Properties

Label 2-51-1.1-c5-0-10
Degree $2$
Conductor $51$
Sign $1$
Analytic cond. $8.17957$
Root an. cond. $2.85999$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.91·2-s + 9·3-s + 66.2·4-s − 19.7·5-s + 89.2·6-s + 33.0·7-s + 339.·8-s + 81·9-s − 196.·10-s + 107.·11-s + 596.·12-s − 770.·13-s + 327.·14-s − 178.·15-s + 1.24e3·16-s − 289·17-s + 803.·18-s + 795.·19-s − 1.31e3·20-s + 297.·21-s + 1.06e3·22-s − 2.88e3·23-s + 3.05e3·24-s − 2.73e3·25-s − 7.63e3·26-s + 729·27-s + 2.18e3·28-s + ⋯
L(s)  = 1  + 1.75·2-s + 0.577·3-s + 2.07·4-s − 0.353·5-s + 1.01·6-s + 0.254·7-s + 1.87·8-s + 0.333·9-s − 0.620·10-s + 0.266·11-s + 1.19·12-s − 1.26·13-s + 0.446·14-s − 0.204·15-s + 1.21·16-s − 0.242·17-s + 0.584·18-s + 0.505·19-s − 0.733·20-s + 0.147·21-s + 0.467·22-s − 1.13·23-s + 1.08·24-s − 0.874·25-s − 2.21·26-s + 0.192·27-s + 0.527·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $1$
Analytic conductor: \(8.17957\)
Root analytic conductor: \(2.85999\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.791770172\)
\(L(\frac12)\) \(\approx\) \(4.791770172\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
17 \( 1 + 289T \)
good2 \( 1 - 9.91T + 32T^{2} \)
5 \( 1 + 19.7T + 3.12e3T^{2} \)
7 \( 1 - 33.0T + 1.68e4T^{2} \)
11 \( 1 - 107.T + 1.61e5T^{2} \)
13 \( 1 + 770.T + 3.71e5T^{2} \)
19 \( 1 - 795.T + 2.47e6T^{2} \)
23 \( 1 + 2.88e3T + 6.43e6T^{2} \)
29 \( 1 - 1.90e3T + 2.05e7T^{2} \)
31 \( 1 - 9.79e3T + 2.86e7T^{2} \)
37 \( 1 + 7.37e3T + 6.93e7T^{2} \)
41 \( 1 - 5.18e3T + 1.15e8T^{2} \)
43 \( 1 + 1.36e4T + 1.47e8T^{2} \)
47 \( 1 - 9.45e3T + 2.29e8T^{2} \)
53 \( 1 - 5.27e3T + 4.18e8T^{2} \)
59 \( 1 - 2.42e4T + 7.14e8T^{2} \)
61 \( 1 - 4.69e4T + 8.44e8T^{2} \)
67 \( 1 - 1.92e4T + 1.35e9T^{2} \)
71 \( 1 - 8.29e4T + 1.80e9T^{2} \)
73 \( 1 + 2.58e4T + 2.07e9T^{2} \)
79 \( 1 - 7.20e4T + 3.07e9T^{2} \)
83 \( 1 - 2.59e4T + 3.93e9T^{2} \)
89 \( 1 - 5.96e4T + 5.58e9T^{2} \)
97 \( 1 + 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31280191105679830639905202493, −13.60921792629898339119974948016, −12.30288214287273168872098124305, −11.63897468789951799680434541388, −9.956485159173852775390355998532, −7.981139712167947136437041696507, −6.67883861863815983133061692059, −5.04677582423571319615957013020, −3.85265863619690549138247951991, −2.36319235306432554411435594820, 2.36319235306432554411435594820, 3.85265863619690549138247951991, 5.04677582423571319615957013020, 6.67883861863815983133061692059, 7.981139712167947136437041696507, 9.956485159173852775390355998532, 11.63897468789951799680434541388, 12.30288214287273168872098124305, 13.60921792629898339119974948016, 14.31280191105679830639905202493

Graph of the $Z$-function along the critical line