Properties

Label 51.6.a.c.1.4
Level $51$
Weight $6$
Character 51.1
Self dual yes
Analytic conductor $8.180$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,6,Mod(1,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.17957481046\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 117x^{2} + 299x + 1026 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(8.91396\) of defining polynomial
Character \(\chi\) \(=\) 51.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.91396 q^{2} +9.00000 q^{3} +66.2866 q^{4} -19.7859 q^{5} +89.2257 q^{6} +33.0231 q^{7} +339.916 q^{8} +81.0000 q^{9} -196.156 q^{10} +107.108 q^{11} +596.580 q^{12} -770.526 q^{13} +327.390 q^{14} -178.073 q^{15} +1248.75 q^{16} -289.000 q^{17} +803.031 q^{18} +795.202 q^{19} -1311.54 q^{20} +297.208 q^{21} +1061.87 q^{22} -2887.76 q^{23} +3059.25 q^{24} -2733.52 q^{25} -7638.96 q^{26} +729.000 q^{27} +2188.99 q^{28} +1903.63 q^{29} -1765.41 q^{30} +9799.76 q^{31} +1502.69 q^{32} +963.976 q^{33} -2865.13 q^{34} -653.390 q^{35} +5369.22 q^{36} -7375.94 q^{37} +7883.60 q^{38} -6934.73 q^{39} -6725.54 q^{40} +5183.08 q^{41} +2946.51 q^{42} -13657.6 q^{43} +7099.85 q^{44} -1602.66 q^{45} -28629.1 q^{46} +9454.30 q^{47} +11238.7 q^{48} -15716.5 q^{49} -27100.0 q^{50} -2601.00 q^{51} -51075.5 q^{52} +5277.19 q^{53} +7227.28 q^{54} -2119.23 q^{55} +11225.1 q^{56} +7156.82 q^{57} +18872.5 q^{58} +24244.2 q^{59} -11803.8 q^{60} +46903.0 q^{61} +97154.5 q^{62} +2674.87 q^{63} -25062.2 q^{64} +15245.5 q^{65} +9556.82 q^{66} +19204.9 q^{67} -19156.8 q^{68} -25989.8 q^{69} -6477.69 q^{70} +82934.5 q^{71} +27533.2 q^{72} -25898.3 q^{73} -73124.8 q^{74} -24601.7 q^{75} +52711.3 q^{76} +3537.05 q^{77} -68750.7 q^{78} +72070.9 q^{79} -24707.5 q^{80} +6561.00 q^{81} +51384.8 q^{82} +25916.9 q^{83} +19700.9 q^{84} +5718.12 q^{85} -135401. q^{86} +17132.7 q^{87} +36407.9 q^{88} +59658.6 q^{89} -15888.7 q^{90} -25445.1 q^{91} -191420. q^{92} +88197.9 q^{93} +93729.6 q^{94} -15733.8 q^{95} +13524.2 q^{96} -103143. q^{97} -155813. q^{98} +8675.78 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} + 36 q^{3} + 113 q^{4} + 146 q^{5} + 45 q^{6} + 60 q^{7} - 153 q^{8} + 324 q^{9} - 536 q^{10} + 1114 q^{11} + 1017 q^{12} - 166 q^{13} + 1738 q^{14} + 1314 q^{15} + 2745 q^{16} - 1156 q^{17}+ \cdots + 90234 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.91396 1.75256 0.876279 0.481805i \(-0.160019\pi\)
0.876279 + 0.481805i \(0.160019\pi\)
\(3\) 9.00000 0.577350
\(4\) 66.2866 2.07146
\(5\) −19.7859 −0.353940 −0.176970 0.984216i \(-0.556630\pi\)
−0.176970 + 0.984216i \(0.556630\pi\)
\(6\) 89.2257 1.01184
\(7\) 33.0231 0.254726 0.127363 0.991856i \(-0.459349\pi\)
0.127363 + 0.991856i \(0.459349\pi\)
\(8\) 339.916 1.87779
\(9\) 81.0000 0.333333
\(10\) −196.156 −0.620301
\(11\) 107.108 0.266896 0.133448 0.991056i \(-0.457395\pi\)
0.133448 + 0.991056i \(0.457395\pi\)
\(12\) 596.580 1.19596
\(13\) −770.526 −1.26453 −0.632264 0.774753i \(-0.717874\pi\)
−0.632264 + 0.774753i \(0.717874\pi\)
\(14\) 327.390 0.446421
\(15\) −178.073 −0.204348
\(16\) 1248.75 1.21948
\(17\) −289.000 −0.242536
\(18\) 803.031 0.584186
\(19\) 795.202 0.505351 0.252676 0.967551i \(-0.418689\pi\)
0.252676 + 0.967551i \(0.418689\pi\)
\(20\) −1311.54 −0.733172
\(21\) 297.208 0.147066
\(22\) 1061.87 0.467750
\(23\) −2887.76 −1.13826 −0.569129 0.822248i \(-0.692720\pi\)
−0.569129 + 0.822248i \(0.692720\pi\)
\(24\) 3059.25 1.08414
\(25\) −2733.52 −0.874726
\(26\) −7638.96 −2.21616
\(27\) 729.000 0.192450
\(28\) 2188.99 0.527653
\(29\) 1903.63 0.420327 0.210163 0.977666i \(-0.432600\pi\)
0.210163 + 0.977666i \(0.432600\pi\)
\(30\) −1765.41 −0.358131
\(31\) 9799.76 1.83152 0.915759 0.401727i \(-0.131590\pi\)
0.915759 + 0.401727i \(0.131590\pi\)
\(32\) 1502.69 0.259414
\(33\) 963.976 0.154092
\(34\) −2865.13 −0.425058
\(35\) −653.390 −0.0901576
\(36\) 5369.22 0.690486
\(37\) −7375.94 −0.885754 −0.442877 0.896582i \(-0.646042\pi\)
−0.442877 + 0.896582i \(0.646042\pi\)
\(38\) 7883.60 0.885657
\(39\) −6934.73 −0.730076
\(40\) −6725.54 −0.664626
\(41\) 5183.08 0.481535 0.240768 0.970583i \(-0.422601\pi\)
0.240768 + 0.970583i \(0.422601\pi\)
\(42\) 2946.51 0.257741
\(43\) −13657.6 −1.12643 −0.563215 0.826311i \(-0.690436\pi\)
−0.563215 + 0.826311i \(0.690436\pi\)
\(44\) 7099.85 0.552863
\(45\) −1602.66 −0.117980
\(46\) −28629.1 −1.99486
\(47\) 9454.30 0.624288 0.312144 0.950035i \(-0.398953\pi\)
0.312144 + 0.950035i \(0.398953\pi\)
\(48\) 11238.7 0.704066
\(49\) −15716.5 −0.935115
\(50\) −27100.0 −1.53301
\(51\) −2601.00 −0.140028
\(52\) −51075.5 −2.61942
\(53\) 5277.19 0.258056 0.129028 0.991641i \(-0.458814\pi\)
0.129028 + 0.991641i \(0.458814\pi\)
\(54\) 7227.28 0.337280
\(55\) −2119.23 −0.0944652
\(56\) 11225.1 0.478321
\(57\) 7156.82 0.291765
\(58\) 18872.5 0.736647
\(59\) 24244.2 0.906730 0.453365 0.891325i \(-0.350223\pi\)
0.453365 + 0.891325i \(0.350223\pi\)
\(60\) −11803.8 −0.423297
\(61\) 46903.0 1.61390 0.806948 0.590622i \(-0.201118\pi\)
0.806948 + 0.590622i \(0.201118\pi\)
\(62\) 97154.5 3.20984
\(63\) 2674.87 0.0849085
\(64\) −25062.2 −0.764839
\(65\) 15245.5 0.447568
\(66\) 9556.82 0.270056
\(67\) 19204.9 0.522668 0.261334 0.965248i \(-0.415838\pi\)
0.261334 + 0.965248i \(0.415838\pi\)
\(68\) −19156.8 −0.502402
\(69\) −25989.8 −0.657174
\(70\) −6477.69 −0.158006
\(71\) 82934.5 1.95249 0.976246 0.216663i \(-0.0695174\pi\)
0.976246 + 0.216663i \(0.0695174\pi\)
\(72\) 27533.2 0.625930
\(73\) −25898.3 −0.568805 −0.284403 0.958705i \(-0.591795\pi\)
−0.284403 + 0.958705i \(0.591795\pi\)
\(74\) −73124.8 −1.55233
\(75\) −24601.7 −0.505023
\(76\) 52711.3 1.04681
\(77\) 3537.05 0.0679852
\(78\) −68750.7 −1.27950
\(79\) 72070.9 1.29925 0.649624 0.760256i \(-0.274926\pi\)
0.649624 + 0.760256i \(0.274926\pi\)
\(80\) −24707.5 −0.431622
\(81\) 6561.00 0.111111
\(82\) 51384.8 0.843918
\(83\) 25916.9 0.412941 0.206470 0.978453i \(-0.433802\pi\)
0.206470 + 0.978453i \(0.433802\pi\)
\(84\) 19700.9 0.304641
\(85\) 5718.12 0.0858432
\(86\) −135401. −1.97413
\(87\) 17132.7 0.242676
\(88\) 36407.9 0.501174
\(89\) 59658.6 0.798359 0.399180 0.916873i \(-0.369295\pi\)
0.399180 + 0.916873i \(0.369295\pi\)
\(90\) −15888.7 −0.206767
\(91\) −25445.1 −0.322108
\(92\) −191420. −2.35785
\(93\) 88197.9 1.05743
\(94\) 93729.6 1.09410
\(95\) −15733.8 −0.178864
\(96\) 13524.2 0.149773
\(97\) −103143. −1.11304 −0.556520 0.830834i \(-0.687864\pi\)
−0.556520 + 0.830834i \(0.687864\pi\)
\(98\) −155813. −1.63884
\(99\) 8675.78 0.0889653
\(100\) −181196. −1.81196
\(101\) 87667.0 0.855131 0.427565 0.903984i \(-0.359371\pi\)
0.427565 + 0.903984i \(0.359371\pi\)
\(102\) −25786.2 −0.245407
\(103\) −199325. −1.85126 −0.925632 0.378424i \(-0.876466\pi\)
−0.925632 + 0.378424i \(0.876466\pi\)
\(104\) −261914. −2.37452
\(105\) −5880.51 −0.0520525
\(106\) 52317.9 0.452257
\(107\) 36092.0 0.304756 0.152378 0.988322i \(-0.451307\pi\)
0.152378 + 0.988322i \(0.451307\pi\)
\(108\) 48323.0 0.398652
\(109\) 94952.7 0.765493 0.382747 0.923853i \(-0.374978\pi\)
0.382747 + 0.923853i \(0.374978\pi\)
\(110\) −21010.0 −0.165556
\(111\) −66383.5 −0.511390
\(112\) 41237.4 0.310632
\(113\) −143218. −1.05512 −0.527559 0.849518i \(-0.676893\pi\)
−0.527559 + 0.849518i \(0.676893\pi\)
\(114\) 70952.4 0.511335
\(115\) 57136.8 0.402876
\(116\) 126185. 0.870689
\(117\) −62412.6 −0.421510
\(118\) 240356. 1.58910
\(119\) −9543.67 −0.0617800
\(120\) −60529.9 −0.383722
\(121\) −149579. −0.928767
\(122\) 464994. 2.82845
\(123\) 46647.7 0.278015
\(124\) 649593. 3.79391
\(125\) 115916. 0.663541
\(126\) 26518.5 0.148807
\(127\) −178178. −0.980268 −0.490134 0.871647i \(-0.663052\pi\)
−0.490134 + 0.871647i \(0.663052\pi\)
\(128\) −296552. −1.59984
\(129\) −122919. −0.650344
\(130\) 151143. 0.784388
\(131\) −147067. −0.748750 −0.374375 0.927277i \(-0.622143\pi\)
−0.374375 + 0.927277i \(0.622143\pi\)
\(132\) 63898.7 0.319196
\(133\) 26260.0 0.128726
\(134\) 190397. 0.916005
\(135\) −14423.9 −0.0681159
\(136\) −98235.8 −0.455431
\(137\) 400754. 1.82422 0.912109 0.409949i \(-0.134453\pi\)
0.912109 + 0.409949i \(0.134453\pi\)
\(138\) −257662. −1.15174
\(139\) −102960. −0.451995 −0.225997 0.974128i \(-0.572564\pi\)
−0.225997 + 0.974128i \(0.572564\pi\)
\(140\) −43311.0 −0.186758
\(141\) 85088.7 0.360433
\(142\) 822210. 3.42186
\(143\) −82529.8 −0.337497
\(144\) 101148. 0.406493
\(145\) −37664.9 −0.148771
\(146\) −256755. −0.996864
\(147\) −141448. −0.539889
\(148\) −488926. −1.83480
\(149\) −506487. −1.86897 −0.934485 0.356002i \(-0.884140\pi\)
−0.934485 + 0.356002i \(0.884140\pi\)
\(150\) −243900. −0.885082
\(151\) −370254. −1.32147 −0.660735 0.750619i \(-0.729755\pi\)
−0.660735 + 0.750619i \(0.729755\pi\)
\(152\) 270302. 0.948944
\(153\) −23409.0 −0.0808452
\(154\) 35066.2 0.119148
\(155\) −193897. −0.648248
\(156\) −459680. −1.51232
\(157\) −109544. −0.354684 −0.177342 0.984149i \(-0.556750\pi\)
−0.177342 + 0.984149i \(0.556750\pi\)
\(158\) 714508. 2.27701
\(159\) 47494.8 0.148989
\(160\) −29732.0 −0.0918172
\(161\) −95362.6 −0.289944
\(162\) 65045.5 0.194729
\(163\) −463726. −1.36708 −0.683538 0.729915i \(-0.739559\pi\)
−0.683538 + 0.729915i \(0.739559\pi\)
\(164\) 343569. 0.997480
\(165\) −19073.1 −0.0545395
\(166\) 256939. 0.723702
\(167\) 405951. 1.12637 0.563187 0.826329i \(-0.309575\pi\)
0.563187 + 0.826329i \(0.309575\pi\)
\(168\) 101026. 0.276159
\(169\) 222417. 0.599033
\(170\) 56689.2 0.150445
\(171\) 64411.4 0.168450
\(172\) −905318. −2.33335
\(173\) 408480. 1.03766 0.518831 0.854877i \(-0.326367\pi\)
0.518831 + 0.854877i \(0.326367\pi\)
\(174\) 169852. 0.425303
\(175\) −90269.2 −0.222815
\(176\) 133751. 0.325474
\(177\) 218198. 0.523501
\(178\) 591453. 1.39917
\(179\) 228012. 0.531893 0.265947 0.963988i \(-0.414315\pi\)
0.265947 + 0.963988i \(0.414315\pi\)
\(180\) −106235. −0.244391
\(181\) −120860. −0.274212 −0.137106 0.990556i \(-0.543780\pi\)
−0.137106 + 0.990556i \(0.543780\pi\)
\(182\) −252262. −0.564512
\(183\) 422127. 0.931783
\(184\) −981596. −2.13741
\(185\) 145939. 0.313504
\(186\) 874390. 1.85320
\(187\) −30954.3 −0.0647317
\(188\) 626694. 1.29319
\(189\) 24073.8 0.0490219
\(190\) −155984. −0.313470
\(191\) −624470. −1.23859 −0.619296 0.785158i \(-0.712582\pi\)
−0.619296 + 0.785158i \(0.712582\pi\)
\(192\) −225560. −0.441580
\(193\) 579212. 1.11929 0.559647 0.828731i \(-0.310937\pi\)
0.559647 + 0.828731i \(0.310937\pi\)
\(194\) −1.02256e6 −1.95067
\(195\) 137210. 0.258403
\(196\) −1.04179e6 −1.93705
\(197\) −20203.4 −0.0370901 −0.0185451 0.999828i \(-0.505903\pi\)
−0.0185451 + 0.999828i \(0.505903\pi\)
\(198\) 86011.3 0.155917
\(199\) −3814.68 −0.00682851 −0.00341426 0.999994i \(-0.501087\pi\)
−0.00341426 + 0.999994i \(0.501087\pi\)
\(200\) −929168. −1.64255
\(201\) 172844. 0.301762
\(202\) 869127. 1.49867
\(203\) 62863.7 0.107068
\(204\) −172412. −0.290062
\(205\) −102552. −0.170435
\(206\) −1.97610e6 −3.24445
\(207\) −233908. −0.379420
\(208\) −962190. −1.54206
\(209\) 85172.8 0.134876
\(210\) −58299.2 −0.0912251
\(211\) −47633.5 −0.0736557 −0.0368278 0.999322i \(-0.511725\pi\)
−0.0368278 + 0.999322i \(0.511725\pi\)
\(212\) 349807. 0.534551
\(213\) 746411. 1.12727
\(214\) 357815. 0.534102
\(215\) 270228. 0.398689
\(216\) 247799. 0.361381
\(217\) 323618. 0.466535
\(218\) 941358. 1.34157
\(219\) −233085. −0.328400
\(220\) −140477. −0.195681
\(221\) 222682. 0.306693
\(222\) −658123. −0.896241
\(223\) 780856. 1.05150 0.525749 0.850639i \(-0.323785\pi\)
0.525749 + 0.850639i \(0.323785\pi\)
\(224\) 49623.4 0.0660795
\(225\) −221415. −0.291575
\(226\) −1.41986e6 −1.84916
\(227\) −1.01316e6 −1.30500 −0.652502 0.757787i \(-0.726281\pi\)
−0.652502 + 0.757787i \(0.726281\pi\)
\(228\) 474401. 0.604378
\(229\) 785820. 0.990226 0.495113 0.868829i \(-0.335127\pi\)
0.495113 + 0.868829i \(0.335127\pi\)
\(230\) 566452. 0.706063
\(231\) 31833.4 0.0392513
\(232\) 647074. 0.789286
\(233\) −704506. −0.850148 −0.425074 0.905158i \(-0.639752\pi\)
−0.425074 + 0.905158i \(0.639752\pi\)
\(234\) −618756. −0.738720
\(235\) −187062. −0.220961
\(236\) 1.60707e6 1.87825
\(237\) 648638. 0.750121
\(238\) −94615.6 −0.108273
\(239\) −272819. −0.308944 −0.154472 0.987997i \(-0.549368\pi\)
−0.154472 + 0.987997i \(0.549368\pi\)
\(240\) −222368. −0.249197
\(241\) 517668. 0.574128 0.287064 0.957911i \(-0.407321\pi\)
0.287064 + 0.957911i \(0.407321\pi\)
\(242\) −1.48292e6 −1.62772
\(243\) 59049.0 0.0641500
\(244\) 3.10904e6 3.34312
\(245\) 310964. 0.330975
\(246\) 462464. 0.487236
\(247\) −612724. −0.639032
\(248\) 3.33110e6 3.43921
\(249\) 233252. 0.238412
\(250\) 1.14919e6 1.16289
\(251\) −1.62806e6 −1.63112 −0.815561 0.578671i \(-0.803572\pi\)
−0.815561 + 0.578671i \(0.803572\pi\)
\(252\) 177308. 0.175884
\(253\) −309303. −0.303797
\(254\) −1.76645e6 −1.71798
\(255\) 51463.0 0.0495616
\(256\) −2.13801e6 −2.03897
\(257\) 1.11957e6 1.05735 0.528677 0.848823i \(-0.322688\pi\)
0.528677 + 0.848823i \(0.322688\pi\)
\(258\) −1.21861e6 −1.13977
\(259\) −243576. −0.225624
\(260\) 1.01057e6 0.927118
\(261\) 154194. 0.140109
\(262\) −1.45802e6 −1.31223
\(263\) 428448. 0.381952 0.190976 0.981595i \(-0.438835\pi\)
0.190976 + 0.981595i \(0.438835\pi\)
\(264\) 327671. 0.289353
\(265\) −104414. −0.0913363
\(266\) 260341. 0.225600
\(267\) 536928. 0.460933
\(268\) 1.27303e6 1.08268
\(269\) 309879. 0.261103 0.130551 0.991442i \(-0.458325\pi\)
0.130551 + 0.991442i \(0.458325\pi\)
\(270\) −142998. −0.119377
\(271\) −2.12339e6 −1.75633 −0.878167 0.478355i \(-0.841233\pi\)
−0.878167 + 0.478355i \(0.841233\pi\)
\(272\) −360887. −0.295767
\(273\) −229006. −0.185969
\(274\) 3.97306e6 3.19705
\(275\) −292783. −0.233461
\(276\) −1.72278e6 −1.36131
\(277\) 960814. 0.752385 0.376192 0.926542i \(-0.377233\pi\)
0.376192 + 0.926542i \(0.377233\pi\)
\(278\) −1.02075e6 −0.792146
\(279\) 793781. 0.610506
\(280\) −222098. −0.169297
\(281\) −298743. −0.225700 −0.112850 0.993612i \(-0.535998\pi\)
−0.112850 + 0.993612i \(0.535998\pi\)
\(282\) 843566. 0.631679
\(283\) −472806. −0.350927 −0.175464 0.984486i \(-0.556142\pi\)
−0.175464 + 0.984486i \(0.556142\pi\)
\(284\) 5.49745e6 4.04451
\(285\) −141604. −0.103267
\(286\) −818197. −0.591484
\(287\) 171161. 0.122659
\(288\) 121718. 0.0864715
\(289\) 83521.0 0.0588235
\(290\) −373409. −0.260729
\(291\) −928289. −0.642614
\(292\) −1.71671e6 −1.17826
\(293\) 2.12593e6 1.44670 0.723352 0.690479i \(-0.242600\pi\)
0.723352 + 0.690479i \(0.242600\pi\)
\(294\) −1.40231e6 −0.946186
\(295\) −479693. −0.320928
\(296\) −2.50720e6 −1.66326
\(297\) 78082.0 0.0513641
\(298\) −5.02129e6 −3.27548
\(299\) 2.22509e6 1.43936
\(300\) −1.63076e6 −1.04613
\(301\) −451017. −0.286930
\(302\) −3.67068e6 −2.31595
\(303\) 789003. 0.493710
\(304\) 993005. 0.616265
\(305\) −928016. −0.571223
\(306\) −232076. −0.141686
\(307\) −524663. −0.317712 −0.158856 0.987302i \(-0.550781\pi\)
−0.158856 + 0.987302i \(0.550781\pi\)
\(308\) 234459. 0.140828
\(309\) −1.79392e6 −1.06883
\(310\) −1.92229e6 −1.13609
\(311\) −1.31043e6 −0.768266 −0.384133 0.923278i \(-0.625500\pi\)
−0.384133 + 0.923278i \(0.625500\pi\)
\(312\) −2.35723e6 −1.37093
\(313\) −1.30589e6 −0.753437 −0.376719 0.926328i \(-0.622948\pi\)
−0.376719 + 0.926328i \(0.622948\pi\)
\(314\) −1.08602e6 −0.621604
\(315\) −52924.6 −0.0300525
\(316\) 4.77733e6 2.69134
\(317\) −2.36368e6 −1.32111 −0.660557 0.750776i \(-0.729680\pi\)
−0.660557 + 0.750776i \(0.729680\pi\)
\(318\) 470861. 0.261111
\(319\) 203895. 0.112183
\(320\) 495878. 0.270707
\(321\) 324828. 0.175951
\(322\) −945421. −0.508143
\(323\) −229813. −0.122566
\(324\) 434907. 0.230162
\(325\) 2.10625e6 1.10612
\(326\) −4.59736e6 −2.39588
\(327\) 854575. 0.441958
\(328\) 1.76181e6 0.904222
\(329\) 312210. 0.159022
\(330\) −189090. −0.0955836
\(331\) 3.88315e6 1.94811 0.974057 0.226304i \(-0.0726642\pi\)
0.974057 + 0.226304i \(0.0726642\pi\)
\(332\) 1.71794e6 0.855389
\(333\) −597451. −0.295251
\(334\) 4.02458e6 1.97404
\(335\) −379986. −0.184993
\(336\) 371137. 0.179344
\(337\) 811480. 0.389227 0.194614 0.980880i \(-0.437655\pi\)
0.194614 + 0.980880i \(0.437655\pi\)
\(338\) 2.20503e6 1.04984
\(339\) −1.28896e6 −0.609173
\(340\) 379035. 0.177820
\(341\) 1.04964e6 0.488825
\(342\) 638572. 0.295219
\(343\) −1.07403e6 −0.492923
\(344\) −4.64245e6 −2.11520
\(345\) 514231. 0.232600
\(346\) 4.04966e6 1.81856
\(347\) −959058. −0.427584 −0.213792 0.976879i \(-0.568581\pi\)
−0.213792 + 0.976879i \(0.568581\pi\)
\(348\) 1.13567e6 0.502693
\(349\) 2.98884e6 1.31353 0.656763 0.754097i \(-0.271925\pi\)
0.656763 + 0.754097i \(0.271925\pi\)
\(350\) −894926. −0.390496
\(351\) −561713. −0.243359
\(352\) 160951. 0.0692366
\(353\) 1.91425e6 0.817641 0.408820 0.912615i \(-0.365940\pi\)
0.408820 + 0.912615i \(0.365940\pi\)
\(354\) 2.16321e6 0.917466
\(355\) −1.64093e6 −0.691066
\(356\) 3.95457e6 1.65377
\(357\) −85893.0 −0.0356687
\(358\) 2.26050e6 0.932174
\(359\) 1.63841e6 0.670943 0.335472 0.942050i \(-0.391104\pi\)
0.335472 + 0.942050i \(0.391104\pi\)
\(360\) −544769. −0.221542
\(361\) −1.84375e6 −0.744620
\(362\) −1.19820e6 −0.480572
\(363\) −1.34621e6 −0.536224
\(364\) −1.68667e6 −0.667232
\(365\) 512420. 0.201323
\(366\) 4.18495e6 1.63300
\(367\) 907163. 0.351577 0.175788 0.984428i \(-0.443753\pi\)
0.175788 + 0.984428i \(0.443753\pi\)
\(368\) −3.60607e6 −1.38808
\(369\) 419829. 0.160512
\(370\) 1.44684e6 0.549434
\(371\) 174269. 0.0657334
\(372\) 5.84634e6 2.19042
\(373\) −1.81235e6 −0.674482 −0.337241 0.941418i \(-0.609494\pi\)
−0.337241 + 0.941418i \(0.609494\pi\)
\(374\) −306880. −0.113446
\(375\) 1.04324e6 0.383096
\(376\) 3.21367e6 1.17228
\(377\) −1.46679e6 −0.531515
\(378\) 238667. 0.0859138
\(379\) −1.83455e6 −0.656043 −0.328022 0.944670i \(-0.606382\pi\)
−0.328022 + 0.944670i \(0.606382\pi\)
\(380\) −1.04294e6 −0.370510
\(381\) −1.60360e6 −0.565958
\(382\) −6.19097e6 −2.17070
\(383\) 4.14101e6 1.44248 0.721239 0.692686i \(-0.243573\pi\)
0.721239 + 0.692686i \(0.243573\pi\)
\(384\) −2.66897e6 −0.923667
\(385\) −69983.6 −0.0240627
\(386\) 5.74229e6 1.96163
\(387\) −1.10627e6 −0.375476
\(388\) −6.83701e6 −2.30562
\(389\) 1.95266e6 0.654262 0.327131 0.944979i \(-0.393918\pi\)
0.327131 + 0.944979i \(0.393918\pi\)
\(390\) 1.36029e6 0.452867
\(391\) 834562. 0.276068
\(392\) −5.34229e6 −1.75595
\(393\) −1.32360e6 −0.432291
\(394\) −200295. −0.0650026
\(395\) −1.42598e6 −0.459856
\(396\) 575088. 0.184288
\(397\) 5.08273e6 1.61853 0.809265 0.587443i \(-0.199865\pi\)
0.809265 + 0.587443i \(0.199865\pi\)
\(398\) −37818.6 −0.0119674
\(399\) 236340. 0.0743199
\(400\) −3.41347e6 −1.06671
\(401\) −3.61136e6 −1.12153 −0.560763 0.827976i \(-0.689492\pi\)
−0.560763 + 0.827976i \(0.689492\pi\)
\(402\) 1.71357e6 0.528856
\(403\) −7.55097e6 −2.31601
\(404\) 5.81115e6 1.77137
\(405\) −129815. −0.0393267
\(406\) 623228. 0.187643
\(407\) −790025. −0.236404
\(408\) −884122. −0.262943
\(409\) 3.89265e6 1.15063 0.575317 0.817931i \(-0.304879\pi\)
0.575317 + 0.817931i \(0.304879\pi\)
\(410\) −1.01669e6 −0.298697
\(411\) 3.60679e6 1.05321
\(412\) −1.32126e7 −3.83482
\(413\) 800619. 0.230967
\(414\) −2.31896e6 −0.664955
\(415\) −512788. −0.146156
\(416\) −1.15786e6 −0.328037
\(417\) −926644. −0.260959
\(418\) 844400. 0.236378
\(419\) −3.72664e6 −1.03701 −0.518504 0.855075i \(-0.673511\pi\)
−0.518504 + 0.855075i \(0.673511\pi\)
\(420\) −389799. −0.107825
\(421\) −415385. −0.114221 −0.0571104 0.998368i \(-0.518189\pi\)
−0.0571104 + 0.998368i \(0.518189\pi\)
\(422\) −472237. −0.129086
\(423\) 765798. 0.208096
\(424\) 1.79380e6 0.484574
\(425\) 789987. 0.212152
\(426\) 7.39989e6 1.97561
\(427\) 1.54888e6 0.411101
\(428\) 2.39242e6 0.631289
\(429\) −742768. −0.194854
\(430\) 2.67903e6 0.698725
\(431\) 5.35696e6 1.38907 0.694537 0.719457i \(-0.255609\pi\)
0.694537 + 0.719457i \(0.255609\pi\)
\(432\) 910335. 0.234689
\(433\) −3.58560e6 −0.919055 −0.459528 0.888163i \(-0.651981\pi\)
−0.459528 + 0.888163i \(0.651981\pi\)
\(434\) 3.20834e6 0.817628
\(435\) −338984. −0.0858928
\(436\) 6.29410e6 1.58569
\(437\) −2.29635e6 −0.575221
\(438\) −2.31079e6 −0.575540
\(439\) −1.11636e6 −0.276466 −0.138233 0.990400i \(-0.544142\pi\)
−0.138233 + 0.990400i \(0.544142\pi\)
\(440\) −720362. −0.177386
\(441\) −1.27303e6 −0.311705
\(442\) 2.20766e6 0.537498
\(443\) 80981.9 0.0196055 0.00980277 0.999952i \(-0.496880\pi\)
0.00980277 + 0.999952i \(0.496880\pi\)
\(444\) −4.40034e6 −1.05932
\(445\) −1.18040e6 −0.282572
\(446\) 7.74138e6 1.84281
\(447\) −4.55838e6 −1.07905
\(448\) −827632. −0.194824
\(449\) 1.95939e6 0.458674 0.229337 0.973347i \(-0.426344\pi\)
0.229337 + 0.973347i \(0.426344\pi\)
\(450\) −2.19510e6 −0.511003
\(451\) 555151. 0.128520
\(452\) −9.49343e6 −2.18563
\(453\) −3.33229e6 −0.762951
\(454\) −1.00444e7 −2.28709
\(455\) 503454. 0.114007
\(456\) 2.43272e6 0.547873
\(457\) −5.18165e6 −1.16059 −0.580294 0.814407i \(-0.697062\pi\)
−0.580294 + 0.814407i \(0.697062\pi\)
\(458\) 7.79059e6 1.73543
\(459\) −210681. −0.0466760
\(460\) 3.78740e6 0.834540
\(461\) −5.44215e6 −1.19267 −0.596333 0.802737i \(-0.703376\pi\)
−0.596333 + 0.802737i \(0.703376\pi\)
\(462\) 315595. 0.0687901
\(463\) 6.57477e6 1.42537 0.712686 0.701483i \(-0.247478\pi\)
0.712686 + 0.701483i \(0.247478\pi\)
\(464\) 2.37715e6 0.512579
\(465\) −1.74507e6 −0.374266
\(466\) −6.98444e6 −1.48993
\(467\) 9.13184e6 1.93761 0.968804 0.247826i \(-0.0797163\pi\)
0.968804 + 0.247826i \(0.0797163\pi\)
\(468\) −4.13712e6 −0.873139
\(469\) 634206. 0.133137
\(470\) −1.85452e6 −0.387246
\(471\) −985900. −0.204777
\(472\) 8.24101e6 1.70265
\(473\) −1.46285e6 −0.300639
\(474\) 6.43057e6 1.31463
\(475\) −2.17370e6 −0.442044
\(476\) −632618. −0.127975
\(477\) 427453. 0.0860186
\(478\) −2.70472e6 −0.541442
\(479\) −9.18219e6 −1.82855 −0.914277 0.405090i \(-0.867240\pi\)
−0.914277 + 0.405090i \(0.867240\pi\)
\(480\) −267588. −0.0530107
\(481\) 5.68335e6 1.12006
\(482\) 5.13214e6 1.00619
\(483\) −858263. −0.167399
\(484\) −9.91507e6 −1.92390
\(485\) 2.04078e6 0.393950
\(486\) 585410. 0.112427
\(487\) 2.37828e6 0.454403 0.227202 0.973848i \(-0.427042\pi\)
0.227202 + 0.973848i \(0.427042\pi\)
\(488\) 1.59431e7 3.03056
\(489\) −4.17353e6 −0.789281
\(490\) 3.08289e6 0.580053
\(491\) 272673. 0.0510433 0.0255216 0.999674i \(-0.491875\pi\)
0.0255216 + 0.999674i \(0.491875\pi\)
\(492\) 3.09212e6 0.575895
\(493\) −550149. −0.101944
\(494\) −6.07452e6 −1.11994
\(495\) −171658. −0.0314884
\(496\) 1.22374e7 2.23350
\(497\) 2.73875e6 0.497350
\(498\) 2.31245e6 0.417830
\(499\) 2.27012e6 0.408129 0.204064 0.978957i \(-0.434585\pi\)
0.204064 + 0.978957i \(0.434585\pi\)
\(500\) 7.68367e6 1.37450
\(501\) 3.65356e6 0.650312
\(502\) −1.61405e7 −2.85864
\(503\) −8.21498e6 −1.44773 −0.723864 0.689943i \(-0.757636\pi\)
−0.723864 + 0.689943i \(0.757636\pi\)
\(504\) 909232. 0.159440
\(505\) −1.73457e6 −0.302665
\(506\) −3.06642e6 −0.532421
\(507\) 2.00175e6 0.345852
\(508\) −1.18108e7 −2.03058
\(509\) −1.17166e6 −0.200450 −0.100225 0.994965i \(-0.531956\pi\)
−0.100225 + 0.994965i \(0.531956\pi\)
\(510\) 510203. 0.0868595
\(511\) −855241. −0.144889
\(512\) −1.17065e7 −1.97357
\(513\) 579702. 0.0972549
\(514\) 1.10994e7 1.85307
\(515\) 3.94382e6 0.655237
\(516\) −8.14786e6 −1.34716
\(517\) 1.01263e6 0.166620
\(518\) −2.41481e6 −0.395419
\(519\) 3.67632e6 0.599094
\(520\) 5.18220e6 0.840438
\(521\) −2.07857e6 −0.335483 −0.167741 0.985831i \(-0.553647\pi\)
−0.167741 + 0.985831i \(0.553647\pi\)
\(522\) 1.52867e6 0.245549
\(523\) −7.72810e6 −1.23543 −0.617716 0.786402i \(-0.711942\pi\)
−0.617716 + 0.786402i \(0.711942\pi\)
\(524\) −9.74857e6 −1.55100
\(525\) −812423. −0.128642
\(526\) 4.24761e6 0.669392
\(527\) −2.83213e6 −0.444209
\(528\) 1.20376e6 0.187912
\(529\) 1.90279e6 0.295633
\(530\) −1.03516e6 −0.160072
\(531\) 1.96378e6 0.302243
\(532\) 1.74069e6 0.266650
\(533\) −3.99370e6 −0.608915
\(534\) 5.32308e6 0.807811
\(535\) −714113. −0.107865
\(536\) 6.52807e6 0.981460
\(537\) 2.05211e6 0.307089
\(538\) 3.07213e6 0.457597
\(539\) −1.68337e6 −0.249578
\(540\) −956112. −0.141099
\(541\) 7.18332e6 1.05519 0.527597 0.849495i \(-0.323093\pi\)
0.527597 + 0.849495i \(0.323093\pi\)
\(542\) −2.10512e7 −3.07807
\(543\) −1.08774e6 −0.158316
\(544\) −434277. −0.0629172
\(545\) −1.87872e6 −0.270939
\(546\) −2.27036e6 −0.325921
\(547\) 1.10835e7 1.58383 0.791914 0.610633i \(-0.209085\pi\)
0.791914 + 0.610633i \(0.209085\pi\)
\(548\) 2.65646e7 3.77879
\(549\) 3.79914e6 0.537965
\(550\) −2.90264e6 −0.409153
\(551\) 1.51377e6 0.212413
\(552\) −8.83436e6 −1.23403
\(553\) 2.38000e6 0.330952
\(554\) 9.52548e6 1.31860
\(555\) 1.31345e6 0.181002
\(556\) −6.82490e6 −0.936287
\(557\) −8.48471e6 −1.15877 −0.579387 0.815052i \(-0.696708\pi\)
−0.579387 + 0.815052i \(0.696708\pi\)
\(558\) 7.86951e6 1.06995
\(559\) 1.05235e7 1.42440
\(560\) −815918. −0.109945
\(561\) −278589. −0.0373729
\(562\) −2.96173e6 −0.395553
\(563\) 4.60288e6 0.612010 0.306005 0.952030i \(-0.401008\pi\)
0.306005 + 0.952030i \(0.401008\pi\)
\(564\) 5.64024e6 0.746621
\(565\) 2.83369e6 0.373449
\(566\) −4.68738e6 −0.615020
\(567\) 216664. 0.0283028
\(568\) 2.81908e7 3.66637
\(569\) 9.86745e6 1.27769 0.638843 0.769337i \(-0.279413\pi\)
0.638843 + 0.769337i \(0.279413\pi\)
\(570\) −1.40386e6 −0.180982
\(571\) −4.53976e6 −0.582697 −0.291349 0.956617i \(-0.594104\pi\)
−0.291349 + 0.956617i \(0.594104\pi\)
\(572\) −5.47062e6 −0.699112
\(573\) −5.62023e6 −0.715101
\(574\) 1.69689e6 0.214968
\(575\) 7.89374e6 0.995665
\(576\) −2.03004e6 −0.254946
\(577\) −9.67427e6 −1.20970 −0.604851 0.796338i \(-0.706767\pi\)
−0.604851 + 0.796338i \(0.706767\pi\)
\(578\) 828024. 0.103092
\(579\) 5.21291e6 0.646225
\(580\) −2.49668e6 −0.308172
\(581\) 855856. 0.105187
\(582\) −9.20302e6 −1.12622
\(583\) 565232. 0.0688740
\(584\) −8.80325e6 −1.06810
\(585\) 1.23489e6 0.149189
\(586\) 2.10764e7 2.53543
\(587\) 5.58946e6 0.669537 0.334768 0.942300i \(-0.391342\pi\)
0.334768 + 0.942300i \(0.391342\pi\)
\(588\) −9.37613e6 −1.11836
\(589\) 7.79279e6 0.925561
\(590\) −4.75566e6 −0.562446
\(591\) −181830. −0.0214140
\(592\) −9.21067e6 −1.08016
\(593\) −1.44514e7 −1.68762 −0.843809 0.536644i \(-0.819692\pi\)
−0.843809 + 0.536644i \(0.819692\pi\)
\(594\) 774102. 0.0900186
\(595\) 188830. 0.0218664
\(596\) −3.35733e7 −3.87149
\(597\) −34332.2 −0.00394244
\(598\) 2.20595e7 2.52256
\(599\) 7.07091e6 0.805208 0.402604 0.915374i \(-0.368105\pi\)
0.402604 + 0.915374i \(0.368105\pi\)
\(600\) −8.36251e6 −0.948328
\(601\) 1.28581e7 1.45208 0.726040 0.687653i \(-0.241359\pi\)
0.726040 + 0.687653i \(0.241359\pi\)
\(602\) −4.47136e6 −0.502862
\(603\) 1.55560e6 0.174223
\(604\) −2.45429e7 −2.73737
\(605\) 2.95955e6 0.328728
\(606\) 7.82214e6 0.865255
\(607\) −3.87881e6 −0.427294 −0.213647 0.976911i \(-0.568534\pi\)
−0.213647 + 0.976911i \(0.568534\pi\)
\(608\) 1.19494e6 0.131095
\(609\) 565773. 0.0618157
\(610\) −9.20031e6 −1.00110
\(611\) −7.28478e6 −0.789430
\(612\) −1.55170e6 −0.167467
\(613\) −6.15434e6 −0.661500 −0.330750 0.943718i \(-0.607302\pi\)
−0.330750 + 0.943718i \(0.607302\pi\)
\(614\) −5.20149e6 −0.556809
\(615\) −922965. −0.0984006
\(616\) 1.20230e6 0.127662
\(617\) −1.76097e7 −1.86226 −0.931129 0.364690i \(-0.881175\pi\)
−0.931129 + 0.364690i \(0.881175\pi\)
\(618\) −1.77849e7 −1.87318
\(619\) −5.14543e6 −0.539753 −0.269876 0.962895i \(-0.586983\pi\)
−0.269876 + 0.962895i \(0.586983\pi\)
\(620\) −1.28528e7 −1.34282
\(621\) −2.10517e6 −0.219058
\(622\) −1.29915e7 −1.34643
\(623\) 1.97011e6 0.203362
\(624\) −8.65971e6 −0.890311
\(625\) 6.24875e6 0.639872
\(626\) −1.29466e7 −1.32044
\(627\) 766555. 0.0778708
\(628\) −7.26133e6 −0.734712
\(629\) 2.13165e6 0.214827
\(630\) −524693. −0.0526688
\(631\) −887224. −0.0887074 −0.0443537 0.999016i \(-0.514123\pi\)
−0.0443537 + 0.999016i \(0.514123\pi\)
\(632\) 2.44981e7 2.43971
\(633\) −428701. −0.0425251
\(634\) −2.34334e7 −2.31533
\(635\) 3.52541e6 0.346956
\(636\) 3.14827e6 0.308623
\(637\) 1.21099e7 1.18248
\(638\) 2.02140e6 0.196608
\(639\) 6.71770e6 0.650831
\(640\) 5.86754e6 0.566248
\(641\) −8.85717e6 −0.851431 −0.425716 0.904857i \(-0.639978\pi\)
−0.425716 + 0.904857i \(0.639978\pi\)
\(642\) 3.22034e6 0.308364
\(643\) 3.94541e6 0.376327 0.188163 0.982138i \(-0.439747\pi\)
0.188163 + 0.982138i \(0.439747\pi\)
\(644\) −6.32127e6 −0.600606
\(645\) 2.43205e6 0.230183
\(646\) −2.27836e6 −0.214803
\(647\) −7.27121e6 −0.682882 −0.341441 0.939903i \(-0.610915\pi\)
−0.341441 + 0.939903i \(0.610915\pi\)
\(648\) 2.23019e6 0.208643
\(649\) 2.59676e6 0.242003
\(650\) 2.08812e7 1.93853
\(651\) 2.91256e6 0.269354
\(652\) −3.07388e7 −2.83184
\(653\) 1.14492e7 1.05074 0.525368 0.850875i \(-0.323928\pi\)
0.525368 + 0.850875i \(0.323928\pi\)
\(654\) 8.47222e6 0.774556
\(655\) 2.90985e6 0.265013
\(656\) 6.47234e6 0.587222
\(657\) −2.09776e6 −0.189602
\(658\) 3.09524e6 0.278695
\(659\) 1.47106e7 1.31952 0.659762 0.751474i \(-0.270657\pi\)
0.659762 + 0.751474i \(0.270657\pi\)
\(660\) −1.26429e6 −0.112976
\(661\) 3.15987e6 0.281297 0.140649 0.990060i \(-0.455081\pi\)
0.140649 + 0.990060i \(0.455081\pi\)
\(662\) 3.84974e7 3.41418
\(663\) 2.00414e6 0.177069
\(664\) 8.80958e6 0.775416
\(665\) −519577. −0.0455613
\(666\) −5.92311e6 −0.517445
\(667\) −5.49721e6 −0.478441
\(668\) 2.69091e7 2.33324
\(669\) 7.02770e6 0.607083
\(670\) −3.76717e6 −0.324211
\(671\) 5.02370e6 0.430742
\(672\) 446611. 0.0381510
\(673\) −1.00433e7 −0.854746 −0.427373 0.904075i \(-0.640561\pi\)
−0.427373 + 0.904075i \(0.640561\pi\)
\(674\) 8.04498e6 0.682143
\(675\) −1.99274e6 −0.168341
\(676\) 1.47433e7 1.24087
\(677\) 1.41644e7 1.18776 0.593878 0.804555i \(-0.297596\pi\)
0.593878 + 0.804555i \(0.297596\pi\)
\(678\) −1.27787e7 −1.06761
\(679\) −3.40610e6 −0.283520
\(680\) 1.94368e6 0.161195
\(681\) −9.11841e6 −0.753444
\(682\) 1.04061e7 0.856693
\(683\) 7.75823e6 0.636372 0.318186 0.948028i \(-0.396926\pi\)
0.318186 + 0.948028i \(0.396926\pi\)
\(684\) 4.26961e6 0.348938
\(685\) −7.92927e6 −0.645664
\(686\) −1.06478e7 −0.863876
\(687\) 7.07238e6 0.571707
\(688\) −1.70549e7 −1.37366
\(689\) −4.06621e6 −0.326319
\(690\) 5.09807e6 0.407646
\(691\) −1.04746e7 −0.834529 −0.417265 0.908785i \(-0.637011\pi\)
−0.417265 + 0.908785i \(0.637011\pi\)
\(692\) 2.70768e7 2.14947
\(693\) 286501. 0.0226617
\(694\) −9.50807e6 −0.749365
\(695\) 2.03716e6 0.159979
\(696\) 5.82367e6 0.455694
\(697\) −1.49791e6 −0.116789
\(698\) 2.96312e7 2.30203
\(699\) −6.34055e6 −0.490833
\(700\) −5.98364e6 −0.461552
\(701\) −2.12786e7 −1.63549 −0.817745 0.575581i \(-0.804776\pi\)
−0.817745 + 0.575581i \(0.804776\pi\)
\(702\) −5.56880e6 −0.426500
\(703\) −5.86536e6 −0.447617
\(704\) −2.68438e6 −0.204132
\(705\) −1.68355e6 −0.127572
\(706\) 1.89778e7 1.43296
\(707\) 2.89503e6 0.217824
\(708\) 1.44636e7 1.08441
\(709\) −1.36868e7 −1.02256 −0.511279 0.859415i \(-0.670828\pi\)
−0.511279 + 0.859415i \(0.670828\pi\)
\(710\) −1.62681e7 −1.21113
\(711\) 5.83774e6 0.433083
\(712\) 2.02789e7 1.49915
\(713\) −2.82993e7 −2.08474
\(714\) −851540. −0.0625114
\(715\) 1.63292e6 0.119454
\(716\) 1.51141e7 1.10179
\(717\) −2.45537e6 −0.178369
\(718\) 1.62431e7 1.17587
\(719\) 6.23644e6 0.449898 0.224949 0.974371i \(-0.427778\pi\)
0.224949 + 0.974371i \(0.427778\pi\)
\(720\) −2.00131e6 −0.143874
\(721\) −6.58232e6 −0.471564
\(722\) −1.82789e7 −1.30499
\(723\) 4.65901e6 0.331473
\(724\) −8.01140e6 −0.568018
\(725\) −5.20360e6 −0.367671
\(726\) −1.33463e7 −0.939763
\(727\) −6.49977e6 −0.456102 −0.228051 0.973649i \(-0.573235\pi\)
−0.228051 + 0.973649i \(0.573235\pi\)
\(728\) −8.64921e6 −0.604851
\(729\) 531441. 0.0370370
\(730\) 5.08011e6 0.352831
\(731\) 3.94705e6 0.273199
\(732\) 2.79813e7 1.93015
\(733\) 1.80568e7 1.24131 0.620657 0.784082i \(-0.286866\pi\)
0.620657 + 0.784082i \(0.286866\pi\)
\(734\) 8.99357e6 0.616158
\(735\) 2.79868e6 0.191088
\(736\) −4.33940e6 −0.295281
\(737\) 2.05701e6 0.139498
\(738\) 4.16217e6 0.281306
\(739\) −1.04958e7 −0.706977 −0.353489 0.935439i \(-0.615005\pi\)
−0.353489 + 0.935439i \(0.615005\pi\)
\(740\) 9.67383e6 0.649410
\(741\) −5.51451e6 −0.368945
\(742\) 1.72770e6 0.115201
\(743\) −2.83337e6 −0.188292 −0.0941460 0.995558i \(-0.530012\pi\)
−0.0941460 + 0.995558i \(0.530012\pi\)
\(744\) 2.99799e7 1.98563
\(745\) 1.00213e7 0.661504
\(746\) −1.79676e7 −1.18207
\(747\) 2.09927e6 0.137647
\(748\) −2.05186e6 −0.134089
\(749\) 1.19187e6 0.0776291
\(750\) 1.03427e7 0.671397
\(751\) −2.88029e7 −1.86353 −0.931763 0.363066i \(-0.881730\pi\)
−0.931763 + 0.363066i \(0.881730\pi\)
\(752\) 1.18060e7 0.761305
\(753\) −1.46526e7 −0.941729
\(754\) −1.45417e7 −0.931511
\(755\) 7.32580e6 0.467722
\(756\) 1.59577e6 0.101547
\(757\) 2.34715e6 0.148868 0.0744340 0.997226i \(-0.476285\pi\)
0.0744340 + 0.997226i \(0.476285\pi\)
\(758\) −1.81877e7 −1.14975
\(759\) −2.78373e6 −0.175397
\(760\) −5.34816e6 −0.335870
\(761\) −2.63740e7 −1.65088 −0.825439 0.564492i \(-0.809072\pi\)
−0.825439 + 0.564492i \(0.809072\pi\)
\(762\) −1.58980e7 −0.991874
\(763\) 3.13563e6 0.194991
\(764\) −4.13940e7 −2.56569
\(765\) 463167. 0.0286144
\(766\) 4.10538e7 2.52803
\(767\) −1.86808e7 −1.14659
\(768\) −1.92421e7 −1.17720
\(769\) 4.56258e6 0.278224 0.139112 0.990277i \(-0.455575\pi\)
0.139112 + 0.990277i \(0.455575\pi\)
\(770\) −693815. −0.0421713
\(771\) 1.00762e7 0.610463
\(772\) 3.83940e7 2.31857
\(773\) −1.90736e7 −1.14811 −0.574054 0.818817i \(-0.694630\pi\)
−0.574054 + 0.818817i \(0.694630\pi\)
\(774\) −1.09675e7 −0.658044
\(775\) −2.67878e7 −1.60208
\(776\) −3.50600e7 −2.09006
\(777\) −2.19219e6 −0.130264
\(778\) 1.93586e7 1.14663
\(779\) 4.12160e6 0.243345
\(780\) 9.09517e6 0.535272
\(781\) 8.88298e6 0.521112
\(782\) 8.27381e6 0.483826
\(783\) 1.38774e6 0.0808919
\(784\) −1.96259e7 −1.14035
\(785\) 2.16743e6 0.125537
\(786\) −1.31221e7 −0.757615
\(787\) 1.99947e7 1.15074 0.575371 0.817893i \(-0.304858\pi\)
0.575371 + 0.817893i \(0.304858\pi\)
\(788\) −1.33921e6 −0.0768306
\(789\) 3.85603e6 0.220520
\(790\) −1.41372e7 −0.805925
\(791\) −4.72950e6 −0.268766
\(792\) 2.94904e6 0.167058
\(793\) −3.61399e7 −2.04082
\(794\) 5.03900e7 2.83657
\(795\) −939725. −0.0527331
\(796\) −252863. −0.0141450
\(797\) 2.94054e7 1.63976 0.819881 0.572534i \(-0.194040\pi\)
0.819881 + 0.572534i \(0.194040\pi\)
\(798\) 2.34307e6 0.130250
\(799\) −2.73229e6 −0.151412
\(800\) −4.10763e6 −0.226917
\(801\) 4.83235e6 0.266120
\(802\) −3.58028e7 −1.96554
\(803\) −2.77392e6 −0.151812
\(804\) 1.14573e7 0.625088
\(805\) 1.88683e6 0.102623
\(806\) −7.48600e7 −4.05894
\(807\) 2.78891e6 0.150748
\(808\) 2.97994e7 1.60576
\(809\) 1.09983e7 0.590820 0.295410 0.955371i \(-0.404544\pi\)
0.295410 + 0.955371i \(0.404544\pi\)
\(810\) −1.28698e6 −0.0689223
\(811\) −5.50304e6 −0.293799 −0.146900 0.989151i \(-0.546929\pi\)
−0.146900 + 0.989151i \(0.546929\pi\)
\(812\) 4.16702e6 0.221787
\(813\) −1.91105e7 −1.01402
\(814\) −7.83228e6 −0.414312
\(815\) 9.17522e6 0.483863
\(816\) −3.24799e6 −0.170761
\(817\) −1.08606e7 −0.569243
\(818\) 3.85916e7 2.01655
\(819\) −2.06106e6 −0.107369
\(820\) −6.79781e6 −0.353048
\(821\) 3.29829e7 1.70778 0.853889 0.520455i \(-0.174238\pi\)
0.853889 + 0.520455i \(0.174238\pi\)
\(822\) 3.57575e7 1.84581
\(823\) 1.69682e7 0.873246 0.436623 0.899645i \(-0.356174\pi\)
0.436623 + 0.899645i \(0.356174\pi\)
\(824\) −6.77538e7 −3.47629
\(825\) −2.63505e6 −0.134789
\(826\) 7.93730e6 0.404784
\(827\) −1.65421e7 −0.841060 −0.420530 0.907279i \(-0.638156\pi\)
−0.420530 + 0.907279i \(0.638156\pi\)
\(828\) −1.55050e7 −0.785951
\(829\) 7.93594e6 0.401063 0.200531 0.979687i \(-0.435733\pi\)
0.200531 + 0.979687i \(0.435733\pi\)
\(830\) −5.08376e6 −0.256148
\(831\) 8.64733e6 0.434390
\(832\) 1.93111e7 0.967161
\(833\) 4.54206e6 0.226799
\(834\) −9.18671e6 −0.457346
\(835\) −8.03210e6 −0.398669
\(836\) 5.64582e6 0.279390
\(837\) 7.14403e6 0.352476
\(838\) −3.69457e7 −1.81742
\(839\) 2.58192e7 1.26630 0.633151 0.774028i \(-0.281761\pi\)
0.633151 + 0.774028i \(0.281761\pi\)
\(840\) −1.99888e6 −0.0977437
\(841\) −1.68873e7 −0.823325
\(842\) −4.11811e6 −0.200178
\(843\) −2.68869e6 −0.130308
\(844\) −3.15746e6 −0.152575
\(845\) −4.40071e6 −0.212022
\(846\) 7.59210e6 0.364700
\(847\) −4.93955e6 −0.236581
\(848\) 6.58987e6 0.314693
\(849\) −4.25525e6 −0.202608
\(850\) 7.83190e6 0.371809
\(851\) 2.12999e7 1.00822
\(852\) 4.94770e7 2.33510
\(853\) −2.00221e7 −0.942188 −0.471094 0.882083i \(-0.656141\pi\)
−0.471094 + 0.882083i \(0.656141\pi\)
\(854\) 1.53555e7 0.720477
\(855\) −1.27444e6 −0.0596214
\(856\) 1.22683e7 0.572268
\(857\) −5.27660e6 −0.245416 −0.122708 0.992443i \(-0.539158\pi\)
−0.122708 + 0.992443i \(0.539158\pi\)
\(858\) −7.36377e6 −0.341493
\(859\) 3.13305e7 1.44872 0.724360 0.689422i \(-0.242136\pi\)
0.724360 + 0.689422i \(0.242136\pi\)
\(860\) 1.79125e7 0.825867
\(861\) 1.54045e6 0.0708174
\(862\) 5.31087e7 2.43443
\(863\) 2.26971e7 1.03739 0.518697 0.854958i \(-0.326417\pi\)
0.518697 + 0.854958i \(0.326417\pi\)
\(864\) 1.09546e6 0.0499243
\(865\) −8.08214e6 −0.367270
\(866\) −3.55475e7 −1.61070
\(867\) 751689. 0.0339618
\(868\) 2.14516e7 0.966406
\(869\) 7.71939e6 0.346764
\(870\) −3.36068e6 −0.150532
\(871\) −1.47979e7 −0.660928
\(872\) 3.22760e7 1.43744
\(873\) −8.35460e6 −0.371014
\(874\) −2.27659e7 −1.00811
\(875\) 3.82790e6 0.169021
\(876\) −1.54504e7 −0.680267
\(877\) 3.11361e7 1.36699 0.683494 0.729956i \(-0.260460\pi\)
0.683494 + 0.729956i \(0.260460\pi\)
\(878\) −1.10675e7 −0.484523
\(879\) 1.91334e7 0.835255
\(880\) −2.64638e6 −0.115198
\(881\) 1.35953e7 0.590134 0.295067 0.955477i \(-0.404658\pi\)
0.295067 + 0.955477i \(0.404658\pi\)
\(882\) −1.26208e7 −0.546281
\(883\) −1.82777e7 −0.788897 −0.394448 0.918918i \(-0.629064\pi\)
−0.394448 + 0.918918i \(0.629064\pi\)
\(884\) 1.47608e7 0.635302
\(885\) −4.31724e6 −0.185288
\(886\) 802852. 0.0343598
\(887\) 2.27419e7 0.970549 0.485274 0.874362i \(-0.338720\pi\)
0.485274 + 0.874362i \(0.338720\pi\)
\(888\) −2.25648e7 −0.960284
\(889\) −5.88398e6 −0.249699
\(890\) −1.17024e7 −0.495223
\(891\) 702738. 0.0296551
\(892\) 5.17603e7 2.17814
\(893\) 7.51808e6 0.315485
\(894\) −4.51916e7 −1.89110
\(895\) −4.51141e6 −0.188259
\(896\) −9.79307e6 −0.407520
\(897\) 2.00258e7 0.831015
\(898\) 1.94253e7 0.803852
\(899\) 1.86551e7 0.769836
\(900\) −1.46769e7 −0.603986
\(901\) −1.52511e6 −0.0625877
\(902\) 5.50375e6 0.225238
\(903\) −4.05915e6 −0.165659
\(904\) −4.86821e7 −1.98129
\(905\) 2.39132e6 0.0970546
\(906\) −3.30361e7 −1.33712
\(907\) −1.38636e7 −0.559574 −0.279787 0.960062i \(-0.590264\pi\)
−0.279787 + 0.960062i \(0.590264\pi\)
\(908\) −6.71587e7 −2.70326
\(909\) 7.10103e6 0.285044
\(910\) 4.99122e6 0.199804
\(911\) −4.02480e6 −0.160675 −0.0803375 0.996768i \(-0.525600\pi\)
−0.0803375 + 0.996768i \(0.525600\pi\)
\(912\) 8.93704e6 0.355801
\(913\) 2.77592e6 0.110212
\(914\) −5.13707e7 −2.03400
\(915\) −8.35214e6 −0.329796
\(916\) 5.20894e7 2.05121
\(917\) −4.85660e6 −0.190726
\(918\) −2.08868e6 −0.0818024
\(919\) −2.42089e7 −0.945553 −0.472777 0.881182i \(-0.656748\pi\)
−0.472777 + 0.881182i \(0.656748\pi\)
\(920\) 1.94217e7 0.756516
\(921\) −4.72196e6 −0.183431
\(922\) −5.39533e7 −2.09021
\(923\) −6.39032e7 −2.46898
\(924\) 2.11013e6 0.0813073
\(925\) 2.01623e7 0.774792
\(926\) 6.51820e7 2.49805
\(927\) −1.61453e7 −0.617088
\(928\) 2.86056e6 0.109039
\(929\) 4.11227e7 1.56330 0.781650 0.623718i \(-0.214379\pi\)
0.781650 + 0.623718i \(0.214379\pi\)
\(930\) −1.73006e7 −0.655923
\(931\) −1.24978e7 −0.472562
\(932\) −4.66993e7 −1.76105
\(933\) −1.17938e7 −0.443559
\(934\) 9.05327e7 3.39577
\(935\) 612458. 0.0229112
\(936\) −2.12151e7 −0.791507
\(937\) 1.77193e7 0.659321 0.329661 0.944100i \(-0.393066\pi\)
0.329661 + 0.944100i \(0.393066\pi\)
\(938\) 6.28749e6 0.233330
\(939\) −1.17530e7 −0.434997
\(940\) −1.23997e7 −0.457710
\(941\) 3.59509e7 1.32354 0.661768 0.749709i \(-0.269806\pi\)
0.661768 + 0.749709i \(0.269806\pi\)
\(942\) −9.77418e6 −0.358883
\(943\) −1.49675e7 −0.548112
\(944\) 3.02749e7 1.10574
\(945\) −476321. −0.0173508
\(946\) −1.45026e7 −0.526888
\(947\) 2.73018e7 0.989272 0.494636 0.869100i \(-0.335301\pi\)
0.494636 + 0.869100i \(0.335301\pi\)
\(948\) 4.29960e7 1.55384
\(949\) 1.99553e7 0.719271
\(950\) −2.15500e7 −0.774708
\(951\) −2.12731e7 −0.762746
\(952\) −3.24405e6 −0.116010
\(953\) 1.59245e6 0.0567982 0.0283991 0.999597i \(-0.490959\pi\)
0.0283991 + 0.999597i \(0.490959\pi\)
\(954\) 4.23775e6 0.150752
\(955\) 1.23557e7 0.438387
\(956\) −1.80843e7 −0.639965
\(957\) 1.83505e6 0.0647692
\(958\) −9.10319e7 −3.20464
\(959\) 1.32341e7 0.464675
\(960\) 4.46291e6 0.156293
\(961\) 6.74062e7 2.35446
\(962\) 5.63445e7 1.96297
\(963\) 2.92346e6 0.101585
\(964\) 3.43144e7 1.18928
\(965\) −1.14602e7 −0.396164
\(966\) −8.50879e6 −0.293376
\(967\) 4.77330e6 0.164154 0.0820772 0.996626i \(-0.473845\pi\)
0.0820772 + 0.996626i \(0.473845\pi\)
\(968\) −5.08443e7 −1.74403
\(969\) −2.06832e6 −0.0707634
\(970\) 2.02322e7 0.690420
\(971\) 7.08746e6 0.241236 0.120618 0.992699i \(-0.461512\pi\)
0.120618 + 0.992699i \(0.461512\pi\)
\(972\) 3.91416e6 0.132884
\(973\) −3.40007e6 −0.115135
\(974\) 2.35782e7 0.796367
\(975\) 1.89562e7 0.638617
\(976\) 5.85698e7 1.96811
\(977\) −4.51020e7 −1.51168 −0.755839 0.654757i \(-0.772771\pi\)
−0.755839 + 0.654757i \(0.772771\pi\)
\(978\) −4.13763e7 −1.38326
\(979\) 6.38994e6 0.213079
\(980\) 2.06128e7 0.685600
\(981\) 7.69117e6 0.255164
\(982\) 2.70327e6 0.0894563
\(983\) −3.08113e7 −1.01701 −0.508505 0.861059i \(-0.669802\pi\)
−0.508505 + 0.861059i \(0.669802\pi\)
\(984\) 1.58563e7 0.522053
\(985\) 399741. 0.0131277
\(986\) −5.45415e6 −0.178663
\(987\) 2.80989e6 0.0918114
\(988\) −4.06154e7 −1.32373
\(989\) 3.94399e7 1.28217
\(990\) −1.70181e6 −0.0551852
\(991\) −8.88730e6 −0.287466 −0.143733 0.989617i \(-0.545911\pi\)
−0.143733 + 0.989617i \(0.545911\pi\)
\(992\) 1.47260e7 0.475122
\(993\) 3.49484e7 1.12474
\(994\) 2.71519e7 0.871634
\(995\) 75476.9 0.00241689
\(996\) 1.54615e7 0.493859
\(997\) 5.93598e7 1.89127 0.945636 0.325226i \(-0.105440\pi\)
0.945636 + 0.325226i \(0.105440\pi\)
\(998\) 2.25059e7 0.715269
\(999\) −5.37706e6 −0.170463
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.6.a.c.1.4 4
3.2 odd 2 153.6.a.e.1.1 4
4.3 odd 2 816.6.a.o.1.1 4
17.16 even 2 867.6.a.f.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.6.a.c.1.4 4 1.1 even 1 trivial
153.6.a.e.1.1 4 3.2 odd 2
816.6.a.o.1.1 4 4.3 odd 2
867.6.a.f.1.4 4 17.16 even 2