Properties

Label 51.6.a
Level $51$
Weight $6$
Character orbit 51.a
Rep. character $\chi_{51}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $4$
Sturm bound $36$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(36\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(51))\).

Total New Old
Modular forms 32 14 18
Cusp forms 28 14 14
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(10\)\(5\)\(5\)\(9\)\(5\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(8\)\(4\)\(4\)\(7\)\(4\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
Plus space\(+\)\(14\)\(5\)\(9\)\(12\)\(5\)\(7\)\(2\)\(0\)\(2\)
Minus space\(-\)\(18\)\(9\)\(9\)\(16\)\(9\)\(7\)\(2\)\(0\)\(2\)

Trace form

\( 14 q + 4 q^{2} - 18 q^{3} + 300 q^{4} - 72 q^{6} - 156 q^{7} - 720 q^{8} + 1134 q^{9} + 596 q^{10} + 1168 q^{11} - 72 q^{12} - 774 q^{13} + 2352 q^{14} + 594 q^{15} + 8244 q^{16} + 324 q^{18} + 478 q^{19}+ \cdots + 94608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(51))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 17
51.6.a.a 51.a 1.a $2$ $8.180$ \(\Q(\sqrt{145}) \) None 51.6.a.a \(-7\) \(18\) \(-113\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{2}+9q^{3}+(13+7\beta )q^{4}+\cdots\)
51.6.a.b 51.a 1.a $3$ $8.180$ 3.3.76361.1 None 51.6.a.b \(5\) \(-27\) \(-37\) \(-176\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}-9q^{3}+(12+\beta _{1}+2\beta _{2})q^{4}+\cdots\)
51.6.a.c 51.a 1.a $4$ $8.180$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 51.6.a.c \(5\) \(36\) \(146\) \(60\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+9q^{3}+(3^{3}+4\beta _{2}+\beta _{3})q^{4}+\cdots\)
51.6.a.d 51.a 1.a $5$ $8.180$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 51.6.a.d \(1\) \(-45\) \(4\) \(-40\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-9q^{3}+(24+\beta _{1}+2\beta _{2}+\beta _{4})q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(51))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(51)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)