-0.365769\pi\)
\(168\) 0 0
\(169\) 6.46797 11.2029i 0.497536 0.861758i
\(170\) 1.37856 0.105731
\(171\) 0 0
\(172\) 4.15770 0.317022
\(173\) 2.50992 4.34730i 0.190825 0.330519i −0.754699 0.656072i \(-0.772217\pi\)
0.945524 + 0.325552i \(0.105550\pi\)
\(174\) 0 0
\(175\) 9.20340 + 15.9408i 0.695711 + 1.20501i
\(176\) 2.47690 4.29012i 0.186703 0.323380i
\(177\) 0 0
\(178\) 2.06108 0.154485
\(179\) −24.1826 −1.80749 −0.903747 0.428066i \(-0.859195\pi\)
−0.903747 + 0.428066i \(0.859195\pi\)
\(180\) 0 0
\(181\) −5.09176 8.81918i −0.378467 0.655524i 0.612372 0.790570i \(-0.290215\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(182\) −1.81085 −0.134229
\(183\) 0 0
\(184\) −2.00805 3.47804i −0.148035 0.256405i
\(185\) −0.789539 + 1.36752i −0.0580481 + 0.100542i
\(186\) 0 0
\(187\) 1.96459 3.40277i 0.143665 0.248835i
\(188\) 2.16433 3.74873i 0.157850 0.273404i
\(189\) 0 0
\(190\) 1.33074 + 1.03969i 0.0965424 + 0.0754270i
\(191\) −17.5661 −1.27104 −0.635521 0.772084i \(-0.719215\pi\)
−0.635521 + 0.772084i \(0.719215\pi\)
\(192\) 0 0
\(193\) −9.82521 + 17.0178i −0.707234 + 1.22497i 0.258645 + 0.965972i \(0.416724\pi\)
−0.965879 + 0.258993i \(0.916609\pi\)
\(194\) 6.16333 + 10.6752i 0.442501 + 0.766434i
\(195\) 0 0
\(196\) −5.81484 10.0716i −0.415346 0.719400i
\(197\) 11.7871 0.839796 0.419898 0.907571i \(-0.362066\pi\)
0.419898 + 0.907571i \(0.362066\pi\)
\(198\) 0 0
\(199\) −8.67627 15.0277i −0.615045 1.06529i −0.990377 0.138398i \(-0.955805\pi\)
0.375332 0.926890i \(-0.377529\pi\)
\(200\) −1.35387 2.34498i −0.0957333 0.165815i
\(201\) 0 0
\(202\) −7.86265 −0.553214
\(203\) 3.46986 + 6.00997i 0.243536 + 0.421817i
\(204\) 0 0
\(205\) 0.281242 + 0.487125i 0.0196428 + 0.0340223i
\(206\) −14.1001 + 24.4221i −0.982402 + 1.70157i
\(207\) 0 0
\(208\) 1.13539 0.0787250
\(209\) 4.46277 1.80308i 0.308696 0.124722i
\(210\) 0 0
\(211\) −6.43806 + 11.1510i −0.443214 + 0.767669i −0.997926 0.0643732i \(-0.979495\pi\)
0.554712 + 0.832043i \(0.312829\pi\)
\(212\) −4.90039 + 8.48773i −0.336560 + 0.582940i
\(213\) 0 0
\(214\) −10.3136 + 17.8637i −0.705024 + 1.22114i
\(215\) 0.243333 + 0.421465i 0.0165952 + 0.0287437i
\(216\) 0 0
\(217\) −15.3032 −1.03885
\(218\) 9.51015 + 16.4721i 0.644109 + 1.11563i
\(219\) 0 0
\(220\) −0.380965 −0.0256846
\(221\) 0.900549 0.0605775
\(222\) 0 0
\(223\) −0.452663 + 0.784036i −0.0303126 + 0.0525029i −0.880784 0.473519i \(-0.842984\pi\)
0.850471 + 0.526022i \(0.176317\pi\)
\(224\) 14.0233 + 24.2890i 0.936970 + 1.62288i
\(225\) 0 0
\(226\) −14.4935 + 25.1036i −0.964096 + 1.66986i
\(227\) 2.26554 0.150369 0.0751845 0.997170i \(-0.476045\pi\)
0.0751845 + 0.997170i \(0.476045\pi\)
\(228\) 0 0
\(229\) −11.1098 −0.734156 −0.367078 0.930190i \(-0.619642\pi\)
−0.367078 + 0.930190i \(0.619642\pi\)
\(230\) −1.42495 + 2.46809i −0.0939585 + 0.162741i
\(231\) 0 0
\(232\) −0.510436 0.884101i −0.0335118 0.0580441i
\(233\) −10.0569 + 17.4190i −0.658847 + 1.14116i 0.322068 + 0.946717i \(0.395622\pi\)
−0.980915 + 0.194440i \(0.937711\pi\)
\(234\) 0 0
\(235\) 0.506676 0.0330519
\(236\) −24.7811 −1.61311
\(237\) 0 0
\(238\) 12.7299 + 22.0488i 0.825157 + 1.42921i
\(239\) −10.2465 −0.662793 −0.331396 0.943492i \(-0.607520\pi\)
−0.331396 + 0.943492i \(0.607520\pi\)
\(240\) 0 0
\(241\) −5.28060 9.14627i −0.340153 0.589163i 0.644308 0.764766i \(-0.277146\pi\)
−0.984461 + 0.175603i \(0.943812\pi\)
\(242\) 9.42809 16.3299i 0.606061 1.04973i
\(243\) 0 0
\(244\) 4.25116 7.36322i 0.272152 0.471382i
\(245\) 0.680637 1.17890i 0.0434843 0.0753170i
\(246\) 0 0
\(247\) 0.869314 + 0.679181i 0.0553132 + 0.0432153i
\(248\) 2.25120 0.142951
\(249\) 0 0
\(250\) −1.92929 + 3.34163i −0.122019 + 0.211343i
\(251\) −12.2800 21.2697i −0.775109 1.34253i −0.934733 0.355351i \(-0.884362\pi\)
0.159624 0.987178i \(-0.448972\pi\)
\(252\) 0 0
\(253\) 4.06141 + 7.03456i 0.255338 + 0.442259i
\(254\) 31.8303 1.99721
\(255\) 0 0
\(256\) −9.76484 16.9132i −0.610302 1.05707i
\(257\) 8.09227 + 14.0162i 0.504782 + 0.874308i 0.999985 + 0.00553074i \(0.00176050\pi\)
−0.495203 + 0.868778i \(0.664906\pi\)
\(258\) 0 0
\(259\) −29.1631 −1.81211
\(260\) −0.0436577 0.0756173i −0.00270753 0.00468959i
\(261\) 0 0
\(262\) 7.36257 + 12.7523i 0.454861 + 0.787842i
\(263\) −6.42369 + 11.1262i −0.396101 + 0.686068i −0.993241 0.116069i \(-0.962970\pi\)
0.597140 + 0.802137i \(0.296304\pi\)
\(264\) 0 0
\(265\) −1.14720 −0.0704718
\(266\) −4.34054 + 30.8848i −0.266136 + 1.89367i
\(267\) 0 0
\(268\) 4.46344 7.73091i 0.272648 0.472240i
\(269\) −4.99697 + 8.65500i −0.304671 + 0.527705i −0.977188 0.212376i \(-0.931880\pi\)
0.672517 + 0.740081i \(0.265213\pi\)
\(270\) 0 0
\(271\) 8.40716 14.5616i 0.510699 0.884556i −0.489224 0.872158i \(-0.662720\pi\)
0.999923 0.0123982i \(-0.00394656\pi\)
\(272\) −7.98154 13.8244i −0.483952 0.838229i
\(273\) 0 0
\(274\) −4.21022 −0.254349
\(275\) 2.73829 + 4.74286i 0.165125 + 0.286005i
\(276\) 0 0
\(277\) −3.77985 −0.227109 −0.113555 0.993532i \(-0.536224\pi\)
−0.113555 + 0.993532i \(0.536224\pi\)
\(278\) 32.6122 1.95595
\(279\) 0 0
\(280\) −0.203592 + 0.352631i −0.0121669 + 0.0210737i
\(281\) 11.5655 + 20.0320i 0.689939 + 1.19501i 0.971857 + 0.235571i \(0.0756959\pi\)
−0.281918 + 0.959438i \(0.590971\pi\)
\(282\) 0 0
\(283\) 10.0506 17.4082i 0.597449 1.03481i −0.395748 0.918359i \(-0.629514\pi\)
0.993196 0.116452i \(-0.0371522\pi\)
\(284\) −1.20274 −0.0713697
\(285\) 0 0
\(286\) −0.538784 −0.0318590
\(287\) −5.19409 + 8.99644i −0.306598 + 0.531043i
\(288\) 0 0
\(289\) 2.16933 + 3.75740i 0.127608 + 0.221023i
\(290\) −0.362215 + 0.627375i −0.0212700 + 0.0368407i
\(291\) 0 0
\(292\) 1.52687 0.0893532
\(293\) 6.78228 0.396225 0.198113 0.980179i \(-0.436519\pi\)
0.198113 + 0.980179i \(0.436519\pi\)
\(294\) 0 0
\(295\) −1.45034 2.51206i −0.0844418 0.146258i
\(296\) 4.29006 0.249355
\(297\) 0 0
\(298\) 20.5888 + 35.6609i 1.19268 + 2.06578i
\(299\) −0.930855 + 1.61229i −0.0538328 + 0.0932411i
\(300\) 0 0
\(301\) −4.49397 + 7.78379i −0.259028 + 0.448650i
\(302\) 15.4456 26.7526i 0.888794 1.53944i
\(303\) 0 0
\(304\) 2.72148 19.3645i 0.156088 1.11063i
\(305\) 0.995209 0.0569855
\(306\) 0 0
\(307\) −6.64501 + 11.5095i −0.379251 + 0.656881i −0.990953 0.134206i \(-0.957152\pi\)
0.611703 + 0.791088i \(0.290485\pi\)
\(308\) −3.51791 6.09320i −0.200451 0.347192i
\(309\) 0 0
\(310\) −0.798746 1.38347i −0.0453658 0.0785758i
\(311\) −28.1106 −1.59400 −0.797002 0.603976i \(-0.793582\pi\)
−0.797002 + 0.603976i \(0.793582\pi\)
\(312\) 0 0
\(313\) −2.93523 5.08397i −0.165909 0.287363i 0.771069 0.636752i \(-0.219723\pi\)
−0.936978 + 0.349389i \(0.886389\pi\)
\(314\) −20.3278 35.2088i −1.14716 1.98695i
\(315\) 0 0
\(316\) 20.9202 1.17685
\(317\) 9.21984 + 15.9692i 0.517838 + 0.896922i 0.999785 + 0.0207215i \(0.00659635\pi\)
−0.481947 + 0.876200i \(0.660070\pi\)
\(318\) 0 0
\(319\) 1.03239 + 1.78815i 0.0578026 + 0.100117i
\(320\) −0.562356 + 0.974029i −0.0314367 + 0.0544499i
\(321\) 0 0
\(322\) −52.6332 −2.93314
\(323\) 2.15858 15.3592i 0.120107 0.854610i
\(324\) 0 0
\(325\) −0.627604 + 1.08704i −0.0348132 + 0.0602982i
\(326\) −16.0912 + 27.8708i −0.891210 + 1.54362i
\(327\) 0 0
\(328\) 0.764081 1.32343i 0.0421893 0.0730741i
\(329\) 4.67876 + 8.10385i 0.257948 + 0.446780i
\(330\) 0 0
\(331\) −32.6088 −1.79234 −0.896171 0.443708i \(-0.853663\pi\)
−0.896171 + 0.443708i \(0.853663\pi\)
\(332\) 14.2116 + 24.6151i 0.779960 + 1.35093i
\(333\) 0 0
\(334\) 29.1744 1.59635
\(335\) 1.04491 0.0570893
\(336\) 0 0
\(337\) 11.0880 19.2050i 0.604003 1.04616i −0.388206 0.921573i \(-0.626905\pi\)
0.992208 0.124590i \(-0.0397617\pi\)
\(338\) 12.4696 + 21.5980i 0.678258 + 1.17478i
\(339\) 0 0
\(340\) −0.613808 + 1.06315i −0.0332884 + 0.0576572i
\(341\) −4.55318 −0.246569
\(342\) 0 0
\(343\) −0.838759 −0.0452887
\(344\) 0.661090 1.14504i 0.0356436 0.0617365i
\(345\) 0 0
\(346\) 4.83888 + 8.38118i 0.260140 + 0.450575i
\(347\) 4.91160 8.50715i 0.263669 0.456688i −0.703545 0.710650i \(-0.748401\pi\)
0.967214 + 0.253963i \(0.0817341\pi\)
\(348\) 0 0
\(349\) 24.9982 1.33812 0.669061 0.743208i \(-0.266697\pi\)
0.669061 + 0.743208i \(0.266697\pi\)
\(350\) −35.4865 −1.89683
\(351\) 0 0
\(352\) 4.17236 + 7.22673i 0.222387 + 0.385186i
\(353\) −29.6800 −1.57971 −0.789853 0.613296i \(-0.789843\pi\)
−0.789853 + 0.613296i \(0.789843\pi\)
\(354\) 0 0
\(355\) −0.0703915 0.121922i −0.00373599 0.00647093i
\(356\) −0.917705 + 1.58951i −0.0486383 + 0.0842440i
\(357\) 0 0
\(358\) 23.3109 40.3756i 1.23202 2.13392i
\(359\) −0.606086 + 1.04977i −0.0319880 + 0.0554049i −0.881576 0.472042i \(-0.843517\pi\)
0.849588 + 0.527447i \(0.176851\pi\)
\(360\) 0 0
\(361\) 13.6674 13.1985i 0.719338 0.694660i
\(362\) 19.6328 1.03188
\(363\) 0 0
\(364\) 0.806288 1.39653i 0.0422610 0.0731982i
\(365\) 0.0893612 + 0.154778i 0.00467738 + 0.00810146i
\(366\) 0 0
\(367\) 16.5923 + 28.7387i 0.866110 + 1.50015i 0.865941 + 0.500146i \(0.166720\pi\)
0.000168352 1.00000i \(0.499946\pi\)
\(368\) 33.0006 1.72027
\(369\) 0 0
\(370\) −1.52215 2.63645i −0.0791331 0.137062i
\(371\) −10.5935 18.3484i −0.549986 0.952603i
\(372\) 0 0
\(373\) −2.50301 −0.129601 −0.0648005 0.997898i \(-0.520641\pi\)
−0.0648005 + 0.997898i \(0.520641\pi\)
\(374\) 3.78753 + 6.56020i 0.195849 + 0.339220i
\(375\) 0 0
\(376\) −0.688272 1.19212i −0.0354949 0.0614790i
\(377\) −0.236619 + 0.409835i −0.0121865 + 0.0211076i
\(378\) 0 0
\(379\) 19.9040 1.02240 0.511200 0.859462i \(-0.329201\pi\)
0.511200 + 0.859462i \(0.329201\pi\)
\(380\) −1.39433 + 0.563347i −0.0715276 + 0.0288991i
\(381\) 0 0
\(382\) 16.9329 29.3287i 0.866363 1.50059i
\(383\) −5.61569 + 9.72666i −0.286948 + 0.497009i −0.973080 0.230469i \(-0.925974\pi\)
0.686132 + 0.727477i \(0.259307\pi\)
\(384\) 0 0
\(385\) 0.411777 0.713218i 0.0209861 0.0363490i
\(386\) −18.9421 32.8086i −0.964125 1.66991i
\(387\) 0 0
\(388\) −10.9770 −0.557271
\(389\) −6.85978 11.8815i −0.347805 0.602416i 0.638054 0.769991i \(-0.279739\pi\)
−0.985859 + 0.167576i \(0.946406\pi\)
\(390\) 0 0
\(391\) 26.1749 1.32372
\(392\) −3.69832 −0.186794
\(393\) 0 0
\(394\) −11.3622 + 19.6799i −0.572419 + 0.991459i
\(395\) 1.22437 + 2.12067i 0.0616047 + 0.106703i
\(396\) 0 0
\(397\) 11.4421 19.8182i 0.574261 0.994649i −0.421861 0.906661i \(-0.638623\pi\)
0.996122 0.0879883i \(-0.0280438\pi\)
\(398\) 33.4540 1.67690
\(399\) 0 0
\(400\) 22.2497 1.11249
\(401\) −15.8845 + 27.5128i −0.793235 + 1.37392i 0.130719 + 0.991419i \(0.458271\pi\)
−0.923954 + 0.382504i \(0.875062\pi\)
\(402\) 0 0
\(403\) −0.521784 0.903757i −0.0259919 0.0450193i
\(404\) 3.50087 6.06369i 0.174175 0.301680i
\(405\) 0 0
\(406\) −13.3791 −0.663993
\(407\) −8.67691 −0.430098
\(408\) 0 0
\(409\) 2.44119 + 4.22827i 0.120709 + 0.209075i 0.920048 0.391807i \(-0.128150\pi\)
−0.799338 + 0.600881i \(0.794816\pi\)
\(410\) −1.08441 −0.0535554
\(411\) 0 0
\(412\) −12.5563 21.7481i −0.618603 1.07145i
\(413\) 26.7854 46.3937i 1.31802 2.28289i
\(414\) 0 0
\(415\) −1.66349 + 2.88124i −0.0816573 + 0.141435i
\(416\) −0.956285 + 1.65633i −0.0468857 + 0.0812085i
\(417\) 0 0
\(418\) −1.29144 + 9.18918i −0.0631666 + 0.449457i
\(419\) −36.6816 −1.79201 −0.896006 0.444041i \(-0.853544\pi\)
−0.896006 + 0.444041i \(0.853544\pi\)
\(420\) 0 0
\(421\) −4.25458 + 7.36914i −0.207355 + 0.359150i −0.950881 0.309558i \(-0.899819\pi\)
0.743525 + 0.668708i \(0.233152\pi\)
\(422\) −12.4120 21.4981i −0.604204 1.04651i
\(423\) 0 0
\(424\) 1.55836 + 2.69916i 0.0756807 + 0.131083i
\(425\) 17.6477 0.856039
\(426\) 0 0
\(427\) 9.18997 + 15.9175i 0.444734 + 0.770302i
\(428\) −9.18434 15.9077i −0.443942 0.768930i
\(429\) 0 0
\(430\) −0.938245 −0.0452462
\(431\) −9.82913 17.0246i −0.473453 0.820044i 0.526086 0.850432i \(-0.323659\pi\)
−0.999538 + 0.0303877i \(0.990326\pi\)
\(432\) 0 0
\(433\) 0.214463 + 0.371461i 0.0103064 + 0.0178513i 0.871133 0.491048i \(-0.163386\pi\)
−0.860826 + 0.508899i \(0.830053\pi\)
\(434\) 14.7516 25.5505i 0.708099 1.22646i
\(435\) 0 0
\(436\) −16.9377 −0.811170
\(437\) 25.2670 + 19.7407i 1.20869 + 0.944326i
\(438\) 0 0
\(439\) 9.03327 15.6461i 0.431134 0.746746i −0.565837 0.824517i \(-0.691447\pi\)
0.996971 + 0.0777706i \(0.0247802\pi\)
\(440\) −0.0605747 + 0.104919i −0.00288779 + 0.00500179i
\(441\) 0 0
\(442\) −0.868086 + 1.50357i −0.0412906 + 0.0715175i
\(443\) −12.9787 22.4798i −0.616636 1.06805i −0.990095 0.140398i \(-0.955162\pi\)
0.373459 0.927647i \(-0.378172\pi\)
\(444\) 0 0
\(445\) −0.214838 −0.0101843
\(446\) −0.872692 1.51155i −0.0413231 0.0715738i
\(447\) 0 0
\(448\) −20.7717 −0.981369
\(449\) 22.5625 1.06479 0.532395 0.846496i \(-0.321292\pi\)
0.532395 + 0.846496i \(0.321292\pi\)
\(450\) 0 0
\(451\) −1.54540 + 2.67671i −0.0727701 + 0.126042i
\(452\) −12.9066 22.3549i −0.607076 1.05149i
\(453\) 0 0
\(454\) −2.18387 + 3.78257i −0.102494 + 0.177525i
\(455\) 0.188755 0.00884896
\(456\) 0 0
\(457\) −9.51926 −0.445292 −0.222646 0.974899i \(-0.571469\pi\)
−0.222646 + 0.974899i \(0.571469\pi\)
\(458\) 10.7093 18.5491i 0.500413 0.866741i
\(459\) 0 0
\(460\) −1.26893 2.19785i −0.0591642 0.102475i
\(461\) −6.19201 + 10.7249i −0.288391 + 0.499507i −0.973426 0.229003i \(-0.926453\pi\)
0.685035 + 0.728510i \(0.259787\pi\)
\(462\) 0 0
\(463\) −6.35948 −0.295550 −0.147775 0.989021i \(-0.547211\pi\)
−0.147775 + 0.989021i \(0.547211\pi\)
\(464\) 8.38857 0.389430
\(465\) 0 0
\(466\) −19.3887 33.5821i −0.898162 1.55566i
\(467\) −8.32816 −0.385381 −0.192691 0.981260i \(-0.561721\pi\)
−0.192691 + 0.981260i \(0.561721\pi\)
\(468\) 0 0
\(469\) 9.64888 + 16.7124i 0.445544 + 0.771705i
\(470\) −0.488412 + 0.845954i −0.0225287 + 0.0390209i
\(471\) 0 0
\(472\) −3.94029 + 6.82478i −0.181367 + 0.314136i
\(473\) −1.33709 + 2.31592i −0.0614797 + 0.106486i
\(474\) 0 0
\(475\) 17.0356 + 13.3096i 0.781647 + 0.610688i
\(476\) −22.6721 −1.03918
\(477\) 0 0
\(478\) 9.87716 17.1077i 0.451771 0.782490i
\(479\) 15.1768 + 26.2870i 0.693445 + 1.20108i 0.970702 + 0.240286i \(0.0772413\pi\)
−0.277257 + 0.960796i \(0.589425\pi\)
\(480\) 0 0
\(481\) −0.994354 1.72227i −0.0453386 0.0785288i
\(482\) 20.3610 0.927417
\(483\) 0 0
\(484\) 8.39578 + 14.5419i 0.381626 + 0.660996i
\(485\) −0.642436 1.11273i −0.0291715 0.0505266i
\(486\) 0 0
\(487\) −23.9955 −1.08734 −0.543669 0.839300i \(-0.682965\pi\)
−0.543669 + 0.839300i \(0.682965\pi\)
\(488\) −1.35190 2.34156i −0.0611975 0.105997i
\(489\) 0 0
\(490\) 1.31220 + 2.27280i 0.0592792 + 0.102675i
\(491\) 16.7317 28.9802i 0.755092 1.30786i −0.190237 0.981738i \(-0.560926\pi\)
0.945329 0.326119i \(-0.105741\pi\)
\(492\) 0 0
\(493\) 6.65351 0.299659
\(494\) −1.97195 + 0.796721i −0.0887221 + 0.0358462i
\(495\) 0 0
\(496\) −9.24912 + 16.0199i −0.415298 + 0.719316i
\(497\) 1.30002 2.25170i 0.0583139 0.101003i
\(498\) 0 0
\(499\) 8.52440 14.7647i 0.381605 0.660958i −0.609687 0.792642i \(-0.708705\pi\)
0.991292 + 0.131684i \(0.0420383\pi\)
\(500\) −1.71805 2.97575i −0.0768335 0.133080i
\(501\) 0 0
\(502\) 47.3495 2.11331
\(503\) 4.74902 + 8.22554i 0.211748 + 0.366759i 0.952262 0.305283i \(-0.0987510\pi\)
−0.740514 + 0.672041i \(0.765418\pi\)
\(504\) 0 0
\(505\) 0.819565 0.0364702
\(506\) −15.6600 −0.696172
\(507\) 0 0
\(508\) −14.1725 + 24.5476i −0.628805 + 1.08912i
\(509\) 6.51224 + 11.2795i 0.288650 + 0.499956i 0.973488 0.228739i \(-0.0734603\pi\)
−0.684838 + 0.728696i \(0.740127\pi\)
\(510\) 0 0
\(511\) −1.65036 + 2.85851i −0.0730077 + 0.126453i
\(512\) 29.0036 1.28179
\(513\) 0 0
\(514\) −31.2022 −1.37627
\(515\) 1.46973 2.54565i 0.0647641 0.112175i
\(516\) 0 0
\(517\) 1.39207 + 2.41114i 0.0612233 + 0.106042i
\(518\) 28.1118 48.6911i 1.23516 2.13936i
\(519\) 0 0
\(520\) −0.0277669 −0.00121766
\(521\) −21.7645 −0.953522 −0.476761 0.879033i \(-0.658189\pi\)
−0.476761 + 0.879033i \(0.658189\pi\)
\(522\) 0 0
\(523\) 9.84381 + 17.0500i 0.430440 + 0.745544i 0.996911 0.0785379i \(-0.0250251\pi\)
−0.566471 + 0.824081i \(0.691692\pi\)
\(524\) −13.1128 −0.572837
\(525\) 0 0
\(526\) −12.3842 21.4501i −0.539979 0.935271i
\(527\) −7.33607 + 12.7064i −0.319564 + 0.553501i
\(528\) 0 0
\(529\) −15.5557 + 26.9433i −0.676336 + 1.17145i
\(530\) 1.10584 1.91538i 0.0480348 0.0831987i
\(531\) 0 0
\(532\) −21.8858 17.0990i −0.948869 0.741336i
\(533\) −0.708398 −0.0306841
\(534\) 0 0
\(535\) 1.07504 1.86203i 0.0464781 0.0805025i
\(536\) −1.41941 2.45848i −0.0613090 0.106190i
\(537\) 0 0
\(538\) −9.63368 16.6860i −0.415337 0.719385i
\(539\) 7.48009 0.322190
\(540\) 0 0
\(541\) −8.27531 14.3333i −0.355783 0.616235i 0.631468 0.775402i \(-0.282453\pi\)
−0.987252 + 0.159167i \(0.949119\pi\)
\(542\) 16.2082 + 28.0734i 0.696202 + 1.20586i
\(543\) 0 0
\(544\) 26.8899 1.15290
\(545\) −0.991294 1.71697i −0.0424624 0.0735470i
\(546\) 0 0
\(547\) −1.42152 2.46214i −0.0607797 0.105274i 0.834034 0.551712i \(-0.186025\pi\)
−0.894814 + 0.446439i \(0.852692\pi\)
\(548\) 1.87462 3.24693i 0.0800797 0.138702i
\(549\) 0 0
\(550\) −10.5583 −0.450209
\(551\) 6.42274 + 5.01799i 0.273618 + 0.213773i
\(552\) 0 0
\(553\) −22.6122 + 39.1655i −0.961568 + 1.66548i
\(554\) 3.64360 6.31090i 0.154802 0.268124i
\(555\) 0 0
\(556\) −14.5207 + 25.1506i −0.615816 + 1.06662i
\(557\) −0.233985 0.405274i −0.00991427 0.0171720i 0.861026 0.508561i \(-0.169823\pi\)
−0.870940 + 0.491389i \(0.836489\pi\)
\(558\) 0 0
\(559\) −0.612912 −0.0259234
\(560\) −1.67293 2.89759i −0.0706941 0.122446i
\(561\) 0 0
\(562\) −44.5943 −1.88110
\(563\) −27.4971 −1.15887 −0.579433 0.815020i \(-0.696726\pi\)
−0.579433 + 0.815020i \(0.696726\pi\)
\(564\) 0 0
\(565\) 1.51074 2.61668i 0.0635573 0.110084i
\(566\) 19.3767 + 33.5614i 0.814462 + 1.41069i
\(567\) 0 0
\(568\) −0.191240 + 0.331238i −0.00802427 + 0.0138984i
\(569\) 27.8501 1.16754 0.583769 0.811920i \(-0.301577\pi\)
0.583769 + 0.811920i \(0.301577\pi\)
\(570\) 0 0
\(571\) −20.9629 −0.877269 −0.438635 0.898665i \(-0.644538\pi\)
−0.438635 + 0.898665i \(0.644538\pi\)
\(572\) 0.239895 0.415511i 0.0100305 0.0173734i
\(573\) 0 0
\(574\) −10.0137 17.3443i −0.417964 0.723935i
\(575\) −18.2416 + 31.5954i −0.760727 + 1.31762i
\(576\) 0 0
\(577\) −3.53779 −0.147280 −0.0736401 0.997285i \(-0.523462\pi\)
−0.0736401 + 0.997285i \(0.523462\pi\)
\(578\) −8.36453 −0.347919
\(579\) 0 0
\(580\) −0.322555 0.558682i −0.0133934 0.0231980i
\(581\) −61.4439 −2.54912
\(582\) 0 0
\(583\) −3.15188 5.45922i −0.130538 0.226098i
\(584\) 0.242778 0.420503i 0.0100462 0.0174005i
\(585\) 0 0
\(586\) −6.53779 + 11.3238i −0.270074 + 0.467781i
\(587\) 20.9145 36.2250i 0.863234 1.49516i −0.00555648 0.999985i \(-0.501769\pi\)
0.868790 0.495180i \(-0.164898\pi\)
\(588\) 0 0
\(589\) −16.6646 + 6.73297i −0.686655 + 0.277427i
\(590\) 5.59222 0.230228
\(591\) 0 0
\(592\) −17.6259 + 30.5289i −0.724418 + 1.25473i
\(593\) −10.4661 18.1279i −0.429793 0.744422i 0.567062 0.823675i \(-0.308080\pi\)
−0.996855 + 0.0792526i \(0.974747\pi\)
\(594\) 0 0
\(595\) −1.32691 2.29827i −0.0543978 0.0942198i
\(596\) −36.6690 −1.50202
\(597\) 0 0
\(598\) −1.79460 3.10834i −0.0733866 0.127109i
\(599\) 14.8465 + 25.7149i 0.606611 + 1.05068i 0.991795 + 0.127841i \(0.0408047\pi\)
−0.385184 + 0.922840i \(0.625862\pi\)
\(600\) 0 0
\(601\) 26.5584 1.08334 0.541669 0.840592i \(-0.317793\pi\)
0.541669 + 0.840592i \(0.317793\pi\)
\(602\) −8.66395 15.0064i −0.353116 0.611615i
\(603\) 0 0
\(604\) 13.7544 + 23.8234i 0.559659 + 0.969358i
\(605\) −0.982740 + 1.70216i −0.0399541 + 0.0692024i
\(606\) 0 0
\(607\) 39.6964 1.61123 0.805613 0.592442i \(-0.201836\pi\)
0.805613 + 0.592442i \(0.201836\pi\)
\(608\) 25.9573 + 20.2800i 1.05271 + 0.822463i
\(609\) 0 0
\(610\) −0.959334 + 1.66161i −0.0388423 + 0.0672768i
\(611\) −0.319057 + 0.552623i −0.0129077 + 0.0223567i
\(612\) 0 0
\(613\) 9.71124 16.8204i 0.392233 0.679368i −0.600511 0.799617i \(-0.705036\pi\)
0.992744 + 0.120249i \(0.0383693\pi\)
\(614\) −12.8109 22.1892i −0.517007 0.895483i
\(615\) 0 0
\(616\) −2.23744 −0.0901490
\(617\) −24.0124 41.5908i −0.966704 1.67438i −0.704964 0.709243i \(-0.749037\pi\)
−0.261740 0.965138i \(-0.584296\pi\)
\(618\) 0 0
\(619\) −1.57935 −0.0634794 −0.0317397 0.999496i \(-0.510105\pi\)
−0.0317397 + 0.999496i \(0.510105\pi\)
\(620\) 1.42258 0.0571322
\(621\) 0 0
\(622\) 27.0972 46.9338i 1.08650 1.88187i
\(623\) −1.98386 3.43614i −0.0794816 0.137666i
\(624\) 0 0
\(625\) −12.1979 + 21.1275i −0.487918 + 0.845098i
\(626\) 11.3177 0.452346
\(627\) 0 0
\(628\) 36.2041 1.44470
\(629\) −13.9802 + 24.2144i −0.557427 + 0.965491i
\(630\) 0 0
\(631\) 4.28754 + 7.42624i 0.170684 + 0.295634i 0.938659 0.344846i \(-0.112069\pi\)
−0.767975 + 0.640480i \(0.778735\pi\)
\(632\) 3.32638 5.76147i 0.132316 0.229179i
\(633\) 0 0
\(634\) −35.5499 −1.41187
\(635\) −3.31784 −0.131664
\(636\) 0 0
\(637\) 0.857201 + 1.48472i 0.0339636 + 0.0588266i
\(638\) −3.98069 −0.157597
\(639\) 0 0
\(640\) 0.434455 + 0.752497i 0.0171733 + 0.0297451i
\(641\) 4.72915 8.19112i 0.186790 0.323530i −0.757388 0.652965i \(-0.773525\pi\)
0.944178 + 0.329435i \(0.106858\pi\)
\(642\) 0 0
\(643\) −7.42218 + 12.8556i −0.292702 + 0.506975i −0.974448 0.224614i \(-0.927888\pi\)
0.681746 + 0.731589i \(0.261221\pi\)
\(644\) 23.4351 40.5909i 0.923474 1.59950i
\(645\) 0 0
\(646\) 23.5632 + 18.4096i 0.927082 + 0.724314i
\(647\) 4.84046 0.190298 0.0951491 0.995463i \(-0.469667\pi\)
0.0951491 + 0.995463i \(0.469667\pi\)
\(648\) 0 0
\(649\) 7.96948 13.8035i 0.312830 0.541837i
\(650\) −1.20996 2.09571i −0.0474585 0.0822006i
\(651\) 0 0
\(652\) −14.3294 24.8192i −0.561181 0.971993i
\(653\) −22.1655 −0.867404 −0.433702 0.901056i \(-0.642793\pi\)
−0.433702 + 0.901056i \(0.642793\pi\)
\(654\) 0 0
\(655\) −0.767440 1.32924i −0.0299863 0.0519379i
\(656\) 6.27851 + 10.8747i 0.245135 + 0.424586i
\(657\) 0 0
\(658\) −18.0404 −0.703288
\(659\) 9.10369 + 15.7681i 0.354629 + 0.614236i 0.987054 0.160385i \(-0.0512737\pi\)
−0.632425 + 0.774622i \(0.717940\pi\)
\(660\) 0 0
\(661\) −18.4435 31.9451i −0.717369 1.24252i −0.962039 0.272913i \(-0.912013\pi\)
0.244670 0.969606i \(-0.421320\pi\)
\(662\) 31.4333 54.4441i 1.22169 2.11603i
\(663\) 0 0
\(664\) 9.03875 0.350772
\(665\) 0.452438 3.21929i 0.0175448 0.124839i
\(666\) 0 0
\(667\) −6.87743 + 11.9121i −0.266295 + 0.461237i
\(668\) −12.9900 + 22.4994i −0.502598 + 0.870526i
\(669\) 0 0
\(670\) −1.00724 + 1.74459i −0.0389130 + 0.0673993i
\(671\) 2.73430 + 4.73594i 0.105556 + 0.182829i
\(672\) 0 0
\(673\) 26.9092 1.03727 0.518636 0.854995i \(-0.326440\pi\)
0.518636 + 0.854995i \(0.326440\pi\)
\(674\) 21.3766 + 37.0254i 0.823397 + 1.42616i
\(675\) 0 0
\(676\) −22.2086 −0.854177
\(677\) −8.78946 −0.337806 −0.168903 0.985633i \(-0.554023\pi\)
−0.168903 + 0.985633i \(0.554023\pi\)
\(678\) 0 0
\(679\) 11.8648 20.5504i 0.455329 0.788652i
\(680\) 0.195195 + 0.338088i 0.00748540 + 0.0129651i
\(681\) 0 0
\(682\) 4.38905 7.60206i 0.168065 0.291098i
\(683\) 1.11970 0.0428442 0.0214221 0.999771i \(-0.493181\pi\)
0.0214221 + 0.999771i \(0.493181\pi\)
\(684\) 0 0
\(685\) 0.438854 0.0167677
\(686\) 0.808523 1.40040i 0.0308696 0.0534676i
\(687\) 0 0
\(688\) 5.43222 + 9.40888i 0.207101 + 0.358710i
\(689\) 0.722397 1.25123i 0.0275211 0.0476680i
\(690\) 0 0
\(691\) 15.4107 0.586252 0.293126 0.956074i \(-0.405304\pi\)
0.293126 + 0.956074i \(0.405304\pi\)
\(692\) −8.61811 −0.327611
\(693\) 0 0
\(694\) 9.46910 + 16.4010i 0.359442 + 0.622572i
\(695\) −3.39935 −0.128945
\(696\) 0 0
\(697\) 4.97989 + 8.62542i 0.188627 + 0.326711i
\(698\) −24.0970 + 41.7373i −0.912086 + 1.57978i
\(699\) 0 0
\(700\) 15.8005 27.3673i 0.597203 1.03439i
\(701\) −14.4419 + 25.0140i −0.545462 + 0.944767i 0.453116 + 0.891451i \(0.350312\pi\)
−0.998578 + 0.0533156i \(0.983021\pi\)
\(702\) 0 0
\(703\) −31.7575 + 12.8309i −1.19776 + 0.483926i
\(704\) −6.18020 −0.232925
\(705\) 0 0
\(706\) 28.6101 49.5541i 1.07675 1.86499i
\(707\) 7.56804 + 13.1082i 0.284626 + 0.492986i
\(708\) 0 0
\(709\) 0.939283 + 1.62689i 0.0352755 + 0.0610990i 0.883124 0.469139i \(-0.155436\pi\)
−0.847849 + 0.530238i \(0.822102\pi\)
\(710\) 0.271416 0.0101861
\(711\) 0 0
\(712\) 0.291837 + 0.505476i 0.0109371 + 0.0189435i
\(713\) −15.1659 26.2681i −0.567967 0.983748i
\(714\) 0 0
\(715\) 0.0561603 0.00210028
\(716\) 20.7585 + 35.9548i 0.775782 + 1.34369i
\(717\) 0 0
\(718\) −1.16848 2.02386i −0.0436071 0.0755298i
\(719\) −20.6247 + 35.7230i −0.769171 + 1.33224i 0.168842 + 0.985643i \(0.445997\pi\)
−0.938013 + 0.346600i \(0.887336\pi\)
\(720\) 0 0
\(721\) 54.2872 2.02176
\(722\) 8.86172 + 35.5421i 0.329799 + 1.32274i
\(723\) 0 0
\(724\) −8.74159 + 15.1409i −0.324879 + 0.562706i
\(725\) −4.63692 + 8.03138i −0.172211 + 0.298278i
\(726\) 0 0
\(727\) −8.82911 + 15.2925i −0.327454 + 0.567166i −0.982006 0.188850i \(-0.939524\pi\)
0.654552 + 0.756017i \(0.272857\pi\)
\(728\) −0.256406 0.444107i −0.00950302 0.0164597i
\(729\) 0 0
\(730\) −0.344560 −0.0127527
\(731\) 4.30864 + 7.46278i 0.159361 + 0.276021i
\(732\) 0 0
\(733\) 27.2602 1.00688 0.503439 0.864031i \(-0.332068\pi\)
0.503439 + 0.864031i \(0.332068\pi\)
\(734\) −63.9766 −2.36142
\(735\) 0 0
\(736\) −27.7949 + 48.1421i −1.02453 + 1.77454i
\(737\) 2.87084 + 4.97244i 0.105749 + 0.183162i
\(738\) 0 0
\(739\) 3.80969 6.59858i 0.140142 0.242733i −0.787408 0.616432i \(-0.788577\pi\)
0.927550 + 0.373699i \(0.121911\pi\)
\(740\) 2.71098 0.0996576
\(741\) 0 0
\(742\) 40.8464 1.49952
\(743\) 15.8724 27.4918i 0.582302 1.00858i −0.412904 0.910775i \(-0.635485\pi\)
0.995206 0.0978020i \(-0.0311812\pi\)
\(744\) 0 0
\(745\) −2.14608 3.71713i −0.0786265 0.136185i
\(746\) 2.41278 4.17906i 0.0883382 0.153006i
\(747\) 0 0
\(748\) −6.74566 −0.246646
\(749\) 39.7087 1.45092
\(750\) 0 0
\(751\) −20.4677 35.4511i −0.746877 1.29363i −0.949313 0.314333i \(-0.898219\pi\)
0.202436 0.979296i \(-0.435114\pi\)
\(752\) 11.3112 0.412476
\(753\) 0 0
\(754\) −0.456178 0.790123i −0.0166130 0.0287746i
\(755\) −1.60998 + 2.78856i −0.0585931 + 0.101486i
\(756\) 0 0
\(757\) −17.6665 + 30.5994i −0.642102 + 1.11215i 0.342861 + 0.939386i \(0.388604\pi\)
−0.984963 + 0.172767i \(0.944729\pi\)
\(758\) −19.1865 + 33.2320i −0.696885 + 1.20704i
\(759\) 0 0
\(760\) −0.0665562 + 0.473576i −0.00241425 + 0.0171784i
\(761\) 16.1891 0.586855 0.293428 0.955981i \(-0.405204\pi\)
0.293428 + 0.955981i \(0.405204\pi\)
\(762\) 0 0
\(763\) 18.3076 31.7098i 0.662781 1.14797i
\(764\) 15.0789 + 26.1174i 0.545535 + 0.944894i
\(765\) 0 0
\(766\) −10.8265 18.7521i −0.391177 0.677539i
\(767\) 3.65314 0.131907
\(768\) 0 0
\(769\) −2.45805 4.25746i −0.0886395 0.153528i 0.818297 0.574796i \(-0.194919\pi\)
−0.906936 + 0.421268i \(0.861585\pi\)
\(770\) 0.793866 + 1.37502i 0.0286089 + 0.0495521i
\(771\) 0 0
\(772\) 33.7361 1.21419
\(773\) 27.0916 + 46.9240i 0.974416 + 1.68774i 0.681847 + 0.731495i \(0.261177\pi\)
0.292569 + 0.956244i \(0.405490\pi\)
\(774\) 0 0
\(775\) −10.2252 17.7106i −0.367300 0.636182i
\(776\) −1.74538 + 3.02308i −0.0626554 + 0.108522i
\(777\) 0 0
\(778\) 26.4500 0.948278
\(779\) −1.69800 + 12.0820i −0.0608373 + 0.432883i
\(780\) 0 0
\(781\) 0.386796 0.669950i 0.0138406 0.0239727i
\(782\) −25.2313 + 43.7019i −0.902270 + 1.56278i
\(783\) 0 0
\(784\) 15.1947 26.3180i 0.542668 0.939928i
\(785\) 2.11887 + 3.67000i 0.0756258 + 0.130988i
\(786\) 0 0
\(787\) 26.2374 0.935261 0.467631 0.883924i \(-0.345108\pi\)
0.467631 + 0.883924i \(0.345108\pi\)
\(788\) −10.1181 17.5251i −0.360443 0.624306i
\(789\) 0 0
\(790\) −4.72093 −0.167963
\(791\) 55.8019 1.98409
\(792\) 0 0
\(793\) −0.626689 + 1.08546i −0.0222544 + 0.0385457i
\(794\) 22.0592 + 38.2077i 0.782852 + 1.35594i
\(795\) 0 0
\(796\) −14.8955 + 25.7998i −0.527958 + 0.914450i
\(797\) 33.2236 1.17684 0.588420 0.808555i \(-0.299750\pi\)
0.588420 + 0.808555i \(0.299750\pi\)
\(798\) 0 0
\(799\) 8.97161 0.317393
\(800\) −18.7399 + 32.4585i −0.662556 + 1.14758i
\(801\) 0 0
\(802\) −30.6238 53.0420i −1.08136 1.87298i
\(803\) −0.491033 + 0.850494i −0.0173282 + 0.0300133i
\(804\) 0 0
\(805\) 5.48624 0.193365
\(806\) 2.01190 0.0708662
\(807\) 0 0
\(808\) −1.11330 1.92830i −0.0391659 0.0678372i
\(809\) −6.95935 −0.244678 −0.122339 0.992488i \(-0.539039\pi\)
−0.122339 + 0.992488i \(0.539039\pi\)
\(810\) 0 0
\(811\) −2.83833 4.91613i −0.0996672 0.172629i 0.811880 0.583825i \(-0.198444\pi\)
−0.911547 + 0.411196i \(0.865111\pi\)
\(812\) 5.95709 10.3180i 0.209053 0.362090i
\(813\) 0 0
\(814\) 8.36412 14.4871i 0.293162 0.507772i
\(815\) 1.67727 2.90512i 0.0587523 0.101762i
\(816\) 0 0
\(817\) −1.46913 + 10.4535i −0.0513982 + 0.365720i
\(818\) −9.41278 −0.329110
\(819\) 0 0
\(820\) 0.482839 0.836302i 0.0168615 0.0292049i
\(821\) 5.35004 + 9.26654i 0.186718 + 0.323404i 0.944154 0.329505i \(-0.106882\pi\)
−0.757436 + 0.652909i \(0.773548\pi\)
\(822\) 0 0
\(823\) 21.2280 + 36.7680i 0.739962 + 1.28165i 0.952512 + 0.304502i \(0.0984900\pi\)
−0.212549 + 0.977150i \(0.568177\pi\)
\(824\) −7.98597 −0.278204
\(825\) 0 0
\(826\) 51.6397 + 89.4426i 1.79678 + 3.11211i
\(827\) −12.5928 21.8114i −0.437896 0.758458i 0.559631 0.828742i \(-0.310943\pi\)
−0.997527 + 0.0702836i \(0.977610\pi\)
\(828\) 0 0
\(829\) −15.4727 −0.537389 −0.268694 0.963225i \(-0.586592\pi\)
−0.268694 + 0.963225i \(0.586592\pi\)
\(830\) −3.20704 5.55475i −0.111318 0.192808i
\(831\) 0 0
\(832\) −0.708237 1.22670i −0.0245537 0.0425283i
\(833\) 12.0519 20.8745i 0.417573 0.723258i
\(834\) 0 0
\(835\) −3.04100 −0.105238
\(836\) −6.51169 5.08748i −0.225212 0.175954i
\(837\) 0 0
\(838\) 35.3593 61.2441i 1.22147 2.11564i
\(839\) 17.5746 30.4401i 0.606743 1.05091i −0.385031 0.922904i \(-0.625809\pi\)
0.991773 0.128006i \(-0.0408576\pi\)
\(840\) 0 0
\(841\) 12.7518 22.0868i 0.439717 0.761612i
\(842\) −8.20241 14.2070i −0.282674 0.489605i
\(843\) 0 0
\(844\) 22.1059 0.760915
\(845\) −1.29978 2.25128i −0.0447136 0.0774463i
\(846\) 0 0
\(847\) −36.2993 −1.24726
\(848\) −25.6103 −0.879462
\(849\) 0 0
\(850\) −17.0115 + 29.4648i −0.583490 + 1.01063i
\(851\) −28.9013 50.0586i −0.990725 1.71599i
\(852\) 0 0
\(853\) 1.67252 2.89689i 0.0572660 0.0991876i −0.835971 0.548773i \(-0.815095\pi\)
0.893237 + 0.449586i \(0.148428\pi\)
\(854\) −35.4348 −1.21255
\(855\) 0 0
\(856\) −5.84137 −0.199654
\(857\) −13.8220 + 23.9405i −0.472152 + 0.817791i −0.999492 0.0318629i \(-0.989856\pi\)
0.527340 + 0.849654i \(0.323189\pi\)
\(858\) 0 0
\(859\) −19.9394 34.5360i −0.680322 1.17835i −0.974882 0.222720i \(-0.928506\pi\)
0.294560 0.955633i \(-0.404827\pi\)
\(860\) 0.417757 0.723576i 0.0142454 0.0246737i
\(861\) 0 0
\(862\) 37.8992 1.29085
\(863\) −13.4302 −0.457170 −0.228585 0.973524i \(-0.573410\pi\)
−0.228585 + 0.973524i \(0.573410\pi\)
\(864\) 0 0
\(865\) −0.504382 0.873615i −0.0171495 0.0297038i
\(866\) −0.826928 −0.0281002
\(867\) 0 0
\(868\) 13.1364 + 22.7529i 0.445878 + 0.772284i
\(869\) −6.72782 + 11.6529i −0.228226 + 0.395298i
\(870\) 0 0
\(871\) −0.657983 + 1.13966i −0.0222949 + 0.0386159i
\(872\) −2.69316 + 4.66469i −0.0912019 + 0.157966i
\(873\) 0 0
\(874\) −57.3155 + 23.1571i −1.93873 + 0.783299i
\(875\) 7.42802 0.251113
\(876\) 0 0
\(877\) −10.0707 + 17.4429i −0.340062 + 0.589005i −0.984444 0.175699i \(-0.943782\pi\)
0.644382 + 0.764704i \(0.277115\pi\)
\(878\) 17.4153 + 30.1641i 0.587737 + 1.01799i
\(879\) 0 0
\(880\) −0.497747 0.862123i −0.0167790 0.0290622i
\(881\) 47.8690 1.61275 0.806374 0.591406i \(-0.201427\pi\)
0.806374 + 0.591406i \(0.201427\pi\)
\(882\) 0 0
\(883\) −13.8313 23.9565i −0.465460 0.806200i 0.533762 0.845634i \(-0.320778\pi\)
−0.999222 + 0.0394347i \(0.987444\pi\)
\(884\) −0.773037 1.33894i −0.0260000 0.0450334i
\(885\) 0 0
\(886\) 50.0433 1.68124
\(887\) 18.2879 + 31.6755i 0.614047 + 1.06356i 0.990551 + 0.137145i \(0.0437928\pi\)
−0.376504 + 0.926415i \(0.622874\pi\)
\(888\) 0 0
\(889\) −30.6376 53.0659i −1.02755 1.77977i
\(890\) 0.207093 0.358696i 0.00694178 0.0120235i
\(891\) 0 0
\(892\) 1.55428 0.0520410
\(893\) 8.66044 + 6.76626i 0.289810 + 0.226424i
\(894\) 0 0
\(895\) −2.42982 + 4.20857i −0.0812199 + 0.140677i
\(896\) −8.02369 + 13.8974i −0.268053 + 0.464281i
\(897\) 0 0
\(898\) −21.7492 + 37.6706i −0.725779 + 1.25709i
\(899\) −3.85509 6.67722i −0.128575 0.222698i
\(900\) 0 0
\(901\) −20.3132 −0.676730
\(902\) −2.97939 5.16045i −0.0992027 0.171824i
\(903\) 0 0
\(904\) −8.20879 −0.273020
\(905\) −2.04643 −0.0680258
\(906\) 0 0
\(907\) −22.3142 + 38.6493i −0.740931 + 1.28333i 0.211142 + 0.977455i \(0.432282\pi\)
−0.952072 + 0.305874i \(0.901051\pi\)
\(908\) −1.94475 3.36841i −0.0645388 0.111785i
\(909\) 0 0
\(910\) −0.181950 + 0.315147i −0.00603160 + 0.0104470i
\(911\) −53.4274 −1.77013 −0.885065 0.465467i \(-0.845886\pi\)
−0.885065 + 0.465467i \(0.845886\pi\)
\(912\) 0 0
\(913\) −18.2814 −0.605027
\(914\) 9.17610 15.8935i 0.303519 0.525709i
\(915\) 0 0
\(916\) 9.53671 + 16.5181i 0.315102 + 0.545772i
\(917\) 14.1734 24.5491i 0.468047 0.810681i
\(918\) 0 0
\(919\) −4.65987 −0.153715 −0.0768574 0.997042i \(-0.524489\pi\)
−0.0768574 + 0.997042i \(0.524489\pi\)
\(920\) −0.807058 −0.0266079
\(921\) 0 0
\(922\) −11.9376 20.6765i −0.393144 0.680945i
\(923\) 0.177304 0.00583602
\(924\) 0 0
\(925\) −19.4859 33.7507i −0.640694 1.10971i
\(926\) 6.13023 10.6179i 0.201452 0.348925i
\(927\) 0 0
\(928\) −7.06531 + 12.2375i −0.231930 + 0.401715i
\(929\) 21.0762 36.5050i 0.691486 1.19769i −0.279865 0.960039i \(-0.590290\pi\)
0.971351 0.237650i \(-0.0763771\pi\)
\(930\) 0 0
\(931\) 27.3771 11.0611i 0.897249 0.362513i
\(932\) 34.5315 1.13112
\(933\) 0 0
\(934\) 8.02794 13.9048i 0.262682 0.454979i
\(935\) −0.394795 0.683805i −0.0129112 0.0223628i
\(936\) 0 0
\(937\) 25.9049 + 44.8687i 0.846278 + 1.46580i 0.884507 + 0.466527i \(0.154495\pi\)
−0.0382292 + 0.999269i \(0.512172\pi\)
\(938\) −37.2042 −1.21476
\(939\) 0 0
\(940\) −0.434934 0.753328i −0.0141860 0.0245708i
\(941\) −11.0890 19.2067i −0.361490 0.626120i 0.626716 0.779248i \(-0.284399\pi\)
−0.988206 + 0.153128i \(0.951065\pi\)
\(942\) 0 0
\(943\) −20.5899 −0.670500
\(944\) −32.3776 56.0797i −1.05380 1.82524i
\(945\) 0 0
\(946\) −2.57779 4.46486i −0.0838112 0.145165i
\(947\) 15.5028 26.8517i 0.503774 0.872563i −0.496216 0.868199i \(-0.665278\pi\)
0.999990 0.00436376i \(-0.00138903\pi\)
\(948\) 0 0
\(949\) −0.225085 −0.00730657
\(950\) −38.6435 + 15.6130i −1.25376 + 0.506553i
\(951\) 0 0
\(952\) −3.60495 + 6.24396i −0.116837 + 0.202368i
\(953\) 10.9581 18.9799i 0.354966 0.614820i −0.632146 0.774849i \(-0.717826\pi\)
0.987112 + 0.160030i \(0.0511590\pi\)
\(954\) 0 0
\(955\) −1.76501 + 3.05708i −0.0571143 + 0.0989249i
\(956\) 8.79568 + 15.2346i 0.284473 + 0.492721i
\(957\) 0 0
\(958\) −58.5188 −1.89066
\(959\) 4.05247 + 7.01908i 0.130861 + 0.226658i
\(960\) 0 0
\(961\) −13.9977 −0.451540
\(962\) 3.83404 0.123614
\(963\) 0 0
\(964\) −9.06580 + 15.7024i −0.291990 + 0.505741i
\(965\) 1.97443 + 3.41981i 0.0635592 + 0.110088i
\(966\) 0 0
\(967\) −7.86066 + 13.6151i −0.252782 + 0.437831i −0.964291 0.264846i \(-0.914679\pi\)
0.711509 + 0.702677i \(0.248012\pi\)
\(968\) 5.33984 0.171629
\(969\) 0 0
\(970\) 2.47711 0.0795352
\(971\) 13.5978 23.5521i 0.436374 0.755822i −0.561033 0.827794i \(-0.689596\pi\)
0.997407 + 0.0719720i \(0.0229292\pi\)
\(972\) 0 0
\(973\) −31.3903 54.3696i −1.00633 1.74301i
\(974\) 23.1305 40.0631i 0.741148 1.28371i
\(975\) 0 0
\(976\) 22.2173 0.711158
\(977\) −6.11737 −0.195712 −0.0978560 0.995201i \(-0.531198\pi\)
−0.0978560 + 0.995201i \(0.531198\pi\)
\(978\) 0 0
\(979\) −0.590258 1.02236i −0.0188647 0.0326747i
\(980\) −2.33705 −0.0746544
\(981\) 0 0
\(982\) 32.2571 + 55.8710i 1.02937 + 1.78291i
\(983\) −25.2388 + 43.7148i −0.804991 + 1.39429i 0.111306 + 0.993786i \(0.464497\pi\)
−0.916297 + 0.400499i \(0.868837\pi\)
\(984\) 0 0
\(985\) 1.18434 2.05134i 0.0377363 0.0653611i
\(986\) −6.41367 + 11.1088i −0.204253 + 0.353776i
\(987\) 0 0
\(988\) 0.263584 1.87551i 0.00838573 0.0596680i
\(989\) −17.8146 −0.566470
\(990\) 0 0
\(991\) −8.20353 + 14.2089i −0.260594 + 0.451362i −0.966400 0.257044i \(-0.917252\pi\)
0.705806 + 0.708405i \(0.250585\pi\)
\(992\) −15.5802 26.9857i −0.494672 0.856797i
\(993\) 0 0
\(994\) 2.50631 + 4.34106i 0.0794954 + 0.137690i
\(995\) −3.48709 −0.110548
\(996\) 0 0
\(997\) 21.8758 + 37.8900i 0.692814 + 1.19999i 0.970912 + 0.239436i \(0.0769625\pi\)
−0.278099 + 0.960553i \(0.589704\pi\)
\(998\) 16.4342 + 28.4649i 0.520216 + 0.901041i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.f.h.163.1 yes 12
3.2 odd 2 513.2.f.f.163.6 12
19.7 even 3 inner 513.2.f.h.406.1 yes 12
19.8 odd 6 9747.2.a.br.1.1 6
19.11 even 3 9747.2.a.bl.1.6 6
57.8 even 6 9747.2.a.bm.1.6 6
57.11 odd 6 9747.2.a.bs.1.1 6
57.26 odd 6 513.2.f.f.406.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.f.f.163.6 12 3.2 odd 2
513.2.f.f.406.6 yes 12 57.26 odd 6
513.2.f.h.163.1 yes 12 1.1 even 1 trivial
513.2.f.h.406.1 yes 12 19.7 even 3 inner
9747.2.a.bl.1.6 6 19.11 even 3
9747.2.a.bm.1.6 6 57.8 even 6
9747.2.a.br.1.1 6 19.8 odd 6
9747.2.a.bs.1.1 6 57.11 odd 6