Defining parameters
Level: | \( N \) | \(=\) | \( 51 = 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 51.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(51))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 14 | 18 |
Cusp forms | 28 | 14 | 14 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(10\) | \(5\) | \(5\) | \(9\) | \(5\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(8\) | \(4\) | \(4\) | \(7\) | \(4\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(8\) | \(2\) | \(6\) | \(7\) | \(2\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(14\) | \(5\) | \(9\) | \(12\) | \(5\) | \(7\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(18\) | \(9\) | \(9\) | \(16\) | \(9\) | \(7\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(51))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 17 | |||||||
51.6.a.a | $2$ | $8.180$ | \(\Q(\sqrt{145}) \) | None | \(-7\) | \(18\) | \(-113\) | \(0\) | $-$ | $-$ | \(q+(-3-\beta )q^{2}+9q^{3}+(13+7\beta )q^{4}+\cdots\) | |
51.6.a.b | $3$ | $8.180$ | 3.3.76361.1 | None | \(5\) | \(-27\) | \(-37\) | \(-176\) | $+$ | $+$ | \(q+(2-\beta _{1})q^{2}-9q^{3}+(12+\beta _{1}+2\beta _{2})q^{4}+\cdots\) | |
51.6.a.c | $4$ | $8.180$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(5\) | \(36\) | \(146\) | \(60\) | $-$ | $+$ | \(q+(1+\beta _{1})q^{2}+9q^{3}+(3^{3}+4\beta _{2}+\beta _{3})q^{4}+\cdots\) | |
51.6.a.d | $5$ | $8.180$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(1\) | \(-45\) | \(4\) | \(-40\) | $+$ | $-$ | \(q+\beta _{1}q^{2}-9q^{3}+(24+\beta _{1}+2\beta _{2}+\beta _{4})q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(51))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(51)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)