Properties

Label 513.2.a.g.1.3
Level $513$
Weight $2$
Character 513.1
Self dual yes
Analytic conductor $4.096$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(1,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53209 q^{2} +4.41147 q^{4} +2.53209 q^{5} +0.184793 q^{7} +6.10607 q^{8} +6.41147 q^{10} -5.63816 q^{11} -6.63816 q^{13} +0.467911 q^{14} +6.63816 q^{16} -2.06418 q^{17} +1.00000 q^{19} +11.1702 q^{20} -14.2763 q^{22} +3.46791 q^{23} +1.41147 q^{25} -16.8084 q^{26} +0.815207 q^{28} +0.467911 q^{29} +5.26857 q^{31} +4.59627 q^{32} -5.22668 q^{34} +0.467911 q^{35} -4.41147 q^{37} +2.53209 q^{38} +15.4611 q^{40} +11.7246 q^{41} +5.68004 q^{43} -24.8726 q^{44} +8.78106 q^{46} +10.1480 q^{47} -6.96585 q^{49} +3.57398 q^{50} -29.2841 q^{52} +6.10607 q^{53} -14.2763 q^{55} +1.12836 q^{56} +1.18479 q^{58} +2.89393 q^{59} -12.6382 q^{61} +13.3405 q^{62} -1.63816 q^{64} -16.8084 q^{65} +0.958111 q^{67} -9.10607 q^{68} +1.18479 q^{70} +6.57398 q^{71} +1.08378 q^{73} -11.1702 q^{74} +4.41147 q^{76} -1.04189 q^{77} -5.95811 q^{79} +16.8084 q^{80} +29.6878 q^{82} +5.08378 q^{83} -5.22668 q^{85} +14.3824 q^{86} -34.4270 q^{88} +4.70233 q^{89} -1.22668 q^{91} +15.2986 q^{92} +25.6955 q^{94} +2.53209 q^{95} -8.86484 q^{97} -17.6382 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{5} - 3 q^{7} + 6 q^{8} + 9 q^{10} - 3 q^{13} + 6 q^{14} + 3 q^{16} + 3 q^{17} + 3 q^{19} + 12 q^{20} - 9 q^{22} + 15 q^{23} - 6 q^{25} - 12 q^{26} + 6 q^{28} + 6 q^{29} + 6 q^{31}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53209 1.79046 0.895229 0.445607i \(-0.147012\pi\)
0.895229 + 0.445607i \(0.147012\pi\)
\(3\) 0 0
\(4\) 4.41147 2.20574
\(5\) 2.53209 1.13238 0.566192 0.824273i \(-0.308416\pi\)
0.566192 + 0.824273i \(0.308416\pi\)
\(6\) 0 0
\(7\) 0.184793 0.0698450 0.0349225 0.999390i \(-0.488882\pi\)
0.0349225 + 0.999390i \(0.488882\pi\)
\(8\) 6.10607 2.15882
\(9\) 0 0
\(10\) 6.41147 2.02749
\(11\) −5.63816 −1.69997 −0.849984 0.526809i \(-0.823388\pi\)
−0.849984 + 0.526809i \(0.823388\pi\)
\(12\) 0 0
\(13\) −6.63816 −1.84109 −0.920547 0.390633i \(-0.872256\pi\)
−0.920547 + 0.390633i \(0.872256\pi\)
\(14\) 0.467911 0.125055
\(15\) 0 0
\(16\) 6.63816 1.65954
\(17\) −2.06418 −0.500637 −0.250318 0.968164i \(-0.580535\pi\)
−0.250318 + 0.968164i \(0.580535\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 11.1702 2.49774
\(21\) 0 0
\(22\) −14.2763 −3.04372
\(23\) 3.46791 0.723109 0.361555 0.932351i \(-0.382246\pi\)
0.361555 + 0.932351i \(0.382246\pi\)
\(24\) 0 0
\(25\) 1.41147 0.282295
\(26\) −16.8084 −3.29640
\(27\) 0 0
\(28\) 0.815207 0.154060
\(29\) 0.467911 0.0868889 0.0434445 0.999056i \(-0.486167\pi\)
0.0434445 + 0.999056i \(0.486167\pi\)
\(30\) 0 0
\(31\) 5.26857 0.946263 0.473132 0.880992i \(-0.343124\pi\)
0.473132 + 0.880992i \(0.343124\pi\)
\(32\) 4.59627 0.812513
\(33\) 0 0
\(34\) −5.22668 −0.896368
\(35\) 0.467911 0.0790914
\(36\) 0 0
\(37\) −4.41147 −0.725242 −0.362621 0.931937i \(-0.618118\pi\)
−0.362621 + 0.931937i \(0.618118\pi\)
\(38\) 2.53209 0.410759
\(39\) 0 0
\(40\) 15.4611 2.44462
\(41\) 11.7246 1.83108 0.915539 0.402229i \(-0.131764\pi\)
0.915539 + 0.402229i \(0.131764\pi\)
\(42\) 0 0
\(43\) 5.68004 0.866199 0.433099 0.901346i \(-0.357420\pi\)
0.433099 + 0.901346i \(0.357420\pi\)
\(44\) −24.8726 −3.74968
\(45\) 0 0
\(46\) 8.78106 1.29470
\(47\) 10.1480 1.48023 0.740116 0.672479i \(-0.234771\pi\)
0.740116 + 0.672479i \(0.234771\pi\)
\(48\) 0 0
\(49\) −6.96585 −0.995122
\(50\) 3.57398 0.505437
\(51\) 0 0
\(52\) −29.2841 −4.06097
\(53\) 6.10607 0.838733 0.419366 0.907817i \(-0.362252\pi\)
0.419366 + 0.907817i \(0.362252\pi\)
\(54\) 0 0
\(55\) −14.2763 −1.92502
\(56\) 1.12836 0.150783
\(57\) 0 0
\(58\) 1.18479 0.155571
\(59\) 2.89393 0.376758 0.188379 0.982096i \(-0.439677\pi\)
0.188379 + 0.982096i \(0.439677\pi\)
\(60\) 0 0
\(61\) −12.6382 −1.61815 −0.809075 0.587705i \(-0.800031\pi\)
−0.809075 + 0.587705i \(0.800031\pi\)
\(62\) 13.3405 1.69424
\(63\) 0 0
\(64\) −1.63816 −0.204769
\(65\) −16.8084 −2.08483
\(66\) 0 0
\(67\) 0.958111 0.117052 0.0585259 0.998286i \(-0.481360\pi\)
0.0585259 + 0.998286i \(0.481360\pi\)
\(68\) −9.10607 −1.10427
\(69\) 0 0
\(70\) 1.18479 0.141610
\(71\) 6.57398 0.780188 0.390094 0.920775i \(-0.372443\pi\)
0.390094 + 0.920775i \(0.372443\pi\)
\(72\) 0 0
\(73\) 1.08378 0.126847 0.0634233 0.997987i \(-0.479798\pi\)
0.0634233 + 0.997987i \(0.479798\pi\)
\(74\) −11.1702 −1.29851
\(75\) 0 0
\(76\) 4.41147 0.506031
\(77\) −1.04189 −0.118734
\(78\) 0 0
\(79\) −5.95811 −0.670340 −0.335170 0.942158i \(-0.608794\pi\)
−0.335170 + 0.942158i \(0.608794\pi\)
\(80\) 16.8084 1.87924
\(81\) 0 0
\(82\) 29.6878 3.27847
\(83\) 5.08378 0.558017 0.279009 0.960289i \(-0.409994\pi\)
0.279009 + 0.960289i \(0.409994\pi\)
\(84\) 0 0
\(85\) −5.22668 −0.566913
\(86\) 14.3824 1.55089
\(87\) 0 0
\(88\) −34.4270 −3.66993
\(89\) 4.70233 0.498446 0.249223 0.968446i \(-0.419825\pi\)
0.249223 + 0.968446i \(0.419825\pi\)
\(90\) 0 0
\(91\) −1.22668 −0.128591
\(92\) 15.2986 1.59499
\(93\) 0 0
\(94\) 25.6955 2.65029
\(95\) 2.53209 0.259787
\(96\) 0 0
\(97\) −8.86484 −0.900088 −0.450044 0.893006i \(-0.648592\pi\)
−0.450044 + 0.893006i \(0.648592\pi\)
\(98\) −17.6382 −1.78172
\(99\) 0 0
\(100\) 6.22668 0.622668
\(101\) −15.5740 −1.54967 −0.774834 0.632164i \(-0.782167\pi\)
−0.774834 + 0.632164i \(0.782167\pi\)
\(102\) 0 0
\(103\) 10.2267 1.00766 0.503832 0.863801i \(-0.331923\pi\)
0.503832 + 0.863801i \(0.331923\pi\)
\(104\) −40.5330 −3.97459
\(105\) 0 0
\(106\) 15.4611 1.50172
\(107\) −17.9564 −1.73591 −0.867953 0.496646i \(-0.834565\pi\)
−0.867953 + 0.496646i \(0.834565\pi\)
\(108\) 0 0
\(109\) −10.3354 −0.989955 −0.494978 0.868906i \(-0.664824\pi\)
−0.494978 + 0.868906i \(0.664824\pi\)
\(110\) −36.1489 −3.44666
\(111\) 0 0
\(112\) 1.22668 0.115911
\(113\) 10.2344 0.962773 0.481387 0.876508i \(-0.340133\pi\)
0.481387 + 0.876508i \(0.340133\pi\)
\(114\) 0 0
\(115\) 8.78106 0.818838
\(116\) 2.06418 0.191654
\(117\) 0 0
\(118\) 7.32770 0.674569
\(119\) −0.381445 −0.0349670
\(120\) 0 0
\(121\) 20.7888 1.88989
\(122\) −32.0009 −2.89723
\(123\) 0 0
\(124\) 23.2422 2.08721
\(125\) −9.08647 −0.812718
\(126\) 0 0
\(127\) 10.5621 0.937236 0.468618 0.883401i \(-0.344752\pi\)
0.468618 + 0.883401i \(0.344752\pi\)
\(128\) −13.3405 −1.17914
\(129\) 0 0
\(130\) −42.5604 −3.73279
\(131\) 7.25402 0.633787 0.316893 0.948461i \(-0.397360\pi\)
0.316893 + 0.948461i \(0.397360\pi\)
\(132\) 0 0
\(133\) 0.184793 0.0160235
\(134\) 2.42602 0.209576
\(135\) 0 0
\(136\) −12.6040 −1.08078
\(137\) −1.49020 −0.127316 −0.0636582 0.997972i \(-0.520277\pi\)
−0.0636582 + 0.997972i \(0.520277\pi\)
\(138\) 0 0
\(139\) 12.1088 1.02705 0.513526 0.858074i \(-0.328339\pi\)
0.513526 + 0.858074i \(0.328339\pi\)
\(140\) 2.06418 0.174455
\(141\) 0 0
\(142\) 16.6459 1.39689
\(143\) 37.4270 3.12980
\(144\) 0 0
\(145\) 1.18479 0.0983917
\(146\) 2.74422 0.227113
\(147\) 0 0
\(148\) −19.4611 −1.59969
\(149\) −5.61856 −0.460290 −0.230145 0.973156i \(-0.573920\pi\)
−0.230145 + 0.973156i \(0.573920\pi\)
\(150\) 0 0
\(151\) −16.5107 −1.34362 −0.671812 0.740721i \(-0.734484\pi\)
−0.671812 + 0.740721i \(0.734484\pi\)
\(152\) 6.10607 0.495267
\(153\) 0 0
\(154\) −2.63816 −0.212589
\(155\) 13.3405 1.07153
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) −15.0865 −1.20021
\(159\) 0 0
\(160\) 11.6382 0.920077
\(161\) 0.640844 0.0505056
\(162\) 0 0
\(163\) −25.0496 −1.96204 −0.981019 0.193911i \(-0.937883\pi\)
−0.981019 + 0.193911i \(0.937883\pi\)
\(164\) 51.7229 4.03888
\(165\) 0 0
\(166\) 12.8726 0.999106
\(167\) 13.0223 1.00769 0.503847 0.863793i \(-0.331917\pi\)
0.503847 + 0.863793i \(0.331917\pi\)
\(168\) 0 0
\(169\) 31.0651 2.38962
\(170\) −13.2344 −1.01503
\(171\) 0 0
\(172\) 25.0574 1.91061
\(173\) 10.9777 0.834620 0.417310 0.908764i \(-0.362973\pi\)
0.417310 + 0.908764i \(0.362973\pi\)
\(174\) 0 0
\(175\) 0.260830 0.0197169
\(176\) −37.4270 −2.82116
\(177\) 0 0
\(178\) 11.9067 0.892447
\(179\) −5.63816 −0.421416 −0.210708 0.977549i \(-0.567577\pi\)
−0.210708 + 0.977549i \(0.567577\pi\)
\(180\) 0 0
\(181\) 22.2003 1.65013 0.825067 0.565035i \(-0.191137\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(182\) −3.10607 −0.230237
\(183\) 0 0
\(184\) 21.1753 1.56106
\(185\) −11.1702 −0.821253
\(186\) 0 0
\(187\) 11.6382 0.851066
\(188\) 44.7674 3.26500
\(189\) 0 0
\(190\) 6.41147 0.465137
\(191\) 2.44562 0.176959 0.0884795 0.996078i \(-0.471799\pi\)
0.0884795 + 0.996078i \(0.471799\pi\)
\(192\) 0 0
\(193\) −8.47060 −0.609727 −0.304864 0.952396i \(-0.598611\pi\)
−0.304864 + 0.952396i \(0.598611\pi\)
\(194\) −22.4466 −1.61157
\(195\) 0 0
\(196\) −30.7297 −2.19498
\(197\) −14.9564 −1.06560 −0.532798 0.846242i \(-0.678859\pi\)
−0.532798 + 0.846242i \(0.678859\pi\)
\(198\) 0 0
\(199\) −6.51249 −0.461658 −0.230829 0.972994i \(-0.574144\pi\)
−0.230829 + 0.972994i \(0.574144\pi\)
\(200\) 8.61856 0.609424
\(201\) 0 0
\(202\) −39.4347 −2.77462
\(203\) 0.0864665 0.00606876
\(204\) 0 0
\(205\) 29.6878 2.07348
\(206\) 25.8949 1.80418
\(207\) 0 0
\(208\) −44.0651 −3.05537
\(209\) −5.63816 −0.389999
\(210\) 0 0
\(211\) 16.1506 1.11186 0.555928 0.831230i \(-0.312363\pi\)
0.555928 + 0.831230i \(0.312363\pi\)
\(212\) 26.9368 1.85002
\(213\) 0 0
\(214\) −45.4671 −3.10807
\(215\) 14.3824 0.980870
\(216\) 0 0
\(217\) 0.973593 0.0660918
\(218\) −26.1702 −1.77247
\(219\) 0 0
\(220\) −62.9796 −4.24608
\(221\) 13.7023 0.921719
\(222\) 0 0
\(223\) −13.0669 −0.875022 −0.437511 0.899213i \(-0.644140\pi\)
−0.437511 + 0.899213i \(0.644140\pi\)
\(224\) 0.849356 0.0567500
\(225\) 0 0
\(226\) 25.9145 1.72380
\(227\) 1.76558 0.117186 0.0585928 0.998282i \(-0.481339\pi\)
0.0585928 + 0.998282i \(0.481339\pi\)
\(228\) 0 0
\(229\) −12.1334 −0.801798 −0.400899 0.916122i \(-0.631302\pi\)
−0.400899 + 0.916122i \(0.631302\pi\)
\(230\) 22.2344 1.46609
\(231\) 0 0
\(232\) 2.85710 0.187578
\(233\) −11.4260 −0.748544 −0.374272 0.927319i \(-0.622107\pi\)
−0.374272 + 0.927319i \(0.622107\pi\)
\(234\) 0 0
\(235\) 25.6955 1.67619
\(236\) 12.7665 0.831029
\(237\) 0 0
\(238\) −0.965852 −0.0626069
\(239\) −10.4270 −0.674464 −0.337232 0.941422i \(-0.609491\pi\)
−0.337232 + 0.941422i \(0.609491\pi\)
\(240\) 0 0
\(241\) 9.40373 0.605748 0.302874 0.953031i \(-0.402054\pi\)
0.302874 + 0.953031i \(0.402054\pi\)
\(242\) 52.6391 3.38377
\(243\) 0 0
\(244\) −55.7529 −3.56921
\(245\) −17.6382 −1.12686
\(246\) 0 0
\(247\) −6.63816 −0.422376
\(248\) 32.1702 2.04281
\(249\) 0 0
\(250\) −23.0077 −1.45514
\(251\) 9.53478 0.601830 0.300915 0.953651i \(-0.402708\pi\)
0.300915 + 0.953651i \(0.402708\pi\)
\(252\) 0 0
\(253\) −19.5526 −1.22926
\(254\) 26.7442 1.67808
\(255\) 0 0
\(256\) −30.5030 −1.90644
\(257\) −11.3628 −0.708791 −0.354395 0.935096i \(-0.615313\pi\)
−0.354395 + 0.935096i \(0.615313\pi\)
\(258\) 0 0
\(259\) −0.815207 −0.0506545
\(260\) −74.1498 −4.59858
\(261\) 0 0
\(262\) 18.3678 1.13477
\(263\) −20.0205 −1.23452 −0.617260 0.786760i \(-0.711757\pi\)
−0.617260 + 0.786760i \(0.711757\pi\)
\(264\) 0 0
\(265\) 15.4611 0.949768
\(266\) 0.467911 0.0286895
\(267\) 0 0
\(268\) 4.22668 0.258186
\(269\) −4.45100 −0.271382 −0.135691 0.990751i \(-0.543325\pi\)
−0.135691 + 0.990751i \(0.543325\pi\)
\(270\) 0 0
\(271\) −26.9905 −1.63956 −0.819778 0.572681i \(-0.805903\pi\)
−0.819778 + 0.572681i \(0.805903\pi\)
\(272\) −13.7023 −0.830826
\(273\) 0 0
\(274\) −3.77332 −0.227955
\(275\) −7.95811 −0.479892
\(276\) 0 0
\(277\) 17.3182 1.04055 0.520275 0.853999i \(-0.325829\pi\)
0.520275 + 0.853999i \(0.325829\pi\)
\(278\) 30.6604 1.83889
\(279\) 0 0
\(280\) 2.85710 0.170744
\(281\) 2.06418 0.123139 0.0615693 0.998103i \(-0.480389\pi\)
0.0615693 + 0.998103i \(0.480389\pi\)
\(282\) 0 0
\(283\) 1.17705 0.0699685 0.0349842 0.999388i \(-0.488862\pi\)
0.0349842 + 0.999388i \(0.488862\pi\)
\(284\) 29.0009 1.72089
\(285\) 0 0
\(286\) 94.7684 5.60377
\(287\) 2.16662 0.127892
\(288\) 0 0
\(289\) −12.7392 −0.749363
\(290\) 3.00000 0.176166
\(291\) 0 0
\(292\) 4.78106 0.279790
\(293\) 24.5107 1.43193 0.715966 0.698135i \(-0.245986\pi\)
0.715966 + 0.698135i \(0.245986\pi\)
\(294\) 0 0
\(295\) 7.32770 0.426635
\(296\) −26.9368 −1.56567
\(297\) 0 0
\(298\) −14.2267 −0.824130
\(299\) −23.0205 −1.33131
\(300\) 0 0
\(301\) 1.04963 0.0604997
\(302\) −41.8066 −2.40570
\(303\) 0 0
\(304\) 6.63816 0.380724
\(305\) −32.0009 −1.83237
\(306\) 0 0
\(307\) 19.6209 1.11983 0.559913 0.828552i \(-0.310835\pi\)
0.559913 + 0.828552i \(0.310835\pi\)
\(308\) −4.59627 −0.261897
\(309\) 0 0
\(310\) 33.7793 1.91854
\(311\) 7.40373 0.419827 0.209914 0.977720i \(-0.432682\pi\)
0.209914 + 0.977720i \(0.432682\pi\)
\(312\) 0 0
\(313\) −24.3756 −1.37779 −0.688894 0.724862i \(-0.741904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(314\) 12.6604 0.714470
\(315\) 0 0
\(316\) −26.2841 −1.47859
\(317\) 6.23173 0.350009 0.175005 0.984568i \(-0.444006\pi\)
0.175005 + 0.984568i \(0.444006\pi\)
\(318\) 0 0
\(319\) −2.63816 −0.147708
\(320\) −4.14796 −0.231878
\(321\) 0 0
\(322\) 1.62267 0.0904281
\(323\) −2.06418 −0.114854
\(324\) 0 0
\(325\) −9.36959 −0.519731
\(326\) −63.4279 −3.51295
\(327\) 0 0
\(328\) 71.5913 3.95297
\(329\) 1.87527 0.103387
\(330\) 0 0
\(331\) −21.5185 −1.18276 −0.591381 0.806392i \(-0.701417\pi\)
−0.591381 + 0.806392i \(0.701417\pi\)
\(332\) 22.4270 1.23084
\(333\) 0 0
\(334\) 32.9736 1.80423
\(335\) 2.42602 0.132548
\(336\) 0 0
\(337\) 17.3851 0.947025 0.473512 0.880787i \(-0.342986\pi\)
0.473512 + 0.880787i \(0.342986\pi\)
\(338\) 78.6596 4.27852
\(339\) 0 0
\(340\) −23.0574 −1.25046
\(341\) −29.7050 −1.60862
\(342\) 0 0
\(343\) −2.58079 −0.139349
\(344\) 34.6827 1.86997
\(345\) 0 0
\(346\) 27.7965 1.49435
\(347\) 5.00093 0.268464 0.134232 0.990950i \(-0.457143\pi\)
0.134232 + 0.990950i \(0.457143\pi\)
\(348\) 0 0
\(349\) −5.57903 −0.298639 −0.149319 0.988789i \(-0.547708\pi\)
−0.149319 + 0.988789i \(0.547708\pi\)
\(350\) 0.660444 0.0353022
\(351\) 0 0
\(352\) −25.9145 −1.38125
\(353\) 28.0651 1.49376 0.746878 0.664962i \(-0.231552\pi\)
0.746878 + 0.664962i \(0.231552\pi\)
\(354\) 0 0
\(355\) 16.6459 0.883472
\(356\) 20.7442 1.09944
\(357\) 0 0
\(358\) −14.2763 −0.754527
\(359\) −4.63547 −0.244651 −0.122325 0.992490i \(-0.539035\pi\)
−0.122325 + 0.992490i \(0.539035\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 56.2131 2.95449
\(363\) 0 0
\(364\) −5.41147 −0.283638
\(365\) 2.74422 0.143639
\(366\) 0 0
\(367\) 16.8307 0.878555 0.439277 0.898351i \(-0.355235\pi\)
0.439277 + 0.898351i \(0.355235\pi\)
\(368\) 23.0205 1.20003
\(369\) 0 0
\(370\) −28.2841 −1.47042
\(371\) 1.12836 0.0585813
\(372\) 0 0
\(373\) −19.5107 −1.01023 −0.505114 0.863053i \(-0.668549\pi\)
−0.505114 + 0.863053i \(0.668549\pi\)
\(374\) 29.4688 1.52380
\(375\) 0 0
\(376\) 61.9641 3.19555
\(377\) −3.10607 −0.159971
\(378\) 0 0
\(379\) 23.9718 1.23135 0.615675 0.788000i \(-0.288883\pi\)
0.615675 + 0.788000i \(0.288883\pi\)
\(380\) 11.1702 0.573021
\(381\) 0 0
\(382\) 6.19253 0.316838
\(383\) −5.31551 −0.271610 −0.135805 0.990736i \(-0.543362\pi\)
−0.135805 + 0.990736i \(0.543362\pi\)
\(384\) 0 0
\(385\) −2.63816 −0.134453
\(386\) −21.4483 −1.09169
\(387\) 0 0
\(388\) −39.1070 −1.98536
\(389\) 9.49113 0.481220 0.240610 0.970622i \(-0.422653\pi\)
0.240610 + 0.970622i \(0.422653\pi\)
\(390\) 0 0
\(391\) −7.15839 −0.362015
\(392\) −42.5340 −2.14829
\(393\) 0 0
\(394\) −37.8708 −1.90790
\(395\) −15.0865 −0.759083
\(396\) 0 0
\(397\) 32.3851 1.62536 0.812680 0.582710i \(-0.198008\pi\)
0.812680 + 0.582710i \(0.198008\pi\)
\(398\) −16.4902 −0.826579
\(399\) 0 0
\(400\) 9.36959 0.468479
\(401\) −27.2550 −1.36105 −0.680524 0.732726i \(-0.738248\pi\)
−0.680524 + 0.732726i \(0.738248\pi\)
\(402\) 0 0
\(403\) −34.9736 −1.74216
\(404\) −68.7042 −3.41816
\(405\) 0 0
\(406\) 0.218941 0.0108658
\(407\) 24.8726 1.23289
\(408\) 0 0
\(409\) −3.03415 −0.150029 −0.0750145 0.997182i \(-0.523900\pi\)
−0.0750145 + 0.997182i \(0.523900\pi\)
\(410\) 75.1721 3.71249
\(411\) 0 0
\(412\) 45.1147 2.22264
\(413\) 0.534777 0.0263147
\(414\) 0 0
\(415\) 12.8726 0.631890
\(416\) −30.5107 −1.49591
\(417\) 0 0
\(418\) −14.2763 −0.698277
\(419\) 13.2344 0.646544 0.323272 0.946306i \(-0.395217\pi\)
0.323272 + 0.946306i \(0.395217\pi\)
\(420\) 0 0
\(421\) −2.18479 −0.106480 −0.0532401 0.998582i \(-0.516955\pi\)
−0.0532401 + 0.998582i \(0.516955\pi\)
\(422\) 40.8949 1.99073
\(423\) 0 0
\(424\) 37.2841 1.81067
\(425\) −2.91353 −0.141327
\(426\) 0 0
\(427\) −2.33544 −0.113020
\(428\) −79.2140 −3.82895
\(429\) 0 0
\(430\) 36.4175 1.75621
\(431\) 6.06242 0.292017 0.146008 0.989283i \(-0.453357\pi\)
0.146008 + 0.989283i \(0.453357\pi\)
\(432\) 0 0
\(433\) −17.4037 −0.836370 −0.418185 0.908362i \(-0.637334\pi\)
−0.418185 + 0.908362i \(0.637334\pi\)
\(434\) 2.46522 0.118334
\(435\) 0 0
\(436\) −45.5945 −2.18358
\(437\) 3.46791 0.165893
\(438\) 0 0
\(439\) −10.9162 −0.521003 −0.260501 0.965473i \(-0.583888\pi\)
−0.260501 + 0.965473i \(0.583888\pi\)
\(440\) −87.1721 −4.15577
\(441\) 0 0
\(442\) 34.6955 1.65030
\(443\) −5.89393 −0.280029 −0.140015 0.990149i \(-0.544715\pi\)
−0.140015 + 0.990149i \(0.544715\pi\)
\(444\) 0 0
\(445\) 11.9067 0.564433
\(446\) −33.0865 −1.56669
\(447\) 0 0
\(448\) −0.302719 −0.0143021
\(449\) 6.99825 0.330268 0.165134 0.986271i \(-0.447194\pi\)
0.165134 + 0.986271i \(0.447194\pi\)
\(450\) 0 0
\(451\) −66.1052 −3.11277
\(452\) 45.1489 2.12363
\(453\) 0 0
\(454\) 4.47060 0.209816
\(455\) −3.10607 −0.145615
\(456\) 0 0
\(457\) −24.1566 −1.13000 −0.565000 0.825091i \(-0.691124\pi\)
−0.565000 + 0.825091i \(0.691124\pi\)
\(458\) −30.7229 −1.43559
\(459\) 0 0
\(460\) 38.7374 1.80614
\(461\) −12.1497 −0.565868 −0.282934 0.959139i \(-0.591308\pi\)
−0.282934 + 0.959139i \(0.591308\pi\)
\(462\) 0 0
\(463\) 36.1411 1.67962 0.839811 0.542879i \(-0.182666\pi\)
0.839811 + 0.542879i \(0.182666\pi\)
\(464\) 3.10607 0.144196
\(465\) 0 0
\(466\) −28.9317 −1.34024
\(467\) 23.4020 1.08291 0.541457 0.840728i \(-0.317873\pi\)
0.541457 + 0.840728i \(0.317873\pi\)
\(468\) 0 0
\(469\) 0.177052 0.00817549
\(470\) 65.0634 3.00115
\(471\) 0 0
\(472\) 17.6705 0.813353
\(473\) −32.0250 −1.47251
\(474\) 0 0
\(475\) 1.41147 0.0647629
\(476\) −1.68273 −0.0771279
\(477\) 0 0
\(478\) −26.4020 −1.20760
\(479\) −3.40467 −0.155563 −0.0777816 0.996970i \(-0.524784\pi\)
−0.0777816 + 0.996970i \(0.524784\pi\)
\(480\) 0 0
\(481\) 29.2841 1.33524
\(482\) 23.8111 1.08457
\(483\) 0 0
\(484\) 91.7093 4.16860
\(485\) −22.4466 −1.01925
\(486\) 0 0
\(487\) 25.1070 1.13771 0.568853 0.822439i \(-0.307387\pi\)
0.568853 + 0.822439i \(0.307387\pi\)
\(488\) −77.1694 −3.49330
\(489\) 0 0
\(490\) −44.6614 −2.01760
\(491\) −3.70409 −0.167163 −0.0835816 0.996501i \(-0.526636\pi\)
−0.0835816 + 0.996501i \(0.526636\pi\)
\(492\) 0 0
\(493\) −0.965852 −0.0434998
\(494\) −16.8084 −0.756246
\(495\) 0 0
\(496\) 34.9736 1.57036
\(497\) 1.21482 0.0544922
\(498\) 0 0
\(499\) −8.78880 −0.393441 −0.196720 0.980460i \(-0.563029\pi\)
−0.196720 + 0.980460i \(0.563029\pi\)
\(500\) −40.0847 −1.79264
\(501\) 0 0
\(502\) 24.1429 1.07755
\(503\) 5.49289 0.244916 0.122458 0.992474i \(-0.460922\pi\)
0.122458 + 0.992474i \(0.460922\pi\)
\(504\) 0 0
\(505\) −39.4347 −1.75482
\(506\) −49.5090 −2.20094
\(507\) 0 0
\(508\) 46.5945 2.06730
\(509\) −28.0178 −1.24187 −0.620935 0.783862i \(-0.713247\pi\)
−0.620935 + 0.783862i \(0.713247\pi\)
\(510\) 0 0
\(511\) 0.200274 0.00885960
\(512\) −50.5553 −2.23425
\(513\) 0 0
\(514\) −28.7716 −1.26906
\(515\) 25.8949 1.14106
\(516\) 0 0
\(517\) −57.2158 −2.51635
\(518\) −2.06418 −0.0906948
\(519\) 0 0
\(520\) −102.633 −4.50076
\(521\) 30.3851 1.33119 0.665597 0.746311i \(-0.268177\pi\)
0.665597 + 0.746311i \(0.268177\pi\)
\(522\) 0 0
\(523\) 2.16931 0.0948573 0.0474287 0.998875i \(-0.484897\pi\)
0.0474287 + 0.998875i \(0.484897\pi\)
\(524\) 32.0009 1.39797
\(525\) 0 0
\(526\) −50.6938 −2.21035
\(527\) −10.8753 −0.473734
\(528\) 0 0
\(529\) −10.9736 −0.477113
\(530\) 39.1489 1.70052
\(531\) 0 0
\(532\) 0.815207 0.0353437
\(533\) −77.8299 −3.37119
\(534\) 0 0
\(535\) −45.4671 −1.96571
\(536\) 5.85029 0.252694
\(537\) 0 0
\(538\) −11.2703 −0.485898
\(539\) 39.2746 1.69167
\(540\) 0 0
\(541\) 17.3414 0.745566 0.372783 0.927919i \(-0.378404\pi\)
0.372783 + 0.927919i \(0.378404\pi\)
\(542\) −68.3424 −2.93556
\(543\) 0 0
\(544\) −9.48751 −0.406774
\(545\) −26.1702 −1.12101
\(546\) 0 0
\(547\) 11.9831 0.512360 0.256180 0.966629i \(-0.417536\pi\)
0.256180 + 0.966629i \(0.417536\pi\)
\(548\) −6.57398 −0.280826
\(549\) 0 0
\(550\) −20.1506 −0.859226
\(551\) 0.467911 0.0199337
\(552\) 0 0
\(553\) −1.10101 −0.0468199
\(554\) 43.8512 1.86306
\(555\) 0 0
\(556\) 53.4175 2.26540
\(557\) −19.4233 −0.822993 −0.411497 0.911411i \(-0.634994\pi\)
−0.411497 + 0.911411i \(0.634994\pi\)
\(558\) 0 0
\(559\) −37.7050 −1.59475
\(560\) 3.10607 0.131255
\(561\) 0 0
\(562\) 5.22668 0.220474
\(563\) −23.9564 −1.00964 −0.504820 0.863225i \(-0.668441\pi\)
−0.504820 + 0.863225i \(0.668441\pi\)
\(564\) 0 0
\(565\) 25.9145 1.09023
\(566\) 2.98040 0.125276
\(567\) 0 0
\(568\) 40.1411 1.68429
\(569\) 27.0232 1.13287 0.566436 0.824106i \(-0.308322\pi\)
0.566436 + 0.824106i \(0.308322\pi\)
\(570\) 0 0
\(571\) −13.6477 −0.571136 −0.285568 0.958358i \(-0.592182\pi\)
−0.285568 + 0.958358i \(0.592182\pi\)
\(572\) 165.108 6.90351
\(573\) 0 0
\(574\) 5.48608 0.228985
\(575\) 4.89487 0.204130
\(576\) 0 0
\(577\) −30.4252 −1.26662 −0.633309 0.773899i \(-0.718304\pi\)
−0.633309 + 0.773899i \(0.718304\pi\)
\(578\) −32.2567 −1.34170
\(579\) 0 0
\(580\) 5.22668 0.217026
\(581\) 0.939444 0.0389747
\(582\) 0 0
\(583\) −34.4270 −1.42582
\(584\) 6.61762 0.273839
\(585\) 0 0
\(586\) 62.0634 2.56381
\(587\) 12.3378 0.509236 0.254618 0.967042i \(-0.418050\pi\)
0.254618 + 0.967042i \(0.418050\pi\)
\(588\) 0 0
\(589\) 5.26857 0.217088
\(590\) 18.5544 0.763872
\(591\) 0 0
\(592\) −29.2841 −1.20357
\(593\) 3.51155 0.144202 0.0721011 0.997397i \(-0.477030\pi\)
0.0721011 + 0.997397i \(0.477030\pi\)
\(594\) 0 0
\(595\) −0.965852 −0.0395961
\(596\) −24.7861 −1.01528
\(597\) 0 0
\(598\) −58.2900 −2.38366
\(599\) −34.7060 −1.41805 −0.709023 0.705185i \(-0.750864\pi\)
−0.709023 + 0.705185i \(0.750864\pi\)
\(600\) 0 0
\(601\) 38.6536 1.57671 0.788357 0.615218i \(-0.210932\pi\)
0.788357 + 0.615218i \(0.210932\pi\)
\(602\) 2.65776 0.108322
\(603\) 0 0
\(604\) −72.8367 −2.96368
\(605\) 52.6391 2.14008
\(606\) 0 0
\(607\) 26.3354 1.06892 0.534461 0.845193i \(-0.320515\pi\)
0.534461 + 0.845193i \(0.320515\pi\)
\(608\) 4.59627 0.186403
\(609\) 0 0
\(610\) −81.0292 −3.28078
\(611\) −67.3637 −2.72524
\(612\) 0 0
\(613\) 3.51216 0.141855 0.0709275 0.997481i \(-0.477404\pi\)
0.0709275 + 0.997481i \(0.477404\pi\)
\(614\) 49.6819 2.00500
\(615\) 0 0
\(616\) −6.36184 −0.256326
\(617\) −23.6658 −0.952750 −0.476375 0.879242i \(-0.658050\pi\)
−0.476375 + 0.879242i \(0.658050\pi\)
\(618\) 0 0
\(619\) −4.94263 −0.198661 −0.0993305 0.995054i \(-0.531670\pi\)
−0.0993305 + 0.995054i \(0.531670\pi\)
\(620\) 58.8512 2.36352
\(621\) 0 0
\(622\) 18.7469 0.751683
\(623\) 0.868956 0.0348140
\(624\) 0 0
\(625\) −30.0651 −1.20260
\(626\) −61.7211 −2.46687
\(627\) 0 0
\(628\) 22.0574 0.880185
\(629\) 9.10607 0.363083
\(630\) 0 0
\(631\) −0.468845 −0.0186644 −0.00933221 0.999956i \(-0.502971\pi\)
−0.00933221 + 0.999956i \(0.502971\pi\)
\(632\) −36.3806 −1.44714
\(633\) 0 0
\(634\) 15.7793 0.626676
\(635\) 26.7442 1.06131
\(636\) 0 0
\(637\) 46.2404 1.83211
\(638\) −6.68004 −0.264466
\(639\) 0 0
\(640\) −33.7793 −1.33524
\(641\) 18.5303 0.731904 0.365952 0.930634i \(-0.380743\pi\)
0.365952 + 0.930634i \(0.380743\pi\)
\(642\) 0 0
\(643\) 4.68180 0.184632 0.0923161 0.995730i \(-0.470573\pi\)
0.0923161 + 0.995730i \(0.470573\pi\)
\(644\) 2.82707 0.111402
\(645\) 0 0
\(646\) −5.22668 −0.205641
\(647\) 44.4688 1.74825 0.874125 0.485700i \(-0.161435\pi\)
0.874125 + 0.485700i \(0.161435\pi\)
\(648\) 0 0
\(649\) −16.3164 −0.640477
\(650\) −23.7246 −0.930556
\(651\) 0 0
\(652\) −110.506 −4.32774
\(653\) −15.5107 −0.606982 −0.303491 0.952834i \(-0.598152\pi\)
−0.303491 + 0.952834i \(0.598152\pi\)
\(654\) 0 0
\(655\) 18.3678 0.717691
\(656\) 77.8299 3.03875
\(657\) 0 0
\(658\) 4.74834 0.185110
\(659\) −27.8253 −1.08392 −0.541960 0.840404i \(-0.682318\pi\)
−0.541960 + 0.840404i \(0.682318\pi\)
\(660\) 0 0
\(661\) 8.92221 0.347034 0.173517 0.984831i \(-0.444487\pi\)
0.173517 + 0.984831i \(0.444487\pi\)
\(662\) −54.4867 −2.11769
\(663\) 0 0
\(664\) 31.0419 1.20466
\(665\) 0.467911 0.0181448
\(666\) 0 0
\(667\) 1.62267 0.0628302
\(668\) 57.4475 2.22271
\(669\) 0 0
\(670\) 6.14290 0.237321
\(671\) 71.2559 2.75080
\(672\) 0 0
\(673\) 24.8648 0.958469 0.479235 0.877687i \(-0.340914\pi\)
0.479235 + 0.877687i \(0.340914\pi\)
\(674\) 44.0205 1.69561
\(675\) 0 0
\(676\) 137.043 5.27088
\(677\) −29.2995 −1.12607 −0.563036 0.826432i \(-0.690367\pi\)
−0.563036 + 0.826432i \(0.690367\pi\)
\(678\) 0 0
\(679\) −1.63816 −0.0628666
\(680\) −31.9145 −1.22386
\(681\) 0 0
\(682\) −75.2158 −2.88016
\(683\) 26.4688 1.01280 0.506401 0.862298i \(-0.330976\pi\)
0.506401 + 0.862298i \(0.330976\pi\)
\(684\) 0 0
\(685\) −3.77332 −0.144171
\(686\) −6.53478 −0.249499
\(687\) 0 0
\(688\) 37.7050 1.43749
\(689\) −40.5330 −1.54419
\(690\) 0 0
\(691\) −3.80747 −0.144843 −0.0724214 0.997374i \(-0.523073\pi\)
−0.0724214 + 0.997374i \(0.523073\pi\)
\(692\) 48.4279 1.84095
\(693\) 0 0
\(694\) 12.6628 0.480674
\(695\) 30.6604 1.16302
\(696\) 0 0
\(697\) −24.2017 −0.916705
\(698\) −14.1266 −0.534700
\(699\) 0 0
\(700\) 1.15064 0.0434903
\(701\) 38.6222 1.45874 0.729370 0.684120i \(-0.239813\pi\)
0.729370 + 0.684120i \(0.239813\pi\)
\(702\) 0 0
\(703\) −4.41147 −0.166382
\(704\) 9.23618 0.348102
\(705\) 0 0
\(706\) 71.0634 2.67450
\(707\) −2.87795 −0.108237
\(708\) 0 0
\(709\) 16.2327 0.609631 0.304815 0.952411i \(-0.401405\pi\)
0.304815 + 0.952411i \(0.401405\pi\)
\(710\) 42.1489 1.58182
\(711\) 0 0
\(712\) 28.7128 1.07606
\(713\) 18.2709 0.684252
\(714\) 0 0
\(715\) 94.7684 3.54414
\(716\) −24.8726 −0.929532
\(717\) 0 0
\(718\) −11.7374 −0.438036
\(719\) 3.06324 0.114240 0.0571199 0.998367i \(-0.481808\pi\)
0.0571199 + 0.998367i \(0.481808\pi\)
\(720\) 0 0
\(721\) 1.88981 0.0703804
\(722\) 2.53209 0.0942346
\(723\) 0 0
\(724\) 97.9359 3.63976
\(725\) 0.660444 0.0245283
\(726\) 0 0
\(727\) −26.9145 −0.998202 −0.499101 0.866544i \(-0.666336\pi\)
−0.499101 + 0.866544i \(0.666336\pi\)
\(728\) −7.49020 −0.277605
\(729\) 0 0
\(730\) 6.94862 0.257180
\(731\) −11.7246 −0.433651
\(732\) 0 0
\(733\) 12.8557 0.474835 0.237417 0.971408i \(-0.423699\pi\)
0.237417 + 0.971408i \(0.423699\pi\)
\(734\) 42.6168 1.57301
\(735\) 0 0
\(736\) 15.9394 0.587536
\(737\) −5.40198 −0.198984
\(738\) 0 0
\(739\) −20.0215 −0.736502 −0.368251 0.929726i \(-0.620043\pi\)
−0.368251 + 0.929726i \(0.620043\pi\)
\(740\) −49.2772 −1.81147
\(741\) 0 0
\(742\) 2.85710 0.104887
\(743\) −9.78611 −0.359018 −0.179509 0.983756i \(-0.557451\pi\)
−0.179509 + 0.983756i \(0.557451\pi\)
\(744\) 0 0
\(745\) −14.2267 −0.521225
\(746\) −49.4029 −1.80877
\(747\) 0 0
\(748\) 51.3414 1.87723
\(749\) −3.31820 −0.121244
\(750\) 0 0
\(751\) −5.23442 −0.191007 −0.0955034 0.995429i \(-0.530446\pi\)
−0.0955034 + 0.995429i \(0.530446\pi\)
\(752\) 67.3637 2.45650
\(753\) 0 0
\(754\) −7.86484 −0.286420
\(755\) −41.8066 −1.52150
\(756\) 0 0
\(757\) −4.73885 −0.172236 −0.0861181 0.996285i \(-0.527446\pi\)
−0.0861181 + 0.996285i \(0.527446\pi\)
\(758\) 60.6988 2.20468
\(759\) 0 0
\(760\) 15.4611 0.560833
\(761\) 1.23442 0.0447478 0.0223739 0.999750i \(-0.492878\pi\)
0.0223739 + 0.999750i \(0.492878\pi\)
\(762\) 0 0
\(763\) −1.90991 −0.0691434
\(764\) 10.7888 0.390325
\(765\) 0 0
\(766\) −13.4593 −0.486306
\(767\) −19.2104 −0.693647
\(768\) 0 0
\(769\) −32.9813 −1.18934 −0.594669 0.803971i \(-0.702717\pi\)
−0.594669 + 0.803971i \(0.702717\pi\)
\(770\) −6.68004 −0.240732
\(771\) 0 0
\(772\) −37.3678 −1.34490
\(773\) −24.3610 −0.876205 −0.438103 0.898925i \(-0.644349\pi\)
−0.438103 + 0.898925i \(0.644349\pi\)
\(774\) 0 0
\(775\) 7.43645 0.267125
\(776\) −54.1293 −1.94313
\(777\) 0 0
\(778\) 24.0324 0.861603
\(779\) 11.7246 0.420078
\(780\) 0 0
\(781\) −37.0651 −1.32629
\(782\) −18.1257 −0.648173
\(783\) 0 0
\(784\) −46.2404 −1.65144
\(785\) 12.6604 0.451871
\(786\) 0 0
\(787\) −3.79023 −0.135107 −0.0675536 0.997716i \(-0.521519\pi\)
−0.0675536 + 0.997716i \(0.521519\pi\)
\(788\) −65.9796 −2.35043
\(789\) 0 0
\(790\) −38.2003 −1.35910
\(791\) 1.89124 0.0672449
\(792\) 0 0
\(793\) 83.8940 2.97916
\(794\) 82.0019 2.91014
\(795\) 0 0
\(796\) −28.7297 −1.01830
\(797\) −1.36009 −0.0481768 −0.0240884 0.999710i \(-0.507668\pi\)
−0.0240884 + 0.999710i \(0.507668\pi\)
\(798\) 0 0
\(799\) −20.9472 −0.741058
\(800\) 6.48751 0.229368
\(801\) 0 0
\(802\) −69.0120 −2.43690
\(803\) −6.11051 −0.215635
\(804\) 0 0
\(805\) 1.62267 0.0571917
\(806\) −88.5562 −3.11926
\(807\) 0 0
\(808\) −95.0958 −3.34546
\(809\) −51.9982 −1.82816 −0.914080 0.405533i \(-0.867086\pi\)
−0.914080 + 0.405533i \(0.867086\pi\)
\(810\) 0 0
\(811\) 48.6611 1.70872 0.854360 0.519681i \(-0.173949\pi\)
0.854360 + 0.519681i \(0.173949\pi\)
\(812\) 0.381445 0.0133861
\(813\) 0 0
\(814\) 62.9796 2.20743
\(815\) −63.4279 −2.22178
\(816\) 0 0
\(817\) 5.68004 0.198720
\(818\) −7.68273 −0.268620
\(819\) 0 0
\(820\) 130.967 4.57356
\(821\) 1.50980 0.0526924 0.0263462 0.999653i \(-0.491613\pi\)
0.0263462 + 0.999653i \(0.491613\pi\)
\(822\) 0 0
\(823\) 15.1352 0.527579 0.263789 0.964580i \(-0.415028\pi\)
0.263789 + 0.964580i \(0.415028\pi\)
\(824\) 62.4448 2.17537
\(825\) 0 0
\(826\) 1.35410 0.0471153
\(827\) 11.3672 0.395277 0.197639 0.980275i \(-0.436673\pi\)
0.197639 + 0.980275i \(0.436673\pi\)
\(828\) 0 0
\(829\) 37.7811 1.31219 0.656095 0.754678i \(-0.272207\pi\)
0.656095 + 0.754678i \(0.272207\pi\)
\(830\) 32.5945 1.13137
\(831\) 0 0
\(832\) 10.8743 0.377000
\(833\) 14.3788 0.498194
\(834\) 0 0
\(835\) 32.9736 1.14110
\(836\) −24.8726 −0.860236
\(837\) 0 0
\(838\) 33.5107 1.15761
\(839\) 19.5571 0.675185 0.337592 0.941292i \(-0.390387\pi\)
0.337592 + 0.941292i \(0.390387\pi\)
\(840\) 0 0
\(841\) −28.7811 −0.992450
\(842\) −5.53209 −0.190648
\(843\) 0 0
\(844\) 71.2481 2.45246
\(845\) 78.6596 2.70597
\(846\) 0 0
\(847\) 3.84161 0.131999
\(848\) 40.5330 1.39191
\(849\) 0 0
\(850\) −7.37733 −0.253040
\(851\) −15.2986 −0.524429
\(852\) 0 0
\(853\) −19.1693 −0.656345 −0.328172 0.944618i \(-0.606433\pi\)
−0.328172 + 0.944618i \(0.606433\pi\)
\(854\) −5.91353 −0.202357
\(855\) 0 0
\(856\) −109.643 −3.74751
\(857\) −28.4225 −0.970895 −0.485447 0.874266i \(-0.661343\pi\)
−0.485447 + 0.874266i \(0.661343\pi\)
\(858\) 0 0
\(859\) 13.3432 0.455263 0.227632 0.973747i \(-0.426902\pi\)
0.227632 + 0.973747i \(0.426902\pi\)
\(860\) 63.4475 2.16354
\(861\) 0 0
\(862\) 15.3506 0.522843
\(863\) 3.33862 0.113648 0.0568240 0.998384i \(-0.481903\pi\)
0.0568240 + 0.998384i \(0.481903\pi\)
\(864\) 0 0
\(865\) 27.7965 0.945111
\(866\) −44.0678 −1.49748
\(867\) 0 0
\(868\) 4.29498 0.145781
\(869\) 33.5928 1.13956
\(870\) 0 0
\(871\) −6.36009 −0.215503
\(872\) −63.1089 −2.13714
\(873\) 0 0
\(874\) 8.78106 0.297024
\(875\) −1.67911 −0.0567643
\(876\) 0 0
\(877\) 17.3851 0.587052 0.293526 0.955951i \(-0.405171\pi\)
0.293526 + 0.955951i \(0.405171\pi\)
\(878\) −27.6408 −0.932833
\(879\) 0 0
\(880\) −94.7684 −3.19464
\(881\) 34.5526 1.16411 0.582054 0.813150i \(-0.302249\pi\)
0.582054 + 0.813150i \(0.302249\pi\)
\(882\) 0 0
\(883\) −36.9564 −1.24368 −0.621840 0.783144i \(-0.713615\pi\)
−0.621840 + 0.783144i \(0.713615\pi\)
\(884\) 60.4475 2.03307
\(885\) 0 0
\(886\) −14.9240 −0.501380
\(887\) 41.2131 1.38380 0.691900 0.721994i \(-0.256774\pi\)
0.691900 + 0.721994i \(0.256774\pi\)
\(888\) 0 0
\(889\) 1.95180 0.0654613
\(890\) 30.1489 1.01059
\(891\) 0 0
\(892\) −57.6441 −1.93007
\(893\) 10.1480 0.339588
\(894\) 0 0
\(895\) −14.2763 −0.477204
\(896\) −2.46522 −0.0823573
\(897\) 0 0
\(898\) 17.7202 0.591330
\(899\) 2.46522 0.0822198
\(900\) 0 0
\(901\) −12.6040 −0.419900
\(902\) −167.384 −5.57329
\(903\) 0 0
\(904\) 62.4921 2.07846
\(905\) 56.2131 1.86859
\(906\) 0 0
\(907\) −33.8043 −1.12245 −0.561226 0.827662i \(-0.689670\pi\)
−0.561226 + 0.827662i \(0.689670\pi\)
\(908\) 7.78880 0.258480
\(909\) 0 0
\(910\) −7.86484 −0.260717
\(911\) 35.3432 1.17097 0.585486 0.810683i \(-0.300904\pi\)
0.585486 + 0.810683i \(0.300904\pi\)
\(912\) 0 0
\(913\) −28.6631 −0.948611
\(914\) −61.1667 −2.02322
\(915\) 0 0
\(916\) −53.5262 −1.76856
\(917\) 1.34049 0.0442669
\(918\) 0 0
\(919\) −4.41147 −0.145521 −0.0727606 0.997349i \(-0.523181\pi\)
−0.0727606 + 0.997349i \(0.523181\pi\)
\(920\) 53.6177 1.76772
\(921\) 0 0
\(922\) −30.7641 −1.01316
\(923\) −43.6391 −1.43640
\(924\) 0 0
\(925\) −6.22668 −0.204732
\(926\) 91.5126 3.00729
\(927\) 0 0
\(928\) 2.15064 0.0705984
\(929\) 0.491955 0.0161405 0.00807025 0.999967i \(-0.497431\pi\)
0.00807025 + 0.999967i \(0.497431\pi\)
\(930\) 0 0
\(931\) −6.96585 −0.228297
\(932\) −50.4056 −1.65109
\(933\) 0 0
\(934\) 59.2559 1.93891
\(935\) 29.4688 0.963734
\(936\) 0 0
\(937\) 6.52940 0.213306 0.106653 0.994296i \(-0.465987\pi\)
0.106653 + 0.994296i \(0.465987\pi\)
\(938\) 0.448311 0.0146379
\(939\) 0 0
\(940\) 113.355 3.69724
\(941\) −1.12836 −0.0367833 −0.0183917 0.999831i \(-0.505855\pi\)
−0.0183917 + 0.999831i \(0.505855\pi\)
\(942\) 0 0
\(943\) 40.6599 1.32407
\(944\) 19.2104 0.625245
\(945\) 0 0
\(946\) −81.0901 −2.63647
\(947\) 31.5803 1.02622 0.513111 0.858322i \(-0.328493\pi\)
0.513111 + 0.858322i \(0.328493\pi\)
\(948\) 0 0
\(949\) −7.19429 −0.233536
\(950\) 3.57398 0.115955
\(951\) 0 0
\(952\) −2.32913 −0.0754874
\(953\) 34.1435 1.10602 0.553008 0.833176i \(-0.313480\pi\)
0.553008 + 0.833176i \(0.313480\pi\)
\(954\) 0 0
\(955\) 6.19253 0.200386
\(956\) −45.9982 −1.48769
\(957\) 0 0
\(958\) −8.62092 −0.278529
\(959\) −0.275378 −0.00889241
\(960\) 0 0
\(961\) −3.24216 −0.104586
\(962\) 74.1498 2.39069
\(963\) 0 0
\(964\) 41.4843 1.33612
\(965\) −21.4483 −0.690446
\(966\) 0 0
\(967\) 56.7184 1.82394 0.911971 0.410255i \(-0.134560\pi\)
0.911971 + 0.410255i \(0.134560\pi\)
\(968\) 126.938 4.07994
\(969\) 0 0
\(970\) −56.8367 −1.82492
\(971\) −61.6587 −1.97872 −0.989361 0.145483i \(-0.953526\pi\)
−0.989361 + 0.145483i \(0.953526\pi\)
\(972\) 0 0
\(973\) 2.23761 0.0717344
\(974\) 63.5732 2.03702
\(975\) 0 0
\(976\) −83.8940 −2.68538
\(977\) −2.76382 −0.0884225 −0.0442113 0.999022i \(-0.514077\pi\)
−0.0442113 + 0.999022i \(0.514077\pi\)
\(978\) 0 0
\(979\) −26.5125 −0.847343
\(980\) −77.8103 −2.48556
\(981\) 0 0
\(982\) −9.37908 −0.299298
\(983\) 13.0615 0.416597 0.208298 0.978065i \(-0.433207\pi\)
0.208298 + 0.978065i \(0.433207\pi\)
\(984\) 0 0
\(985\) −37.8708 −1.20666
\(986\) −2.44562 −0.0778845
\(987\) 0 0
\(988\) −29.2841 −0.931650
\(989\) 19.6979 0.626356
\(990\) 0 0
\(991\) 33.4706 1.06323 0.531614 0.846987i \(-0.321586\pi\)
0.531614 + 0.846987i \(0.321586\pi\)
\(992\) 24.2158 0.768851
\(993\) 0 0
\(994\) 3.07604 0.0975660
\(995\) −16.4902 −0.522774
\(996\) 0 0
\(997\) −15.4252 −0.488521 −0.244261 0.969710i \(-0.578545\pi\)
−0.244261 + 0.969710i \(0.578545\pi\)
\(998\) −22.2540 −0.704439
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.a.g.1.3 yes 3
3.2 odd 2 513.2.a.d.1.1 3
4.3 odd 2 8208.2.a.bn.1.3 3
12.11 even 2 8208.2.a.bh.1.1 3
19.18 odd 2 9747.2.a.w.1.1 3
57.56 even 2 9747.2.a.bc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.a.d.1.1 3 3.2 odd 2
513.2.a.g.1.3 yes 3 1.1 even 1 trivial
8208.2.a.bh.1.1 3 12.11 even 2
8208.2.a.bn.1.3 3 4.3 odd 2
9747.2.a.w.1.1 3 19.18 odd 2
9747.2.a.bc.1.3 3 57.56 even 2