Properties

Label 8208.2.a.bh.1.1
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,3,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.53209 q^{5} -0.184793 q^{7} -5.63816 q^{11} -6.63816 q^{13} +2.06418 q^{17} -1.00000 q^{19} +3.46791 q^{23} +1.41147 q^{25} -0.467911 q^{29} -5.26857 q^{31} +0.467911 q^{35} -4.41147 q^{37} -11.7246 q^{41} -5.68004 q^{43} +10.1480 q^{47} -6.96585 q^{49} -6.10607 q^{53} +14.2763 q^{55} +2.89393 q^{59} -12.6382 q^{61} +16.8084 q^{65} -0.958111 q^{67} +6.57398 q^{71} +1.08378 q^{73} +1.04189 q^{77} +5.95811 q^{79} +5.08378 q^{83} -5.22668 q^{85} -4.70233 q^{89} +1.22668 q^{91} +2.53209 q^{95} -8.86484 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 3 q^{7} - 3 q^{13} - 3 q^{17} - 3 q^{19} + 15 q^{23} - 6 q^{25} - 6 q^{29} - 6 q^{31} + 6 q^{35} - 3 q^{37} - 3 q^{41} + 3 q^{43} + 15 q^{47} - 6 q^{53} + 9 q^{55} + 21 q^{59} - 21 q^{61}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.53209 −1.13238 −0.566192 0.824273i \(-0.691584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(6\) 0 0
\(7\) −0.184793 −0.0698450 −0.0349225 0.999390i \(-0.511118\pi\)
−0.0349225 + 0.999390i \(0.511118\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.63816 −1.69997 −0.849984 0.526809i \(-0.823388\pi\)
−0.849984 + 0.526809i \(0.823388\pi\)
\(12\) 0 0
\(13\) −6.63816 −1.84109 −0.920547 0.390633i \(-0.872256\pi\)
−0.920547 + 0.390633i \(0.872256\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.06418 0.500637 0.250318 0.968164i \(-0.419465\pi\)
0.250318 + 0.968164i \(0.419465\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46791 0.723109 0.361555 0.932351i \(-0.382246\pi\)
0.361555 + 0.932351i \(0.382246\pi\)
\(24\) 0 0
\(25\) 1.41147 0.282295
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.467911 −0.0868889 −0.0434445 0.999056i \(-0.513833\pi\)
−0.0434445 + 0.999056i \(0.513833\pi\)
\(30\) 0 0
\(31\) −5.26857 −0.946263 −0.473132 0.880992i \(-0.656876\pi\)
−0.473132 + 0.880992i \(0.656876\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.467911 0.0790914
\(36\) 0 0
\(37\) −4.41147 −0.725242 −0.362621 0.931937i \(-0.618118\pi\)
−0.362621 + 0.931937i \(0.618118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.7246 −1.83108 −0.915539 0.402229i \(-0.868236\pi\)
−0.915539 + 0.402229i \(0.868236\pi\)
\(42\) 0 0
\(43\) −5.68004 −0.866199 −0.433099 0.901346i \(-0.642580\pi\)
−0.433099 + 0.901346i \(0.642580\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.1480 1.48023 0.740116 0.672479i \(-0.234771\pi\)
0.740116 + 0.672479i \(0.234771\pi\)
\(48\) 0 0
\(49\) −6.96585 −0.995122
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.10607 −0.838733 −0.419366 0.907817i \(-0.637748\pi\)
−0.419366 + 0.907817i \(0.637748\pi\)
\(54\) 0 0
\(55\) 14.2763 1.92502
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.89393 0.376758 0.188379 0.982096i \(-0.439677\pi\)
0.188379 + 0.982096i \(0.439677\pi\)
\(60\) 0 0
\(61\) −12.6382 −1.61815 −0.809075 0.587705i \(-0.800031\pi\)
−0.809075 + 0.587705i \(0.800031\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.8084 2.08483
\(66\) 0 0
\(67\) −0.958111 −0.117052 −0.0585259 0.998286i \(-0.518640\pi\)
−0.0585259 + 0.998286i \(0.518640\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.57398 0.780188 0.390094 0.920775i \(-0.372443\pi\)
0.390094 + 0.920775i \(0.372443\pi\)
\(72\) 0 0
\(73\) 1.08378 0.126847 0.0634233 0.997987i \(-0.479798\pi\)
0.0634233 + 0.997987i \(0.479798\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.04189 0.118734
\(78\) 0 0
\(79\) 5.95811 0.670340 0.335170 0.942158i \(-0.391206\pi\)
0.335170 + 0.942158i \(0.391206\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.08378 0.558017 0.279009 0.960289i \(-0.409994\pi\)
0.279009 + 0.960289i \(0.409994\pi\)
\(84\) 0 0
\(85\) −5.22668 −0.566913
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.70233 −0.498446 −0.249223 0.968446i \(-0.580175\pi\)
−0.249223 + 0.968446i \(0.580175\pi\)
\(90\) 0 0
\(91\) 1.22668 0.128591
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.53209 0.259787
\(96\) 0 0
\(97\) −8.86484 −0.900088 −0.450044 0.893006i \(-0.648592\pi\)
−0.450044 + 0.893006i \(0.648592\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.5740 1.54967 0.774834 0.632164i \(-0.217833\pi\)
0.774834 + 0.632164i \(0.217833\pi\)
\(102\) 0 0
\(103\) −10.2267 −1.00766 −0.503832 0.863801i \(-0.668077\pi\)
−0.503832 + 0.863801i \(0.668077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.9564 −1.73591 −0.867953 0.496646i \(-0.834565\pi\)
−0.867953 + 0.496646i \(0.834565\pi\)
\(108\) 0 0
\(109\) −10.3354 −0.989955 −0.494978 0.868906i \(-0.664824\pi\)
−0.494978 + 0.868906i \(0.664824\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.2344 −0.962773 −0.481387 0.876508i \(-0.659867\pi\)
−0.481387 + 0.876508i \(0.659867\pi\)
\(114\) 0 0
\(115\) −8.78106 −0.818838
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.381445 −0.0349670
\(120\) 0 0
\(121\) 20.7888 1.88989
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.08647 0.812718
\(126\) 0 0
\(127\) −10.5621 −0.937236 −0.468618 0.883401i \(-0.655248\pi\)
−0.468618 + 0.883401i \(0.655248\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.25402 0.633787 0.316893 0.948461i \(-0.397360\pi\)
0.316893 + 0.948461i \(0.397360\pi\)
\(132\) 0 0
\(133\) 0.184793 0.0160235
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.49020 0.127316 0.0636582 0.997972i \(-0.479723\pi\)
0.0636582 + 0.997972i \(0.479723\pi\)
\(138\) 0 0
\(139\) −12.1088 −1.02705 −0.513526 0.858074i \(-0.671661\pi\)
−0.513526 + 0.858074i \(0.671661\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 37.4270 3.12980
\(144\) 0 0
\(145\) 1.18479 0.0983917
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.61856 0.460290 0.230145 0.973156i \(-0.426080\pi\)
0.230145 + 0.973156i \(0.426080\pi\)
\(150\) 0 0
\(151\) 16.5107 1.34362 0.671812 0.740721i \(-0.265516\pi\)
0.671812 + 0.740721i \(0.265516\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.3405 1.07153
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.640844 −0.0505056
\(162\) 0 0
\(163\) 25.0496 1.96204 0.981019 0.193911i \(-0.0621172\pi\)
0.981019 + 0.193911i \(0.0621172\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.0223 1.00769 0.503847 0.863793i \(-0.331917\pi\)
0.503847 + 0.863793i \(0.331917\pi\)
\(168\) 0 0
\(169\) 31.0651 2.38962
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.9777 −0.834620 −0.417310 0.908764i \(-0.637027\pi\)
−0.417310 + 0.908764i \(0.637027\pi\)
\(174\) 0 0
\(175\) −0.260830 −0.0197169
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.63816 −0.421416 −0.210708 0.977549i \(-0.567577\pi\)
−0.210708 + 0.977549i \(0.567577\pi\)
\(180\) 0 0
\(181\) 22.2003 1.65013 0.825067 0.565035i \(-0.191137\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.1702 0.821253
\(186\) 0 0
\(187\) −11.6382 −0.851066
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.44562 0.176959 0.0884795 0.996078i \(-0.471799\pi\)
0.0884795 + 0.996078i \(0.471799\pi\)
\(192\) 0 0
\(193\) −8.47060 −0.609727 −0.304864 0.952396i \(-0.598611\pi\)
−0.304864 + 0.952396i \(0.598611\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.9564 1.06560 0.532798 0.846242i \(-0.321141\pi\)
0.532798 + 0.846242i \(0.321141\pi\)
\(198\) 0 0
\(199\) 6.51249 0.461658 0.230829 0.972994i \(-0.425856\pi\)
0.230829 + 0.972994i \(0.425856\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.0864665 0.00606876
\(204\) 0 0
\(205\) 29.6878 2.07348
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.63816 0.389999
\(210\) 0 0
\(211\) −16.1506 −1.11186 −0.555928 0.831230i \(-0.687637\pi\)
−0.555928 + 0.831230i \(0.687637\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.3824 0.980870
\(216\) 0 0
\(217\) 0.973593 0.0660918
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.7023 −0.921719
\(222\) 0 0
\(223\) 13.0669 0.875022 0.437511 0.899213i \(-0.355860\pi\)
0.437511 + 0.899213i \(0.355860\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.76558 0.117186 0.0585928 0.998282i \(-0.481339\pi\)
0.0585928 + 0.998282i \(0.481339\pi\)
\(228\) 0 0
\(229\) −12.1334 −0.801798 −0.400899 0.916122i \(-0.631302\pi\)
−0.400899 + 0.916122i \(0.631302\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.4260 0.748544 0.374272 0.927319i \(-0.377893\pi\)
0.374272 + 0.927319i \(0.377893\pi\)
\(234\) 0 0
\(235\) −25.6955 −1.67619
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.4270 −0.674464 −0.337232 0.941422i \(-0.609491\pi\)
−0.337232 + 0.941422i \(0.609491\pi\)
\(240\) 0 0
\(241\) 9.40373 0.605748 0.302874 0.953031i \(-0.402054\pi\)
0.302874 + 0.953031i \(0.402054\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 17.6382 1.12686
\(246\) 0 0
\(247\) 6.63816 0.422376
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.53478 0.601830 0.300915 0.953651i \(-0.402708\pi\)
0.300915 + 0.953651i \(0.402708\pi\)
\(252\) 0 0
\(253\) −19.5526 −1.22926
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3628 0.708791 0.354395 0.935096i \(-0.384687\pi\)
0.354395 + 0.935096i \(0.384687\pi\)
\(258\) 0 0
\(259\) 0.815207 0.0506545
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −20.0205 −1.23452 −0.617260 0.786760i \(-0.711757\pi\)
−0.617260 + 0.786760i \(0.711757\pi\)
\(264\) 0 0
\(265\) 15.4611 0.949768
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.45100 0.271382 0.135691 0.990751i \(-0.456675\pi\)
0.135691 + 0.990751i \(0.456675\pi\)
\(270\) 0 0
\(271\) 26.9905 1.63956 0.819778 0.572681i \(-0.194097\pi\)
0.819778 + 0.572681i \(0.194097\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.95811 −0.479892
\(276\) 0 0
\(277\) 17.3182 1.04055 0.520275 0.853999i \(-0.325829\pi\)
0.520275 + 0.853999i \(0.325829\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.06418 −0.123139 −0.0615693 0.998103i \(-0.519611\pi\)
−0.0615693 + 0.998103i \(0.519611\pi\)
\(282\) 0 0
\(283\) −1.17705 −0.0699685 −0.0349842 0.999388i \(-0.511138\pi\)
−0.0349842 + 0.999388i \(0.511138\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.16662 0.127892
\(288\) 0 0
\(289\) −12.7392 −0.749363
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.5107 −1.43193 −0.715966 0.698135i \(-0.754014\pi\)
−0.715966 + 0.698135i \(0.754014\pi\)
\(294\) 0 0
\(295\) −7.32770 −0.426635
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −23.0205 −1.33131
\(300\) 0 0
\(301\) 1.04963 0.0604997
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 32.0009 1.83237
\(306\) 0 0
\(307\) −19.6209 −1.11983 −0.559913 0.828552i \(-0.689165\pi\)
−0.559913 + 0.828552i \(0.689165\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.40373 0.419827 0.209914 0.977720i \(-0.432682\pi\)
0.209914 + 0.977720i \(0.432682\pi\)
\(312\) 0 0
\(313\) −24.3756 −1.37779 −0.688894 0.724862i \(-0.741904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.23173 −0.350009 −0.175005 0.984568i \(-0.555994\pi\)
−0.175005 + 0.984568i \(0.555994\pi\)
\(318\) 0 0
\(319\) 2.63816 0.147708
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.06418 −0.114854
\(324\) 0 0
\(325\) −9.36959 −0.519731
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.87527 −0.103387
\(330\) 0 0
\(331\) 21.5185 1.18276 0.591381 0.806392i \(-0.298583\pi\)
0.591381 + 0.806392i \(0.298583\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.42602 0.132548
\(336\) 0 0
\(337\) 17.3851 0.947025 0.473512 0.880787i \(-0.342986\pi\)
0.473512 + 0.880787i \(0.342986\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 29.7050 1.60862
\(342\) 0 0
\(343\) 2.58079 0.139349
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.00093 0.268464 0.134232 0.990950i \(-0.457143\pi\)
0.134232 + 0.990950i \(0.457143\pi\)
\(348\) 0 0
\(349\) −5.57903 −0.298639 −0.149319 0.988789i \(-0.547708\pi\)
−0.149319 + 0.988789i \(0.547708\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −28.0651 −1.49376 −0.746878 0.664962i \(-0.768448\pi\)
−0.746878 + 0.664962i \(0.768448\pi\)
\(354\) 0 0
\(355\) −16.6459 −0.883472
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.63547 −0.244651 −0.122325 0.992490i \(-0.539035\pi\)
−0.122325 + 0.992490i \(0.539035\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.74422 −0.143639
\(366\) 0 0
\(367\) −16.8307 −0.878555 −0.439277 0.898351i \(-0.644765\pi\)
−0.439277 + 0.898351i \(0.644765\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.12836 0.0585813
\(372\) 0 0
\(373\) −19.5107 −1.01023 −0.505114 0.863053i \(-0.668549\pi\)
−0.505114 + 0.863053i \(0.668549\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.10607 0.159971
\(378\) 0 0
\(379\) −23.9718 −1.23135 −0.615675 0.788000i \(-0.711117\pi\)
−0.615675 + 0.788000i \(0.711117\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.31551 −0.271610 −0.135805 0.990736i \(-0.543362\pi\)
−0.135805 + 0.990736i \(0.543362\pi\)
\(384\) 0 0
\(385\) −2.63816 −0.134453
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.49113 −0.481220 −0.240610 0.970622i \(-0.577347\pi\)
−0.240610 + 0.970622i \(0.577347\pi\)
\(390\) 0 0
\(391\) 7.15839 0.362015
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.0865 −0.759083
\(396\) 0 0
\(397\) 32.3851 1.62536 0.812680 0.582710i \(-0.198008\pi\)
0.812680 + 0.582710i \(0.198008\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.2550 1.36105 0.680524 0.732726i \(-0.261752\pi\)
0.680524 + 0.732726i \(0.261752\pi\)
\(402\) 0 0
\(403\) 34.9736 1.74216
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.8726 1.23289
\(408\) 0 0
\(409\) −3.03415 −0.150029 −0.0750145 0.997182i \(-0.523900\pi\)
−0.0750145 + 0.997182i \(0.523900\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.534777 −0.0263147
\(414\) 0 0
\(415\) −12.8726 −0.631890
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.2344 0.646544 0.323272 0.946306i \(-0.395217\pi\)
0.323272 + 0.946306i \(0.395217\pi\)
\(420\) 0 0
\(421\) −2.18479 −0.106480 −0.0532401 0.998582i \(-0.516955\pi\)
−0.0532401 + 0.998582i \(0.516955\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.91353 0.141327
\(426\) 0 0
\(427\) 2.33544 0.113020
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.06242 0.292017 0.146008 0.989283i \(-0.453357\pi\)
0.146008 + 0.989283i \(0.453357\pi\)
\(432\) 0 0
\(433\) −17.4037 −0.836370 −0.418185 0.908362i \(-0.637334\pi\)
−0.418185 + 0.908362i \(0.637334\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.46791 −0.165893
\(438\) 0 0
\(439\) 10.9162 0.521003 0.260501 0.965473i \(-0.416112\pi\)
0.260501 + 0.965473i \(0.416112\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.89393 −0.280029 −0.140015 0.990149i \(-0.544715\pi\)
−0.140015 + 0.990149i \(0.544715\pi\)
\(444\) 0 0
\(445\) 11.9067 0.564433
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.99825 −0.330268 −0.165134 0.986271i \(-0.552806\pi\)
−0.165134 + 0.986271i \(0.552806\pi\)
\(450\) 0 0
\(451\) 66.1052 3.11277
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.10607 −0.145615
\(456\) 0 0
\(457\) −24.1566 −1.13000 −0.565000 0.825091i \(-0.691124\pi\)
−0.565000 + 0.825091i \(0.691124\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.1497 0.565868 0.282934 0.959139i \(-0.408692\pi\)
0.282934 + 0.959139i \(0.408692\pi\)
\(462\) 0 0
\(463\) −36.1411 −1.67962 −0.839811 0.542879i \(-0.817334\pi\)
−0.839811 + 0.542879i \(0.817334\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.4020 1.08291 0.541457 0.840728i \(-0.317873\pi\)
0.541457 + 0.840728i \(0.317873\pi\)
\(468\) 0 0
\(469\) 0.177052 0.00817549
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 32.0250 1.47251
\(474\) 0 0
\(475\) −1.41147 −0.0647629
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.40467 −0.155563 −0.0777816 0.996970i \(-0.524784\pi\)
−0.0777816 + 0.996970i \(0.524784\pi\)
\(480\) 0 0
\(481\) 29.2841 1.33524
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.4466 1.01925
\(486\) 0 0
\(487\) −25.1070 −1.13771 −0.568853 0.822439i \(-0.692613\pi\)
−0.568853 + 0.822439i \(0.692613\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.70409 −0.167163 −0.0835816 0.996501i \(-0.526636\pi\)
−0.0835816 + 0.996501i \(0.526636\pi\)
\(492\) 0 0
\(493\) −0.965852 −0.0434998
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.21482 −0.0544922
\(498\) 0 0
\(499\) 8.78880 0.393441 0.196720 0.980460i \(-0.436971\pi\)
0.196720 + 0.980460i \(0.436971\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.49289 0.244916 0.122458 0.992474i \(-0.460922\pi\)
0.122458 + 0.992474i \(0.460922\pi\)
\(504\) 0 0
\(505\) −39.4347 −1.75482
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.0178 1.24187 0.620935 0.783862i \(-0.286753\pi\)
0.620935 + 0.783862i \(0.286753\pi\)
\(510\) 0 0
\(511\) −0.200274 −0.00885960
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.8949 1.14106
\(516\) 0 0
\(517\) −57.2158 −2.51635
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −30.3851 −1.33119 −0.665597 0.746311i \(-0.731823\pi\)
−0.665597 + 0.746311i \(0.731823\pi\)
\(522\) 0 0
\(523\) −2.16931 −0.0948573 −0.0474287 0.998875i \(-0.515103\pi\)
−0.0474287 + 0.998875i \(0.515103\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.8753 −0.473734
\(528\) 0 0
\(529\) −10.9736 −0.477113
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 77.8299 3.37119
\(534\) 0 0
\(535\) 45.4671 1.96571
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 39.2746 1.69167
\(540\) 0 0
\(541\) 17.3414 0.745566 0.372783 0.927919i \(-0.378404\pi\)
0.372783 + 0.927919i \(0.378404\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.1702 1.12101
\(546\) 0 0
\(547\) −11.9831 −0.512360 −0.256180 0.966629i \(-0.582464\pi\)
−0.256180 + 0.966629i \(0.582464\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.467911 0.0199337
\(552\) 0 0
\(553\) −1.10101 −0.0468199
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.4233 0.822993 0.411497 0.911411i \(-0.365006\pi\)
0.411497 + 0.911411i \(0.365006\pi\)
\(558\) 0 0
\(559\) 37.7050 1.59475
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.9564 −1.00964 −0.504820 0.863225i \(-0.668441\pi\)
−0.504820 + 0.863225i \(0.668441\pi\)
\(564\) 0 0
\(565\) 25.9145 1.09023
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −27.0232 −1.13287 −0.566436 0.824106i \(-0.691678\pi\)
−0.566436 + 0.824106i \(0.691678\pi\)
\(570\) 0 0
\(571\) 13.6477 0.571136 0.285568 0.958358i \(-0.407818\pi\)
0.285568 + 0.958358i \(0.407818\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.89487 0.204130
\(576\) 0 0
\(577\) −30.4252 −1.26662 −0.633309 0.773899i \(-0.718304\pi\)
−0.633309 + 0.773899i \(0.718304\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.939444 −0.0389747
\(582\) 0 0
\(583\) 34.4270 1.42582
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.3378 0.509236 0.254618 0.967042i \(-0.418050\pi\)
0.254618 + 0.967042i \(0.418050\pi\)
\(588\) 0 0
\(589\) 5.26857 0.217088
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.51155 −0.144202 −0.0721011 0.997397i \(-0.522970\pi\)
−0.0721011 + 0.997397i \(0.522970\pi\)
\(594\) 0 0
\(595\) 0.965852 0.0395961
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.7060 −1.41805 −0.709023 0.705185i \(-0.750864\pi\)
−0.709023 + 0.705185i \(0.750864\pi\)
\(600\) 0 0
\(601\) 38.6536 1.57671 0.788357 0.615218i \(-0.210932\pi\)
0.788357 + 0.615218i \(0.210932\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −52.6391 −2.14008
\(606\) 0 0
\(607\) −26.3354 −1.06892 −0.534461 0.845193i \(-0.679485\pi\)
−0.534461 + 0.845193i \(0.679485\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −67.3637 −2.72524
\(612\) 0 0
\(613\) 3.51216 0.141855 0.0709275 0.997481i \(-0.477404\pi\)
0.0709275 + 0.997481i \(0.477404\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.6658 0.952750 0.476375 0.879242i \(-0.341950\pi\)
0.476375 + 0.879242i \(0.341950\pi\)
\(618\) 0 0
\(619\) 4.94263 0.198661 0.0993305 0.995054i \(-0.468330\pi\)
0.0993305 + 0.995054i \(0.468330\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.868956 0.0348140
\(624\) 0 0
\(625\) −30.0651 −1.20260
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.10607 −0.363083
\(630\) 0 0
\(631\) 0.468845 0.0186644 0.00933221 0.999956i \(-0.497029\pi\)
0.00933221 + 0.999956i \(0.497029\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.7442 1.06131
\(636\) 0 0
\(637\) 46.2404 1.83211
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.5303 −0.731904 −0.365952 0.930634i \(-0.619257\pi\)
−0.365952 + 0.930634i \(0.619257\pi\)
\(642\) 0 0
\(643\) −4.68180 −0.184632 −0.0923161 0.995730i \(-0.529427\pi\)
−0.0923161 + 0.995730i \(0.529427\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.4688 1.74825 0.874125 0.485700i \(-0.161435\pi\)
0.874125 + 0.485700i \(0.161435\pi\)
\(648\) 0 0
\(649\) −16.3164 −0.640477
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.5107 0.606982 0.303491 0.952834i \(-0.401848\pi\)
0.303491 + 0.952834i \(0.401848\pi\)
\(654\) 0 0
\(655\) −18.3678 −0.717691
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −27.8253 −1.08392 −0.541960 0.840404i \(-0.682318\pi\)
−0.541960 + 0.840404i \(0.682318\pi\)
\(660\) 0 0
\(661\) 8.92221 0.347034 0.173517 0.984831i \(-0.444487\pi\)
0.173517 + 0.984831i \(0.444487\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.467911 −0.0181448
\(666\) 0 0
\(667\) −1.62267 −0.0628302
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 71.2559 2.75080
\(672\) 0 0
\(673\) 24.8648 0.958469 0.479235 0.877687i \(-0.340914\pi\)
0.479235 + 0.877687i \(0.340914\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.2995 1.12607 0.563036 0.826432i \(-0.309633\pi\)
0.563036 + 0.826432i \(0.309633\pi\)
\(678\) 0 0
\(679\) 1.63816 0.0628666
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.4688 1.01280 0.506401 0.862298i \(-0.330976\pi\)
0.506401 + 0.862298i \(0.330976\pi\)
\(684\) 0 0
\(685\) −3.77332 −0.144171
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.5330 1.54419
\(690\) 0 0
\(691\) 3.80747 0.144843 0.0724214 0.997374i \(-0.476927\pi\)
0.0724214 + 0.997374i \(0.476927\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 30.6604 1.16302
\(696\) 0 0
\(697\) −24.2017 −0.916705
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.6222 −1.45874 −0.729370 0.684120i \(-0.760187\pi\)
−0.729370 + 0.684120i \(0.760187\pi\)
\(702\) 0 0
\(703\) 4.41147 0.166382
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.87795 −0.108237
\(708\) 0 0
\(709\) 16.2327 0.609631 0.304815 0.952411i \(-0.401405\pi\)
0.304815 + 0.952411i \(0.401405\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.2709 −0.684252
\(714\) 0 0
\(715\) −94.7684 −3.54414
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.06324 0.114240 0.0571199 0.998367i \(-0.481808\pi\)
0.0571199 + 0.998367i \(0.481808\pi\)
\(720\) 0 0
\(721\) 1.88981 0.0703804
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.660444 −0.0245283
\(726\) 0 0
\(727\) 26.9145 0.998202 0.499101 0.866544i \(-0.333664\pi\)
0.499101 + 0.866544i \(0.333664\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11.7246 −0.433651
\(732\) 0 0
\(733\) 12.8557 0.474835 0.237417 0.971408i \(-0.423699\pi\)
0.237417 + 0.971408i \(0.423699\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.40198 0.198984
\(738\) 0 0
\(739\) 20.0215 0.736502 0.368251 0.929726i \(-0.379957\pi\)
0.368251 + 0.929726i \(0.379957\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.78611 −0.359018 −0.179509 0.983756i \(-0.557451\pi\)
−0.179509 + 0.983756i \(0.557451\pi\)
\(744\) 0 0
\(745\) −14.2267 −0.521225
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.31820 0.121244
\(750\) 0 0
\(751\) 5.23442 0.191007 0.0955034 0.995429i \(-0.469554\pi\)
0.0955034 + 0.995429i \(0.469554\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −41.8066 −1.52150
\(756\) 0 0
\(757\) −4.73885 −0.172236 −0.0861181 0.996285i \(-0.527446\pi\)
−0.0861181 + 0.996285i \(0.527446\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.23442 −0.0447478 −0.0223739 0.999750i \(-0.507122\pi\)
−0.0223739 + 0.999750i \(0.507122\pi\)
\(762\) 0 0
\(763\) 1.90991 0.0691434
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.2104 −0.693647
\(768\) 0 0
\(769\) −32.9813 −1.18934 −0.594669 0.803971i \(-0.702717\pi\)
−0.594669 + 0.803971i \(0.702717\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.3610 0.876205 0.438103 0.898925i \(-0.355651\pi\)
0.438103 + 0.898925i \(0.355651\pi\)
\(774\) 0 0
\(775\) −7.43645 −0.267125
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.7246 0.420078
\(780\) 0 0
\(781\) −37.0651 −1.32629
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.6604 −0.451871
\(786\) 0 0
\(787\) 3.79023 0.135107 0.0675536 0.997716i \(-0.478481\pi\)
0.0675536 + 0.997716i \(0.478481\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.89124 0.0672449
\(792\) 0 0
\(793\) 83.8940 2.97916
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.36009 0.0481768 0.0240884 0.999710i \(-0.492332\pi\)
0.0240884 + 0.999710i \(0.492332\pi\)
\(798\) 0 0
\(799\) 20.9472 0.741058
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.11051 −0.215635
\(804\) 0 0
\(805\) 1.62267 0.0571917
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.9982 1.82816 0.914080 0.405533i \(-0.132914\pi\)
0.914080 + 0.405533i \(0.132914\pi\)
\(810\) 0 0
\(811\) −48.6611 −1.70872 −0.854360 0.519681i \(-0.826051\pi\)
−0.854360 + 0.519681i \(0.826051\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −63.4279 −2.22178
\(816\) 0 0
\(817\) 5.68004 0.198720
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.50980 −0.0526924 −0.0263462 0.999653i \(-0.508387\pi\)
−0.0263462 + 0.999653i \(0.508387\pi\)
\(822\) 0 0
\(823\) −15.1352 −0.527579 −0.263789 0.964580i \(-0.584972\pi\)
−0.263789 + 0.964580i \(0.584972\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.3672 0.395277 0.197639 0.980275i \(-0.436673\pi\)
0.197639 + 0.980275i \(0.436673\pi\)
\(828\) 0 0
\(829\) 37.7811 1.31219 0.656095 0.754678i \(-0.272207\pi\)
0.656095 + 0.754678i \(0.272207\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14.3788 −0.498194
\(834\) 0 0
\(835\) −32.9736 −1.14110
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.5571 0.675185 0.337592 0.941292i \(-0.390387\pi\)
0.337592 + 0.941292i \(0.390387\pi\)
\(840\) 0 0
\(841\) −28.7811 −0.992450
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −78.6596 −2.70597
\(846\) 0 0
\(847\) −3.84161 −0.131999
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.2986 −0.524429
\(852\) 0 0
\(853\) −19.1693 −0.656345 −0.328172 0.944618i \(-0.606433\pi\)
−0.328172 + 0.944618i \(0.606433\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.4225 0.970895 0.485447 0.874266i \(-0.338657\pi\)
0.485447 + 0.874266i \(0.338657\pi\)
\(858\) 0 0
\(859\) −13.3432 −0.455263 −0.227632 0.973747i \(-0.573098\pi\)
−0.227632 + 0.973747i \(0.573098\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.33862 0.113648 0.0568240 0.998384i \(-0.481903\pi\)
0.0568240 + 0.998384i \(0.481903\pi\)
\(864\) 0 0
\(865\) 27.7965 0.945111
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −33.5928 −1.13956
\(870\) 0 0
\(871\) 6.36009 0.215503
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.67911 −0.0567643
\(876\) 0 0
\(877\) 17.3851 0.587052 0.293526 0.955951i \(-0.405171\pi\)
0.293526 + 0.955951i \(0.405171\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.5526 −1.16411 −0.582054 0.813150i \(-0.697751\pi\)
−0.582054 + 0.813150i \(0.697751\pi\)
\(882\) 0 0
\(883\) 36.9564 1.24368 0.621840 0.783144i \(-0.286385\pi\)
0.621840 + 0.783144i \(0.286385\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.2131 1.38380 0.691900 0.721994i \(-0.256774\pi\)
0.691900 + 0.721994i \(0.256774\pi\)
\(888\) 0 0
\(889\) 1.95180 0.0654613
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.1480 −0.339588
\(894\) 0 0
\(895\) 14.2763 0.477204
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.46522 0.0822198
\(900\) 0 0
\(901\) −12.6040 −0.419900
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −56.2131 −1.86859
\(906\) 0 0
\(907\) 33.8043 1.12245 0.561226 0.827662i \(-0.310330\pi\)
0.561226 + 0.827662i \(0.310330\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 35.3432 1.17097 0.585486 0.810683i \(-0.300904\pi\)
0.585486 + 0.810683i \(0.300904\pi\)
\(912\) 0 0
\(913\) −28.6631 −0.948611
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.34049 −0.0442669
\(918\) 0 0
\(919\) 4.41147 0.145521 0.0727606 0.997349i \(-0.476819\pi\)
0.0727606 + 0.997349i \(0.476819\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −43.6391 −1.43640
\(924\) 0 0
\(925\) −6.22668 −0.204732
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.491955 −0.0161405 −0.00807025 0.999967i \(-0.502569\pi\)
−0.00807025 + 0.999967i \(0.502569\pi\)
\(930\) 0 0
\(931\) 6.96585 0.228297
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 29.4688 0.963734
\(936\) 0 0
\(937\) 6.52940 0.213306 0.106653 0.994296i \(-0.465987\pi\)
0.106653 + 0.994296i \(0.465987\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.12836 0.0367833 0.0183917 0.999831i \(-0.494145\pi\)
0.0183917 + 0.999831i \(0.494145\pi\)
\(942\) 0 0
\(943\) −40.6599 −1.32407
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.5803 1.02622 0.513111 0.858322i \(-0.328493\pi\)
0.513111 + 0.858322i \(0.328493\pi\)
\(948\) 0 0
\(949\) −7.19429 −0.233536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.1435 −1.10602 −0.553008 0.833176i \(-0.686520\pi\)
−0.553008 + 0.833176i \(0.686520\pi\)
\(954\) 0 0
\(955\) −6.19253 −0.200386
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.275378 −0.00889241
\(960\) 0 0
\(961\) −3.24216 −0.104586
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 21.4483 0.690446
\(966\) 0 0
\(967\) −56.7184 −1.82394 −0.911971 0.410255i \(-0.865440\pi\)
−0.911971 + 0.410255i \(0.865440\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −61.6587 −1.97872 −0.989361 0.145483i \(-0.953526\pi\)
−0.989361 + 0.145483i \(0.953526\pi\)
\(972\) 0 0
\(973\) 2.23761 0.0717344
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.76382 0.0884225 0.0442113 0.999022i \(-0.485923\pi\)
0.0442113 + 0.999022i \(0.485923\pi\)
\(978\) 0 0
\(979\) 26.5125 0.847343
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.0615 0.416597 0.208298 0.978065i \(-0.433207\pi\)
0.208298 + 0.978065i \(0.433207\pi\)
\(984\) 0 0
\(985\) −37.8708 −1.20666
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.6979 −0.626356
\(990\) 0 0
\(991\) −33.4706 −1.06323 −0.531614 0.846987i \(-0.678414\pi\)
−0.531614 + 0.846987i \(0.678414\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.4902 −0.522774
\(996\) 0 0
\(997\) −15.4252 −0.488521 −0.244261 0.969710i \(-0.578545\pi\)
−0.244261 + 0.969710i \(0.578545\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bh.1.1 3
3.2 odd 2 8208.2.a.bn.1.3 3
4.3 odd 2 513.2.a.d.1.1 3
12.11 even 2 513.2.a.g.1.3 yes 3
76.75 even 2 9747.2.a.bc.1.3 3
228.227 odd 2 9747.2.a.w.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.a.d.1.1 3 4.3 odd 2
513.2.a.g.1.3 yes 3 12.11 even 2
8208.2.a.bh.1.1 3 1.1 even 1 trivial
8208.2.a.bn.1.3 3 3.2 odd 2
9747.2.a.w.1.1 3 228.227 odd 2
9747.2.a.bc.1.3 3 76.75 even 2