Properties

Label 51.3.j.a.40.6
Level $51$
Weight $3$
Character 51.40
Analytic conductor $1.390$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(7,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.j (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 40.6
Character \(\chi\) \(=\) 51.40
Dual form 51.3.j.a.37.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.92891 + 1.21319i) q^{2} +(-1.69877 + 0.337906i) q^{3} +(4.27824 + 4.27824i) q^{4} +(0.0817276 - 0.122314i) q^{5} +(-5.38549 - 1.07124i) q^{6} +(-2.35178 - 3.51969i) q^{7} +(2.48747 + 6.00528i) q^{8} +(2.77164 - 1.14805i) q^{9} +(0.387763 - 0.259095i) q^{10} +(2.13536 - 10.7352i) q^{11} +(-8.71339 - 5.82210i) q^{12} +(-12.2605 + 12.2605i) q^{13} +(-2.61809 - 13.1620i) q^{14} +(-0.0975057 + 0.235400i) q^{15} -3.59468i q^{16} +(-16.0231 + 5.67992i) q^{17} +9.51069 q^{18} +(30.9397 + 12.8156i) q^{19} +(0.872939 - 0.173638i) q^{20} +(5.18446 + 5.18446i) q^{21} +(19.2781 - 28.8517i) q^{22} +(-0.932603 - 0.185506i) q^{23} +(-6.25486 - 9.36106i) q^{24} +(9.55880 + 23.0770i) q^{25} +(-50.7842 + 21.0355i) q^{26} +(-4.32044 + 2.88683i) q^{27} +(4.99659 - 25.1195i) q^{28} +(-27.7735 - 18.5576i) q^{29} +(-0.571171 + 0.571171i) q^{30} +(5.12889 + 25.7847i) q^{31} +(14.3109 - 34.5496i) q^{32} +18.9581i q^{33} +(-53.8209 - 2.80312i) q^{34} -0.622712 q^{35} +(16.7694 + 6.94610i) q^{36} +(8.46626 - 1.68404i) q^{37} +(75.0717 + 75.0717i) q^{38} +(16.6849 - 24.9707i) q^{39} +(0.937825 + 0.186545i) q^{40} +(19.5445 + 29.2504i) q^{41} +(8.89505 + 21.4745i) q^{42} +(-20.6891 + 8.56969i) q^{43} +(55.0633 - 36.7921i) q^{44} +(0.0860968 - 0.432838i) q^{45} +(-2.50645 - 1.67476i) q^{46} +(35.2299 - 35.2299i) q^{47} +(1.21467 + 6.10654i) q^{48} +(11.8942 - 28.7150i) q^{49} +79.1871i q^{50} +(25.3002 - 15.0632i) q^{51} -104.907 q^{52} +(0.136939 + 0.0567219i) q^{53} +(-16.1565 + 3.21372i) q^{54} +(-1.13854 - 1.13854i) q^{55} +(15.2867 - 22.8782i) q^{56} +(-56.8899 - 11.3161i) q^{57} +(-58.8319 - 88.0482i) q^{58} +(-43.4125 - 104.807i) q^{59} +(-1.42425 + 0.589944i) q^{60} +(-82.1151 + 54.8676i) q^{61} +(-16.2597 + 81.7433i) q^{62} +(-10.5591 - 7.05534i) q^{63} +(73.6635 - 73.6635i) q^{64} +(0.497610 + 2.50165i) q^{65} +(-22.9999 + 55.5267i) q^{66} -24.5661i q^{67} +(-92.8506 - 44.2505i) q^{68} +1.64696 q^{69} +(-1.82387 - 0.755471i) q^{70} +(76.3125 - 15.1795i) q^{71} +(13.7887 + 13.7887i) q^{72} +(49.1586 - 73.5711i) q^{73} +(26.8400 + 5.33880i) q^{74} +(-24.0361 - 35.9725i) q^{75} +(77.5391 + 187.196i) q^{76} +(-42.8063 + 17.7310i) q^{77} +(79.1627 - 52.8948i) q^{78} +(5.48545 - 27.5772i) q^{79} +(-0.439680 - 0.293785i) q^{80} +(6.36396 - 6.36396i) q^{81} +(21.7576 + 109.383i) q^{82} +(-34.6160 + 83.5703i) q^{83} +44.3607i q^{84} +(-0.614793 + 2.42405i) q^{85} -70.9931 q^{86} +(53.4515 + 22.1403i) q^{87} +(69.7794 - 13.8800i) q^{88} +(-2.81464 - 2.81464i) q^{89} +(0.777286 - 1.16329i) q^{90} +(71.9871 + 14.3191i) q^{91} +(-3.19626 - 4.78354i) q^{92} +(-17.4256 - 42.0691i) q^{93} +(145.926 - 60.4445i) q^{94} +(4.09616 - 2.73697i) q^{95} +(-12.6364 + 63.5276i) q^{96} +(-12.3434 - 8.24758i) q^{97} +(69.6738 - 69.6738i) q^{98} +(-6.40608 - 32.2055i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{10} - 80 q^{11} - 48 q^{13} - 64 q^{14} + 16 q^{17} + 48 q^{19} + 224 q^{20} + 192 q^{22} + 112 q^{23} - 144 q^{24} + 80 q^{25} - 368 q^{26} - 240 q^{28} - 160 q^{29} - 192 q^{30} - 64 q^{31}+ \cdots + 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.92891 + 1.21319i 1.46445 + 0.606597i 0.965587 0.260081i \(-0.0837493\pi\)
0.498868 + 0.866678i \(0.333749\pi\)
\(3\) −1.69877 + 0.337906i −0.566257 + 0.112635i
\(4\) 4.27824 + 4.27824i 1.06956 + 1.06956i
\(5\) 0.0817276 0.122314i 0.0163455 0.0244628i −0.823207 0.567742i \(-0.807817\pi\)
0.839552 + 0.543279i \(0.182817\pi\)
\(6\) −5.38549 1.07124i −0.897581 0.178540i
\(7\) −2.35178 3.51969i −0.335968 0.502812i 0.624567 0.780972i \(-0.285276\pi\)
−0.960535 + 0.278159i \(0.910276\pi\)
\(8\) 2.48747 + 6.00528i 0.310934 + 0.750660i
\(9\) 2.77164 1.14805i 0.307960 0.127561i
\(10\) 0.387763 0.259095i 0.0387763 0.0259095i
\(11\) 2.13536 10.7352i 0.194124 0.975925i −0.753722 0.657194i \(-0.771743\pi\)
0.947845 0.318731i \(-0.103257\pi\)
\(12\) −8.71339 5.82210i −0.726116 0.485175i
\(13\) −12.2605 + 12.2605i −0.943115 + 0.943115i −0.998467 0.0553516i \(-0.982372\pi\)
0.0553516 + 0.998467i \(0.482372\pi\)
\(14\) −2.61809 13.1620i −0.187006 0.940143i
\(15\) −0.0975057 + 0.235400i −0.00650038 + 0.0156933i
\(16\) 3.59468i 0.224668i
\(17\) −16.0231 + 5.67992i −0.942533 + 0.334113i
\(18\) 9.51069 0.528371
\(19\) 30.9397 + 12.8156i 1.62840 + 0.674507i 0.995052 0.0993562i \(-0.0316783\pi\)
0.633353 + 0.773863i \(0.281678\pi\)
\(20\) 0.872939 0.173638i 0.0436470 0.00868192i
\(21\) 5.18446 + 5.18446i 0.246879 + 0.246879i
\(22\) 19.2781 28.8517i 0.876278 1.31144i
\(23\) −0.932603 0.185506i −0.0405479 0.00806549i 0.174775 0.984608i \(-0.444080\pi\)
−0.215323 + 0.976543i \(0.569080\pi\)
\(24\) −6.25486 9.36106i −0.260619 0.390044i
\(25\) 9.55880 + 23.0770i 0.382352 + 0.923080i
\(26\) −50.7842 + 21.0355i −1.95324 + 0.809059i
\(27\) −4.32044 + 2.88683i −0.160016 + 0.106920i
\(28\) 4.99659 25.1195i 0.178450 0.897127i
\(29\) −27.7735 18.5576i −0.957706 0.639918i −0.0246674 0.999696i \(-0.507853\pi\)
−0.933038 + 0.359777i \(0.882853\pi\)
\(30\) −0.571171 + 0.571171i −0.0190390 + 0.0190390i
\(31\) 5.12889 + 25.7847i 0.165448 + 0.831763i 0.970971 + 0.239198i \(0.0768846\pi\)
−0.805523 + 0.592565i \(0.798115\pi\)
\(32\) 14.3109 34.5496i 0.447216 1.07968i
\(33\) 18.9581i 0.574489i
\(34\) −53.8209 2.80312i −1.58297 0.0824448i
\(35\) −0.622712 −0.0177918
\(36\) 16.7694 + 6.94610i 0.465816 + 0.192947i
\(37\) 8.46626 1.68404i 0.228818 0.0455147i −0.0793495 0.996847i \(-0.525284\pi\)
0.308167 + 0.951332i \(0.400284\pi\)
\(38\) 75.0717 + 75.0717i 1.97557 + 1.97557i
\(39\) 16.6849 24.9707i 0.427817 0.640274i
\(40\) 0.937825 + 0.186545i 0.0234456 + 0.00466363i
\(41\) 19.5445 + 29.2504i 0.476695 + 0.713424i 0.989412 0.145133i \(-0.0463611\pi\)
−0.512717 + 0.858557i \(0.671361\pi\)
\(42\) 8.89505 + 21.4745i 0.211787 + 0.511299i
\(43\) −20.6891 + 8.56969i −0.481141 + 0.199295i −0.610053 0.792361i \(-0.708852\pi\)
0.128911 + 0.991656i \(0.458852\pi\)
\(44\) 55.0633 36.7921i 1.25144 0.836184i
\(45\) 0.0860968 0.432838i 0.00191326 0.00961861i
\(46\) −2.50645 1.67476i −0.0544881 0.0364078i
\(47\) 35.2299 35.2299i 0.749573 0.749573i −0.224826 0.974399i \(-0.572181\pi\)
0.974399 + 0.224826i \(0.0721813\pi\)
\(48\) 1.21467 + 6.10654i 0.0253055 + 0.127220i
\(49\) 11.8942 28.7150i 0.242738 0.586021i
\(50\) 79.1871i 1.58374i
\(51\) 25.3002 15.0632i 0.496083 0.295356i
\(52\) −104.907 −2.01744
\(53\) 0.136939 + 0.0567219i 0.00258375 + 0.00107023i 0.383975 0.923344i \(-0.374555\pi\)
−0.381391 + 0.924414i \(0.624555\pi\)
\(54\) −16.1565 + 3.21372i −0.299194 + 0.0595133i
\(55\) −1.13854 1.13854i −0.0207008 0.0207008i
\(56\) 15.2867 22.8782i 0.272977 0.408539i
\(57\) −56.8899 11.3161i −0.998068 0.198528i
\(58\) −58.8319 88.0482i −1.01434 1.51807i
\(59\) −43.4125 104.807i −0.735805 1.77639i −0.622193 0.782864i \(-0.713758\pi\)
−0.113612 0.993525i \(-0.536242\pi\)
\(60\) −1.42425 + 0.589944i −0.0237375 + 0.00983239i
\(61\) −82.1151 + 54.8676i −1.34615 + 0.899468i −0.999261 0.0384384i \(-0.987762\pi\)
−0.346888 + 0.937906i \(0.612762\pi\)
\(62\) −16.2597 + 81.7433i −0.262254 + 1.31844i
\(63\) −10.5591 7.05534i −0.167604 0.111989i
\(64\) 73.6635 73.6635i 1.15099 1.15099i
\(65\) 0.497610 + 2.50165i 0.00765553 + 0.0384870i
\(66\) −22.9999 + 55.5267i −0.348483 + 0.841313i
\(67\) 24.5661i 0.366658i −0.983052 0.183329i \(-0.941313\pi\)
0.983052 0.183329i \(-0.0586874\pi\)
\(68\) −92.8506 44.2505i −1.36545 0.650742i
\(69\) 1.64696 0.0238690
\(70\) −1.82387 0.755471i −0.0260552 0.0107924i
\(71\) 76.3125 15.1795i 1.07482 0.213796i 0.374215 0.927342i \(-0.377912\pi\)
0.700608 + 0.713546i \(0.252912\pi\)
\(72\) 13.7887 + 13.7887i 0.191510 + 0.191510i
\(73\) 49.1586 73.5711i 0.673406 1.00782i −0.324671 0.945827i \(-0.605253\pi\)
0.998076 0.0619958i \(-0.0197465\pi\)
\(74\) 26.8400 + 5.33880i 0.362702 + 0.0721460i
\(75\) −24.0361 35.9725i −0.320481 0.479634i
\(76\) 77.5391 + 187.196i 1.02025 + 2.46310i
\(77\) −42.8063 + 17.7310i −0.555926 + 0.230272i
\(78\) 79.1627 52.8948i 1.01491 0.678139i
\(79\) 5.48545 27.5772i 0.0694361 0.349079i −0.930412 0.366516i \(-0.880551\pi\)
0.999848 + 0.0174369i \(0.00555062\pi\)
\(80\) −0.439680 0.293785i −0.00549600 0.00367231i
\(81\) 6.36396 6.36396i 0.0785674 0.0785674i
\(82\) 21.7576 + 109.383i 0.265337 + 1.33394i
\(83\) −34.6160 + 83.5703i −0.417060 + 1.00687i 0.566135 + 0.824312i \(0.308438\pi\)
−0.983195 + 0.182559i \(0.941562\pi\)
\(84\) 44.3607i 0.528104i
\(85\) −0.614793 + 2.42405i −0.00723286 + 0.0285182i
\(86\) −70.9931 −0.825501
\(87\) 53.4515 + 22.1403i 0.614385 + 0.254486i
\(88\) 69.7794 13.8800i 0.792948 0.157727i
\(89\) −2.81464 2.81464i −0.0316252 0.0316252i 0.691117 0.722743i \(-0.257119\pi\)
−0.722743 + 0.691117i \(0.757119\pi\)
\(90\) 0.777286 1.16329i 0.00863651 0.0129254i
\(91\) 71.9871 + 14.3191i 0.791067 + 0.157353i
\(92\) −3.19626 4.78354i −0.0347420 0.0519950i
\(93\) −17.4256 42.0691i −0.187372 0.452356i
\(94\) 145.926 60.4445i 1.55240 0.643027i
\(95\) 4.09616 2.73697i 0.0431175 0.0288102i
\(96\) −12.6364 + 63.5276i −0.131629 + 0.661746i
\(97\) −12.3434 8.24758i −0.127251 0.0850266i 0.490316 0.871545i \(-0.336882\pi\)
−0.617567 + 0.786518i \(0.711882\pi\)
\(98\) 69.6738 69.6738i 0.710958 0.710958i
\(99\) −6.40608 32.2055i −0.0647078 0.325308i
\(100\) −57.8341 + 139.624i −0.578341 + 1.39624i
\(101\) 7.01636i 0.0694689i −0.999397 0.0347345i \(-0.988941\pi\)
0.999397 0.0347345i \(-0.0110585\pi\)
\(102\) 92.3766 13.4246i 0.905653 0.131613i
\(103\) −127.796 −1.24074 −0.620369 0.784310i \(-0.713017\pi\)
−0.620369 + 0.784310i \(0.713017\pi\)
\(104\) −104.125 43.1301i −1.00121 0.414713i
\(105\) 1.05784 0.210418i 0.0100747 0.00200398i
\(106\) 0.332267 + 0.332267i 0.00313459 + 0.00313459i
\(107\) 31.3619 46.9364i 0.293102 0.438658i −0.655469 0.755222i \(-0.727529\pi\)
0.948571 + 0.316564i \(0.102529\pi\)
\(108\) −30.8344 6.13335i −0.285504 0.0567903i
\(109\) 100.780 + 150.828i 0.924585 + 1.38374i 0.923441 + 0.383740i \(0.125364\pi\)
0.00114360 + 0.999999i \(0.499636\pi\)
\(110\) −1.95342 4.71597i −0.0177583 0.0428724i
\(111\) −13.8132 + 5.72161i −0.124443 + 0.0515460i
\(112\) −12.6522 + 8.45390i −0.112966 + 0.0754812i
\(113\) −36.3987 + 182.989i −0.322112 + 1.61937i 0.392434 + 0.919780i \(0.371633\pi\)
−0.714547 + 0.699588i \(0.753367\pi\)
\(114\) −152.897 102.162i −1.34120 0.896161i
\(115\) −0.0989094 + 0.0989094i −0.000860082 + 0.000860082i
\(116\) −39.4275 198.216i −0.339893 1.70876i
\(117\) −19.9060 + 48.0573i −0.170137 + 0.410747i
\(118\) 359.638i 3.04778i
\(119\) 57.6742 + 43.0382i 0.484657 + 0.361666i
\(120\) −1.65618 −0.0138015
\(121\) 1.10523 + 0.457802i 0.00913415 + 0.00378349i
\(122\) −307.073 + 61.0805i −2.51699 + 0.500660i
\(123\) −43.0855 43.0855i −0.350288 0.350288i
\(124\) −88.3704 + 132.256i −0.712664 + 1.06658i
\(125\) 7.21084 + 1.43433i 0.0576867 + 0.0114746i
\(126\) −22.3670 33.4746i −0.177516 0.265672i
\(127\) 35.0857 + 84.7043i 0.276265 + 0.666963i 0.999726 0.0234023i \(-0.00744987\pi\)
−0.723461 + 0.690365i \(0.757450\pi\)
\(128\) 166.923 69.1419i 1.30409 0.540171i
\(129\) 32.2502 21.5489i 0.250002 0.167046i
\(130\) −1.57754 + 7.93081i −0.0121349 + 0.0610062i
\(131\) 14.9226 + 9.97096i 0.113913 + 0.0761142i 0.611222 0.791459i \(-0.290678\pi\)
−0.497309 + 0.867574i \(0.665678\pi\)
\(132\) −81.1075 + 81.1075i −0.614451 + 0.614451i
\(133\) −27.6563 139.038i −0.207942 1.04539i
\(134\) 29.8034 71.9518i 0.222414 0.536954i
\(135\) 0.764384i 0.00566211i
\(136\) −73.9664 82.0944i −0.543870 0.603635i
\(137\) 131.421 0.959278 0.479639 0.877466i \(-0.340768\pi\)
0.479639 + 0.877466i \(0.340768\pi\)
\(138\) 4.82380 + 1.99808i 0.0349551 + 0.0144789i
\(139\) 14.7270 2.92938i 0.105949 0.0210747i −0.141831 0.989891i \(-0.545299\pi\)
0.247780 + 0.968816i \(0.420299\pi\)
\(140\) −2.66411 2.66411i −0.0190294 0.0190294i
\(141\) −47.9431 + 71.7520i −0.340022 + 0.508879i
\(142\) 241.928 + 48.1225i 1.70372 + 0.338891i
\(143\) 105.438 + 157.799i 0.737329 + 1.10349i
\(144\) −4.12688 9.96316i −0.0286589 0.0691886i
\(145\) −4.53972 + 1.88041i −0.0313084 + 0.0129684i
\(146\) 233.237 155.844i 1.59751 1.06742i
\(147\) −10.5024 + 52.7994i −0.0714452 + 0.359179i
\(148\) 43.4255 + 29.0160i 0.293415 + 0.196054i
\(149\) −10.8438 + 10.8438i −0.0727772 + 0.0727772i −0.742558 0.669781i \(-0.766388\pi\)
0.669781 + 0.742558i \(0.266388\pi\)
\(150\) −26.7578 134.521i −0.178386 0.896804i
\(151\) 4.56032 11.0096i 0.0302008 0.0729112i −0.908060 0.418841i \(-0.862436\pi\)
0.938260 + 0.345930i \(0.112436\pi\)
\(152\) 217.680i 1.43211i
\(153\) −37.8893 + 34.1380i −0.247643 + 0.223124i
\(154\) −146.887 −0.953811
\(155\) 3.57300 + 1.47998i 0.0230516 + 0.00954828i
\(156\) 178.212 35.4487i 1.14239 0.227235i
\(157\) −107.166 107.166i −0.682584 0.682584i 0.277998 0.960582i \(-0.410329\pi\)
−0.960582 + 0.277998i \(0.910329\pi\)
\(158\) 49.5229 74.1163i 0.313436 0.469090i
\(159\) −0.251794 0.0500850i −0.00158361 0.000315000i
\(160\) −3.05631 4.57409i −0.0191019 0.0285880i
\(161\) 1.54035 + 3.71874i 0.00956740 + 0.0230978i
\(162\) 26.3602 10.9187i 0.162717 0.0673997i
\(163\) −234.223 + 156.503i −1.43695 + 0.960139i −0.438847 + 0.898562i \(0.644613\pi\)
−0.998102 + 0.0615770i \(0.980387\pi\)
\(164\) −41.5242 + 208.756i −0.253196 + 1.27290i
\(165\) 2.31885 + 1.54940i 0.0140536 + 0.00939033i
\(166\) −202.774 + 202.774i −1.22153 + 1.22153i
\(167\) −36.9681 185.851i −0.221366 1.11288i −0.918342 0.395787i \(-0.870472\pi\)
0.696976 0.717094i \(-0.254528\pi\)
\(168\) −18.2379 + 44.0303i −0.108559 + 0.262085i
\(169\) 131.640i 0.778933i
\(170\) −4.74152 + 6.35396i −0.0278913 + 0.0373762i
\(171\) 100.467 0.587524
\(172\) −125.176 51.8496i −0.727768 0.301451i
\(173\) −256.810 + 51.0827i −1.48445 + 0.295276i −0.869753 0.493487i \(-0.835722\pi\)
−0.614698 + 0.788762i \(0.710722\pi\)
\(174\) 129.694 + 129.694i 0.745368 + 0.745368i
\(175\) 58.7436 87.9160i 0.335678 0.502377i
\(176\) −38.5895 7.67594i −0.219259 0.0436133i
\(177\) 109.163 + 163.374i 0.616739 + 0.923015i
\(178\) −4.82912 11.6585i −0.0271299 0.0654973i
\(179\) 77.7596 32.2091i 0.434411 0.179939i −0.154752 0.987953i \(-0.549458\pi\)
0.589163 + 0.808014i \(0.299458\pi\)
\(180\) 2.22013 1.48344i 0.0123340 0.00824134i
\(181\) 29.7920 149.774i 0.164597 0.827483i −0.806947 0.590624i \(-0.798882\pi\)
0.971544 0.236860i \(-0.0761182\pi\)
\(182\) 193.472 + 129.274i 1.06303 + 0.710295i
\(183\) 120.955 120.955i 0.660954 0.660954i
\(184\) −1.20580 6.06198i −0.00655328 0.0329456i
\(185\) 0.485945 1.17318i 0.00262673 0.00634149i
\(186\) 144.357i 0.776114i
\(187\) 26.7599 + 184.139i 0.143101 + 0.984701i
\(188\) 301.444 1.60343
\(189\) 20.3215 + 8.41742i 0.107521 + 0.0445366i
\(190\) 15.3177 3.04689i 0.0806197 0.0160363i
\(191\) −213.435 213.435i −1.11746 1.11746i −0.992113 0.125347i \(-0.959996\pi\)
−0.125347 0.992113i \(-0.540004\pi\)
\(192\) −100.246 + 150.029i −0.522114 + 0.781399i
\(193\) 247.768 + 49.2841i 1.28377 + 0.255358i 0.789393 0.613888i \(-0.210395\pi\)
0.494379 + 0.869246i \(0.335395\pi\)
\(194\) −26.1467 39.1313i −0.134777 0.201708i
\(195\) −1.69065 4.08159i −0.00866999 0.0209312i
\(196\) 173.736 71.9638i 0.886408 0.367162i
\(197\) −272.321 + 181.959i −1.38234 + 0.923650i −1.00000 0.000371241i \(-0.999882\pi\)
−0.382340 + 0.924022i \(0.624882\pi\)
\(198\) 20.3087 102.099i 0.102569 0.515651i
\(199\) 27.1556 + 18.1448i 0.136460 + 0.0911800i 0.621927 0.783075i \(-0.286350\pi\)
−0.485466 + 0.874255i \(0.661350\pi\)
\(200\) −114.807 + 114.807i −0.574033 + 0.574033i
\(201\) 8.30104 + 41.7321i 0.0412987 + 0.207622i
\(202\) 8.51221 20.5503i 0.0421396 0.101734i
\(203\) 141.397i 0.696539i
\(204\) 172.684 + 43.7966i 0.846492 + 0.214689i
\(205\) 5.17506 0.0252442
\(206\) −374.303 155.041i −1.81700 0.752628i
\(207\) −2.79781 + 0.556519i −0.0135160 + 0.00268850i
\(208\) 44.0726 + 44.0726i 0.211888 + 0.211888i
\(209\) 203.645 304.777i 0.974380 1.45826i
\(210\) 3.35361 + 0.667074i 0.0159696 + 0.00317654i
\(211\) −167.950 251.355i −0.795971 1.19125i −0.978132 0.207986i \(-0.933309\pi\)
0.182161 0.983269i \(-0.441691\pi\)
\(212\) 0.343188 + 0.828528i 0.00161881 + 0.00390815i
\(213\) −124.508 + 51.5729i −0.584545 + 0.242126i
\(214\) 148.799 99.4243i 0.695323 0.464600i
\(215\) −0.642675 + 3.23094i −0.00298918 + 0.0150276i
\(216\) −28.0832 18.7646i −0.130015 0.0868731i
\(217\) 78.6919 78.6919i 0.362635 0.362635i
\(218\) 112.192 + 564.026i 0.514641 + 2.58727i
\(219\) −58.6490 + 141.591i −0.267804 + 0.646536i
\(220\) 9.74194i 0.0442815i
\(221\) 126.812 266.089i 0.573811 1.20402i
\(222\) −47.3990 −0.213509
\(223\) 147.178 + 60.9632i 0.659992 + 0.273378i 0.687435 0.726246i \(-0.258737\pi\)
−0.0274431 + 0.999623i \(0.508737\pi\)
\(224\) −155.260 + 30.8831i −0.693125 + 0.137871i
\(225\) 52.9871 + 52.9871i 0.235498 + 0.235498i
\(226\) −328.609 + 491.798i −1.45402 + 2.17610i
\(227\) −120.893 24.0472i −0.532569 0.105935i −0.0785223 0.996912i \(-0.525020\pi\)
−0.454047 + 0.890978i \(0.650020\pi\)
\(228\) −194.976 291.802i −0.855157 1.27983i
\(229\) −118.603 286.334i −0.517918 1.25037i −0.939180 0.343426i \(-0.888412\pi\)
0.421261 0.906939i \(-0.361588\pi\)
\(230\) −0.409693 + 0.169700i −0.00178127 + 0.000737828i
\(231\) 66.7267 44.5854i 0.288860 0.193010i
\(232\) 42.3582 212.949i 0.182578 0.917884i
\(233\) −34.9316 23.3406i −0.149921 0.100174i 0.478347 0.878171i \(-0.341236\pi\)
−0.628268 + 0.777997i \(0.716236\pi\)
\(234\) −116.606 + 116.606i −0.498315 + 0.498315i
\(235\) −1.42986 7.18837i −0.00608450 0.0305888i
\(236\) 262.661 634.119i 1.11297 2.68694i
\(237\) 48.7009i 0.205489i
\(238\) 116.709 + 196.025i 0.490373 + 0.823635i
\(239\) −69.3690 −0.290247 −0.145123 0.989414i \(-0.546358\pi\)
−0.145123 + 0.989414i \(0.546358\pi\)
\(240\) 0.846187 + 0.350502i 0.00352578 + 0.00146043i
\(241\) 327.324 65.1087i 1.35819 0.270161i 0.538334 0.842732i \(-0.319054\pi\)
0.819855 + 0.572571i \(0.194054\pi\)
\(242\) 2.68172 + 2.68172i 0.0110815 + 0.0110815i
\(243\) −8.66048 + 12.9613i −0.0356398 + 0.0533388i
\(244\) −586.045 116.572i −2.40182 0.477752i
\(245\) −2.54017 3.80164i −0.0103680 0.0155169i
\(246\) −73.9224 178.464i −0.300498 0.725465i
\(247\) −536.462 + 222.210i −2.17191 + 0.899635i
\(248\) −142.086 + 94.9390i −0.572928 + 0.382818i
\(249\) 30.5656 153.664i 0.122753 0.617123i
\(250\) 19.3798 + 12.9492i 0.0775191 + 0.0517966i
\(251\) 31.1640 31.1640i 0.124159 0.124159i −0.642297 0.766456i \(-0.722018\pi\)
0.766456 + 0.642297i \(0.222018\pi\)
\(252\) −14.9898 75.3586i −0.0594832 0.299042i
\(253\) −3.98288 + 9.61553i −0.0157426 + 0.0380060i
\(254\) 290.657i 1.14432i
\(255\) 0.225290 4.32565i 0.000883491 0.0169633i
\(256\) 156.082 0.609695
\(257\) 298.932 + 123.822i 1.16316 + 0.481797i 0.878926 0.476958i \(-0.158260\pi\)
0.284235 + 0.958755i \(0.408260\pi\)
\(258\) 120.601 23.9890i 0.467446 0.0929807i
\(259\) −25.8381 25.8381i −0.0997609 0.0997609i
\(260\) −8.57378 + 12.8316i −0.0329761 + 0.0493522i
\(261\) −98.2831 19.5497i −0.376564 0.0749032i
\(262\) 31.6102 + 47.3080i 0.120650 + 0.180565i
\(263\) 19.7498 + 47.6802i 0.0750943 + 0.181294i 0.956969 0.290190i \(-0.0937186\pi\)
−0.881875 + 0.471484i \(0.843719\pi\)
\(264\) −113.849 + 47.1578i −0.431246 + 0.178628i
\(265\) 0.0181296 0.0121138i 6.84135e−5 4.57124e-5i
\(266\) 87.6767 440.781i 0.329612 1.65707i
\(267\) 5.73251 + 3.83034i 0.0214701 + 0.0143458i
\(268\) 105.100 105.100i 0.392163 0.392163i
\(269\) 76.1166 + 382.664i 0.282961 + 1.42254i 0.816783 + 0.576945i \(0.195755\pi\)
−0.533822 + 0.845597i \(0.679245\pi\)
\(270\) −0.927346 + 2.23881i −0.00343462 + 0.00829190i
\(271\) 347.631i 1.28277i 0.767219 + 0.641385i \(0.221640\pi\)
−0.767219 + 0.641385i \(0.778360\pi\)
\(272\) 20.4175 + 57.5978i 0.0750643 + 0.211757i
\(273\) −127.128 −0.465670
\(274\) 384.921 + 159.439i 1.40482 + 0.581895i
\(275\) 268.147 53.3378i 0.975080 0.193955i
\(276\) 7.04610 + 7.04610i 0.0255293 + 0.0255293i
\(277\) 72.8289 108.996i 0.262920 0.393488i −0.676397 0.736537i \(-0.736460\pi\)
0.939317 + 0.343049i \(0.111460\pi\)
\(278\) 46.6879 + 9.28680i 0.167942 + 0.0334057i
\(279\) 43.8175 + 65.5775i 0.157052 + 0.235045i
\(280\) −1.54898 3.73956i −0.00553206 0.0133556i
\(281\) −76.2945 + 31.6022i −0.271511 + 0.112463i −0.514285 0.857619i \(-0.671943\pi\)
0.242774 + 0.970083i \(0.421943\pi\)
\(282\) −227.470 + 151.991i −0.806632 + 0.538974i
\(283\) −31.9246 + 160.496i −0.112808 + 0.567123i 0.882496 + 0.470320i \(0.155862\pi\)
−0.995304 + 0.0968028i \(0.969138\pi\)
\(284\) 391.425 + 261.542i 1.37826 + 0.920921i
\(285\) −6.03359 + 6.03359i −0.0211705 + 0.0211705i
\(286\) 117.377 + 590.096i 0.410411 + 2.06327i
\(287\) 56.9879 137.581i 0.198564 0.479376i
\(288\) 112.189i 0.389544i
\(289\) 224.477 182.019i 0.776737 0.629825i
\(290\) −15.5777 −0.0537163
\(291\) 23.7555 + 9.83983i 0.0816339 + 0.0338139i
\(292\) 525.067 104.442i 1.79818 0.357679i
\(293\) −81.3894 81.3894i −0.277779 0.277779i 0.554443 0.832222i \(-0.312932\pi\)
−0.832222 + 0.554443i \(0.812932\pi\)
\(294\) −94.8166 + 141.903i −0.322505 + 0.482663i
\(295\) −16.3674 3.25567i −0.0554826 0.0110362i
\(296\) 31.1727 + 46.6533i 0.105313 + 0.157612i
\(297\) 21.7649 + 52.5451i 0.0732825 + 0.176920i
\(298\) −44.9162 + 18.6049i −0.150725 + 0.0624325i
\(299\) 13.7086 9.15978i 0.0458481 0.0306347i
\(300\) 51.0670 256.731i 0.170223 0.855771i
\(301\) 78.8187 + 52.6650i 0.261856 + 0.174967i
\(302\) 26.7135 26.7135i 0.0884554 0.0884554i
\(303\) 2.37087 + 11.9192i 0.00782466 + 0.0393372i
\(304\) 46.0681 111.218i 0.151540 0.365850i
\(305\) 14.5280i 0.0476329i
\(306\) −152.390 + 54.0199i −0.498008 + 0.176536i
\(307\) 583.110 1.89938 0.949691 0.313190i \(-0.101398\pi\)
0.949691 + 0.313190i \(0.101398\pi\)
\(308\) −258.993 107.278i −0.840887 0.348307i
\(309\) 217.096 43.1831i 0.702576 0.139751i
\(310\) 8.66948 + 8.66948i 0.0279661 + 0.0279661i
\(311\) −252.650 + 378.117i −0.812379 + 1.21581i 0.161078 + 0.986942i \(0.448503\pi\)
−0.973457 + 0.228869i \(0.926497\pi\)
\(312\) 191.459 + 38.0836i 0.613651 + 0.122063i
\(313\) −158.106 236.622i −0.505130 0.755981i 0.488019 0.872833i \(-0.337720\pi\)
−0.993149 + 0.116852i \(0.962720\pi\)
\(314\) −183.866 443.891i −0.585560 1.41367i
\(315\) −1.72593 + 0.714905i −0.00547915 + 0.00226954i
\(316\) 141.450 94.5139i 0.447627 0.299095i
\(317\) 40.1080 201.636i 0.126524 0.636077i −0.864527 0.502587i \(-0.832382\pi\)
0.991050 0.133490i \(-0.0426184\pi\)
\(318\) −0.676720 0.452170i −0.00212805 0.00142192i
\(319\) −258.526 + 258.526i −0.810425 + 0.810425i
\(320\) −2.98974 15.0304i −0.00934293 0.0469701i
\(321\) −37.4165 + 90.3315i −0.116562 + 0.281407i
\(322\) 12.7606i 0.0396292i
\(323\) −568.540 29.6109i −1.76019 0.0916748i
\(324\) 54.4531 0.168065
\(325\) −400.131 165.740i −1.23117 0.509969i
\(326\) −875.885 + 174.224i −2.68676 + 0.534431i
\(327\) −222.167 222.167i −0.679410 0.679410i
\(328\) −127.041 + 190.130i −0.387319 + 0.579663i
\(329\) −206.851 41.1453i −0.628727 0.125062i
\(330\) 4.91196 + 7.35127i 0.0148847 + 0.0222766i
\(331\) 34.6177 + 83.5745i 0.104585 + 0.252491i 0.967506 0.252848i \(-0.0813674\pi\)
−0.862921 + 0.505339i \(0.831367\pi\)
\(332\) −505.629 + 209.439i −1.52298 + 0.630839i
\(333\) 21.5320 14.3873i 0.0646608 0.0432050i
\(334\) 117.197 589.191i 0.350890 1.76404i
\(335\) −3.00478 2.00773i −0.00896948 0.00599322i
\(336\) 18.6365 18.6365i 0.0554657 0.0554657i
\(337\) −90.6560 455.758i −0.269009 1.35240i −0.844923 0.534888i \(-0.820354\pi\)
0.575914 0.817510i \(-0.304646\pi\)
\(338\) 159.704 385.561i 0.472498 1.14071i
\(339\) 323.155i 0.953259i
\(340\) −13.0009 + 7.74044i −0.0382380 + 0.0227660i
\(341\) 287.755 0.843856
\(342\) 294.258 + 121.885i 0.860402 + 0.356390i
\(343\) −332.476 + 66.1336i −0.969319 + 0.192809i
\(344\) −102.927 102.927i −0.299206 0.299206i
\(345\) 0.134602 0.201446i 0.000390151 0.000583903i
\(346\) −814.147 161.944i −2.35303 0.468046i
\(347\) 164.221 + 245.774i 0.473259 + 0.708282i 0.988910 0.148517i \(-0.0474500\pi\)
−0.515651 + 0.856799i \(0.672450\pi\)
\(348\) 133.957 + 323.400i 0.384933 + 0.929310i
\(349\) −65.4532 + 27.1116i −0.187545 + 0.0776837i −0.474480 0.880266i \(-0.657364\pi\)
0.286935 + 0.957950i \(0.407364\pi\)
\(350\) 278.714 186.231i 0.796325 0.532087i
\(351\) 17.5768 88.3647i 0.0500765 0.251751i
\(352\) −340.337 227.406i −0.966867 0.646040i
\(353\) 55.4879 55.4879i 0.157189 0.157189i −0.624131 0.781320i \(-0.714547\pi\)
0.781320 + 0.624131i \(0.214547\pi\)
\(354\) 121.524 + 610.942i 0.343288 + 1.72582i
\(355\) 4.38017 10.5747i 0.0123385 0.0297878i
\(356\) 24.0834i 0.0676501i
\(357\) −112.518 53.6236i −0.315177 0.150206i
\(358\) 266.827 0.745326
\(359\) 134.505 + 55.7140i 0.374667 + 0.155192i 0.562067 0.827091i \(-0.310006\pi\)
−0.187400 + 0.982284i \(0.560006\pi\)
\(360\) 2.81348 0.559635i 0.00781521 0.00155454i
\(361\) 537.758 + 537.758i 1.48963 + 1.48963i
\(362\) 268.964 402.532i 0.742993 1.11197i
\(363\) −2.03223 0.404236i −0.00559843 0.00111360i
\(364\) 246.718 + 369.239i 0.677795 + 1.01439i
\(365\) −4.98116 12.0256i −0.0136470 0.0329468i
\(366\) 501.006 207.524i 1.36887 0.567004i
\(367\) −164.975 + 110.233i −0.449524 + 0.300362i −0.759649 0.650334i \(-0.774629\pi\)
0.310125 + 0.950696i \(0.399629\pi\)
\(368\) −0.666836 + 3.35241i −0.00181205 + 0.00910981i
\(369\) 87.7511 + 58.6334i 0.237808 + 0.158898i
\(370\) 2.84658 2.84658i 0.00769345 0.00769345i
\(371\) −0.122407 0.615379i −0.000329937 0.00165870i
\(372\) 105.431 254.533i 0.283417 0.684228i
\(373\) 234.770i 0.629411i 0.949189 + 0.314705i \(0.101906\pi\)
−0.949189 + 0.314705i \(0.898094\pi\)
\(374\) −145.019 + 571.791i −0.387751 + 1.52885i
\(375\) −12.7342 −0.0339579
\(376\) 299.199 + 123.932i 0.795742 + 0.329607i
\(377\) 568.042 112.991i 1.50674 0.299710i
\(378\) 49.3077 + 49.3077i 0.130444 + 0.130444i
\(379\) 110.434 165.276i 0.291382 0.436084i −0.656680 0.754169i \(-0.728040\pi\)
0.948062 + 0.318085i \(0.103040\pi\)
\(380\) 29.2338 + 5.81496i 0.0769309 + 0.0153025i
\(381\) −88.2246 132.037i −0.231561 0.346555i
\(382\) −366.193 884.069i −0.958621 2.31432i
\(383\) 175.404 72.6548i 0.457975 0.189699i −0.141755 0.989902i \(-0.545275\pi\)
0.599730 + 0.800202i \(0.295275\pi\)
\(384\) −260.201 + 173.861i −0.677606 + 0.452762i
\(385\) −1.32971 + 6.68492i −0.00345380 + 0.0173634i
\(386\) 665.899 + 444.940i 1.72513 + 1.15269i
\(387\) −47.5042 + 47.5042i −0.122750 + 0.122750i
\(388\) −17.5228 88.0931i −0.0451619 0.227044i
\(389\) −111.532 + 269.263i −0.286715 + 0.692192i −0.999962 0.00872133i \(-0.997224\pi\)
0.713247 + 0.700913i \(0.247224\pi\)
\(390\) 14.0057i 0.0359120i
\(391\) 15.9968 2.32473i 0.0409126 0.00594560i
\(392\) 202.028 0.515378
\(393\) −28.7193 11.8959i −0.0730771 0.0302695i
\(394\) −1018.36 + 202.563i −2.58466 + 0.514120i
\(395\) −2.92477 2.92477i −0.00740448 0.00740448i
\(396\) 110.376 165.190i 0.278728 0.417146i
\(397\) 70.5719 + 14.0376i 0.177763 + 0.0353593i 0.283169 0.959070i \(-0.408614\pi\)
−0.105406 + 0.994429i \(0.533614\pi\)
\(398\) 57.5232 + 86.0896i 0.144531 + 0.216305i
\(399\) 93.9633 + 226.848i 0.235497 + 0.568540i
\(400\) 82.9545 34.3609i 0.207386 0.0859022i
\(401\) −55.7843 + 37.2739i −0.139113 + 0.0929523i −0.623179 0.782079i \(-0.714159\pi\)
0.484066 + 0.875031i \(0.339159\pi\)
\(402\) −26.3162 + 132.300i −0.0654631 + 0.329105i
\(403\) −379.016 253.250i −0.940485 0.628412i
\(404\) 30.0177 30.0177i 0.0743012 0.0743012i
\(405\) −0.258290 1.29851i −0.000637754 0.00320620i
\(406\) −171.542 + 414.140i −0.422518 + 1.02005i
\(407\) 94.4828i 0.232144i
\(408\) 153.392 + 114.466i 0.375961 + 0.280553i
\(409\) 168.565 0.412140 0.206070 0.978537i \(-0.433932\pi\)
0.206070 + 0.978537i \(0.433932\pi\)
\(410\) 15.1573 + 6.27835i 0.0369689 + 0.0153130i
\(411\) −223.254 + 44.4080i −0.543198 + 0.108049i
\(412\) −546.742 546.742i −1.32704 1.32704i
\(413\) −266.791 + 399.281i −0.645983 + 0.966782i
\(414\) −8.86969 1.76429i −0.0214244 0.00426157i
\(415\) 7.39274 + 11.0640i 0.0178138 + 0.0266603i
\(416\) 248.137 + 599.055i 0.596482 + 1.44004i
\(417\) −24.0279 + 9.95268i −0.0576208 + 0.0238673i
\(418\) 966.212 645.602i 2.31151 1.54450i
\(419\) −46.8504 + 235.533i −0.111815 + 0.562131i 0.883743 + 0.467973i \(0.155016\pi\)
−0.995557 + 0.0941575i \(0.969984\pi\)
\(420\) 5.42594 + 3.62550i 0.0129189 + 0.00863213i
\(421\) −392.673 + 392.673i −0.932715 + 0.932715i −0.997875 0.0651594i \(-0.979244\pi\)
0.0651594 + 0.997875i \(0.479244\pi\)
\(422\) −186.968 939.951i −0.443052 2.22737i
\(423\) 57.1989 138.090i 0.135222 0.326455i
\(424\) 0.963451i 0.00227229i
\(425\) −284.237 315.471i −0.668792 0.742285i
\(426\) −427.241 −1.00291
\(427\) 386.233 + 159.983i 0.904527 + 0.374667i
\(428\) 334.979 66.6315i 0.782661 0.155681i
\(429\) −232.436 232.436i −0.541809 0.541809i
\(430\) −5.80210 + 8.68345i −0.0134932 + 0.0201941i
\(431\) 784.097 + 155.967i 1.81925 + 0.361871i 0.982581 0.185837i \(-0.0594995\pi\)
0.836670 + 0.547708i \(0.184500\pi\)
\(432\) 10.3772 + 15.5306i 0.0240214 + 0.0359505i
\(433\) 244.645 + 590.626i 0.565001 + 1.36403i 0.905724 + 0.423868i \(0.139328\pi\)
−0.340723 + 0.940164i \(0.610672\pi\)
\(434\) 325.950 135.013i 0.751037 0.311090i
\(435\) 7.07653 4.72839i 0.0162679 0.0108699i
\(436\) −214.117 + 1076.44i −0.491093 + 2.46889i
\(437\) −26.4771 17.6914i −0.0605882 0.0404838i
\(438\) −343.555 + 343.555i −0.784373 + 0.784373i
\(439\) −85.0515 427.583i −0.193739 0.973993i −0.948206 0.317655i \(-0.897105\pi\)
0.754467 0.656338i \(-0.227895\pi\)
\(440\) 4.00519 9.66938i 0.00910270 0.0219759i
\(441\) 93.2428i 0.211435i
\(442\) 694.239 625.504i 1.57068 1.41517i
\(443\) 67.6445 0.152696 0.0763482 0.997081i \(-0.475674\pi\)
0.0763482 + 0.997081i \(0.475674\pi\)
\(444\) −83.5745 34.6177i −0.188231 0.0779678i
\(445\) −0.574304 + 0.114236i −0.00129057 + 0.000256710i
\(446\) 357.112 + 357.112i 0.800698 + 0.800698i
\(447\) 14.7569 22.0853i 0.0330133 0.0494079i
\(448\) −432.513 86.0321i −0.965430 0.192036i
\(449\) 202.715 + 303.384i 0.451481 + 0.675689i 0.985479 0.169797i \(-0.0543112\pi\)
−0.533998 + 0.845485i \(0.679311\pi\)
\(450\) 90.9108 + 219.478i 0.202024 + 0.487729i
\(451\) 355.742 147.353i 0.788786 0.326726i
\(452\) −938.592 + 627.147i −2.07653 + 1.38749i
\(453\) −4.02673 + 20.2437i −0.00888902 + 0.0446881i
\(454\) −324.911 217.099i −0.715664 0.478191i
\(455\) 7.63476 7.63476i 0.0167797 0.0167797i
\(456\) −73.5555 369.788i −0.161306 0.810939i
\(457\) −118.228 + 285.427i −0.258704 + 0.624566i −0.998853 0.0478763i \(-0.984755\pi\)
0.740150 + 0.672442i \(0.234755\pi\)
\(458\) 982.534i 2.14527i
\(459\) 52.8298 70.7956i 0.115098 0.154239i
\(460\) −0.846317 −0.00183982
\(461\) −670.150 277.585i −1.45369 0.602137i −0.490615 0.871376i \(-0.663228\pi\)
−0.963073 + 0.269239i \(0.913228\pi\)
\(462\) 249.527 49.6340i 0.540102 0.107433i
\(463\) −293.832 293.832i −0.634626 0.634626i 0.314598 0.949225i \(-0.398130\pi\)
−0.949225 + 0.314598i \(0.898130\pi\)
\(464\) −66.7088 + 99.8368i −0.143769 + 0.215165i
\(465\) −6.56980 1.30681i −0.0141286 0.00281035i
\(466\) −73.9949 110.741i −0.158787 0.237642i
\(467\) −243.012 586.684i −0.520369 1.25628i −0.937674 0.347516i \(-0.887025\pi\)
0.417305 0.908766i \(-0.362975\pi\)
\(468\) −290.764 + 120.438i −0.621290 + 0.257347i
\(469\) −86.4649 + 57.7740i −0.184360 + 0.123185i
\(470\) 4.53297 22.7888i 0.00964462 0.0484868i
\(471\) 218.262 + 145.838i 0.463401 + 0.309634i
\(472\) 521.408 521.408i 1.10468 1.10468i
\(473\) 47.8186 + 240.400i 0.101096 + 0.508245i
\(474\) −59.0837 + 142.641i −0.124649 + 0.300930i
\(475\) 836.497i 1.76105i
\(476\) 62.6163 + 430.872i 0.131547 + 0.905194i
\(477\) 0.444665 0.000932211
\(478\) −203.175 84.1580i −0.425053 0.176063i
\(479\) 207.367 41.2480i 0.432918 0.0861127i 0.0261790 0.999657i \(-0.491666\pi\)
0.406739 + 0.913545i \(0.366666\pi\)
\(480\) 6.73757 + 6.73757i 0.0140366 + 0.0140366i
\(481\) −83.1533 + 124.448i −0.172876 + 0.258727i
\(482\) 1037.69 + 206.409i 2.15288 + 0.428235i
\(483\) −3.87329 5.79679i −0.00801923 0.0120016i
\(484\) 2.76986 + 6.68704i 0.00572286 + 0.0138162i
\(485\) −2.01759 + 0.835713i −0.00415998 + 0.00172312i
\(486\) −41.0904 + 27.4557i −0.0845481 + 0.0564932i
\(487\) 33.0603 166.205i 0.0678856 0.341284i −0.931884 0.362757i \(-0.881836\pi\)
0.999769 + 0.0214729i \(0.00683556\pi\)
\(488\) −533.754 356.643i −1.09376 0.730826i
\(489\) 345.007 345.007i 0.705536 0.705536i
\(490\) −2.82781 14.2164i −0.00577104 0.0290130i
\(491\) 44.4743 107.370i 0.0905790 0.218677i −0.872097 0.489333i \(-0.837240\pi\)
0.962676 + 0.270656i \(0.0872404\pi\)
\(492\) 368.660i 0.749309i
\(493\) 550.422 + 139.599i 1.11647 + 0.283163i
\(494\) −1840.83 −3.72638
\(495\) −4.46274 1.84853i −0.00901564 0.00373440i
\(496\) 92.6877 18.4367i 0.186870 0.0371708i
\(497\) −232.897 232.897i −0.468606 0.468606i
\(498\) 275.948 412.985i 0.554112 0.829287i
\(499\) 594.201 + 118.194i 1.19078 + 0.236861i 0.750422 0.660959i \(-0.229850\pi\)
0.440361 + 0.897821i \(0.354850\pi\)
\(500\) 24.7133 + 36.9861i 0.0494266 + 0.0739722i
\(501\) 125.601 + 303.227i 0.250700 + 0.605243i
\(502\) 129.084 53.4685i 0.257140 0.106511i
\(503\) 256.869 171.635i 0.510675 0.341222i −0.273388 0.961904i \(-0.588144\pi\)
0.784062 + 0.620682i \(0.213144\pi\)
\(504\) 16.1040 80.9601i 0.0319523 0.160635i
\(505\) −0.858199 0.573430i −0.00169940 0.00113551i
\(506\) −23.3310 + 23.3310i −0.0461087 + 0.0461087i
\(507\) 44.4819 + 223.626i 0.0877355 + 0.441076i
\(508\) −212.280 + 512.490i −0.417875 + 1.00884i
\(509\) 540.267i 1.06143i −0.847551 0.530714i \(-0.821924\pi\)
0.847551 0.530714i \(-0.178076\pi\)
\(510\) 5.90770 12.3961i 0.0115837 0.0243061i
\(511\) −374.557 −0.732989
\(512\) −210.543 87.2099i −0.411217 0.170332i
\(513\) −170.670 + 33.9483i −0.332689 + 0.0661760i
\(514\) 725.326 + 725.326i 1.41114 + 1.41114i
\(515\) −10.4445 + 15.6312i −0.0202805 + 0.0303519i
\(516\) 230.166 + 45.7828i 0.446057 + 0.0887263i
\(517\) −302.971 453.428i −0.586017 0.877037i
\(518\) −44.3308 107.024i −0.0855807 0.206610i
\(519\) 419.000 173.556i 0.807322 0.334404i
\(520\) −13.7853 + 9.21107i −0.0265103 + 0.0177136i
\(521\) −26.7745 + 134.605i −0.0513906 + 0.258358i −0.997936 0.0642116i \(-0.979547\pi\)
0.946546 + 0.322570i \(0.104547\pi\)
\(522\) −264.145 176.496i −0.506024 0.338115i
\(523\) 46.2164 46.2164i 0.0883678 0.0883678i −0.661541 0.749909i \(-0.730097\pi\)
0.749909 + 0.661541i \(0.230097\pi\)
\(524\) 21.1843 + 106.501i 0.0404280 + 0.203246i
\(525\) −70.0845 + 169.199i −0.133494 + 0.322284i
\(526\) 163.611i 0.311048i
\(527\) −228.635 384.018i −0.433843 0.728686i
\(528\) 68.1485 0.129069
\(529\) −487.897 202.094i −0.922300 0.382029i
\(530\) 0.0677963 0.0134855i 0.000127917 2.54444e-5i
\(531\) −240.647 240.647i −0.453196 0.453196i
\(532\) 476.516 713.156i 0.895707 1.34052i
\(533\) −598.249 118.999i −1.12242 0.223263i
\(534\) 12.1431 + 18.1734i 0.0227398 + 0.0340325i
\(535\) −3.17785 7.67200i −0.00593990 0.0143402i
\(536\) 147.526 61.1074i 0.275236 0.114006i
\(537\) −121.212 + 80.9913i −0.225721 + 0.150822i
\(538\) −241.307 + 1213.13i −0.448526 + 2.25489i
\(539\) −282.863 189.003i −0.524792 0.350655i
\(540\) −3.27022 + 3.27022i −0.00605596 + 0.00605596i
\(541\) −125.835 632.616i −0.232597 1.16935i −0.903761 0.428037i \(-0.859205\pi\)
0.671164 0.741309i \(-0.265795\pi\)
\(542\) −421.743 + 1018.18i −0.778124 + 1.87856i
\(543\) 264.499i 0.487107i
\(544\) −33.0659 + 634.876i −0.0607828 + 1.16705i
\(545\) 26.6848 0.0489630
\(546\) −372.346 154.231i −0.681953 0.282474i
\(547\) 571.637 113.706i 1.04504 0.207872i 0.357422 0.933943i \(-0.383656\pi\)
0.687619 + 0.726071i \(0.258656\pi\)
\(548\) 562.251 + 562.251i 1.02601 + 1.02601i
\(549\) −164.603 + 246.345i −0.299823 + 0.448716i
\(550\) 850.087 + 169.093i 1.54561 + 0.307442i
\(551\) −621.474 930.102i −1.12790 1.68803i
\(552\) 4.09677 + 9.89047i 0.00742168 + 0.0179175i
\(553\) −109.964 + 45.5485i −0.198849 + 0.0823661i
\(554\) 345.543 230.884i 0.623723 0.416758i
\(555\) −0.429085 + 2.15716i −0.000773127 + 0.00388677i
\(556\) 75.5382 + 50.4730i 0.135860 + 0.0907788i
\(557\) −13.2719 + 13.2719i −0.0238275 + 0.0238275i −0.718920 0.695093i \(-0.755363\pi\)
0.695093 + 0.718920i \(0.255363\pi\)
\(558\) 48.7792 + 245.230i 0.0874180 + 0.439480i
\(559\) 148.590 358.727i 0.265813 0.641730i
\(560\) 2.23845i 0.00399724i
\(561\) −107.681 303.767i −0.191944 0.541475i
\(562\) −261.799 −0.465835
\(563\) −617.300 255.694i −1.09645 0.454164i −0.240197 0.970724i \(-0.577212\pi\)
−0.856251 + 0.516560i \(0.827212\pi\)
\(564\) −512.085 + 101.860i −0.907952 + 0.180603i
\(565\) 19.4073 + 19.4073i 0.0343492 + 0.0343492i
\(566\) −288.217 + 431.347i −0.509217 + 0.762097i
\(567\) −37.3658 7.43251i −0.0659008 0.0131085i
\(568\) 280.982 + 420.519i 0.494687 + 0.740351i
\(569\) 95.1359 + 229.678i 0.167198 + 0.403653i 0.985164 0.171614i \(-0.0548982\pi\)
−0.817966 + 0.575267i \(0.804898\pi\)
\(570\) −24.9918 + 10.3519i −0.0438452 + 0.0181613i
\(571\) 870.543 581.678i 1.52459 1.01870i 0.540439 0.841383i \(-0.318258\pi\)
0.984154 0.177317i \(-0.0567419\pi\)
\(572\) −224.014 + 1126.19i −0.391632 + 1.96887i
\(573\) 434.698 + 290.456i 0.758635 + 0.506903i
\(574\) 333.825 333.825i 0.581576 0.581576i
\(575\) −4.63364 23.2949i −0.00805851 0.0405128i
\(576\) 119.599 288.738i 0.207637 0.501281i
\(577\) 166.838i 0.289147i 0.989494 + 0.144573i \(0.0461810\pi\)
−0.989494 + 0.144573i \(0.953819\pi\)
\(578\) 878.298 260.784i 1.51955 0.451183i
\(579\) −437.554 −0.755707
\(580\) −27.4669 11.3772i −0.0473567 0.0196158i
\(581\) 375.550 74.7016i 0.646386 0.128574i
\(582\) 57.6399 + 57.6399i 0.0990377 + 0.0990377i
\(583\) 0.901334 1.34894i 0.00154603 0.00231379i
\(584\) 564.096 + 112.206i 0.965917 + 0.192133i
\(585\) 4.25122 + 6.36239i 0.00726704 + 0.0108759i
\(586\) −139.641 337.123i −0.238295 0.575296i
\(587\) 688.139 285.037i 1.17230 0.485582i 0.290347 0.956921i \(-0.406229\pi\)
0.881952 + 0.471339i \(0.156229\pi\)
\(588\) −270.821 + 180.956i −0.460579 + 0.307749i
\(589\) −171.761 + 863.499i −0.291614 + 1.46604i
\(590\) −43.9887 29.3923i −0.0745572 0.0498175i
\(591\) 401.126 401.126i 0.678724 0.678724i
\(592\) −6.05360 30.4335i −0.0102257 0.0514080i
\(593\) −136.332 + 329.133i −0.229901 + 0.555031i −0.996165 0.0874954i \(-0.972114\pi\)
0.766264 + 0.642526i \(0.222114\pi\)
\(594\) 180.305i 0.303544i
\(595\) 9.97776 3.53695i 0.0167693 0.00594446i
\(596\) −92.7849 −0.155679
\(597\) −52.2624 21.6478i −0.0875417 0.0362610i
\(598\) 51.2638 10.1970i 0.0857253 0.0170518i
\(599\) 242.951 + 242.951i 0.405594 + 0.405594i 0.880199 0.474605i \(-0.157409\pi\)
−0.474605 + 0.880199i \(0.657409\pi\)
\(600\) 156.236 233.824i 0.260394 0.389707i
\(601\) −81.6626 16.2437i −0.135878 0.0270278i 0.126683 0.991943i \(-0.459567\pi\)
−0.262561 + 0.964915i \(0.584567\pi\)
\(602\) 166.960 + 249.873i 0.277342 + 0.415072i
\(603\) −28.2031 68.0883i −0.0467713 0.112916i
\(604\) 66.6118 27.5915i 0.110284 0.0456813i
\(605\) 0.146324 0.0977703i 0.000241857 0.000161604i
\(606\) −7.51621 + 37.7865i −0.0124030 + 0.0623540i
\(607\) 374.212 + 250.040i 0.616494 + 0.411928i 0.824229 0.566257i \(-0.191609\pi\)
−0.207735 + 0.978185i \(0.566609\pi\)
\(608\) 885.551 885.551i 1.45650 1.45650i
\(609\) −47.7791 240.202i −0.0784549 0.394420i
\(610\) −17.6253 + 42.5513i −0.0288939 + 0.0697562i
\(611\) 863.873i 1.41387i
\(612\) −308.150 16.0492i −0.503513 0.0262242i
\(613\) −61.7490 −0.100732 −0.0503662 0.998731i \(-0.516039\pi\)
−0.0503662 + 0.998731i \(0.516039\pi\)
\(614\) 1707.88 + 707.425i 2.78156 + 1.15216i
\(615\) −8.79123 + 1.74868i −0.0142947 + 0.00284339i
\(616\) −212.959 212.959i −0.345712 0.345712i
\(617\) 472.045 706.466i 0.765065 1.14500i −0.220448 0.975399i \(-0.570752\pi\)
0.985513 0.169602i \(-0.0542482\pi\)
\(618\) 688.244 + 136.900i 1.11366 + 0.221521i
\(619\) −194.272 290.748i −0.313848 0.469706i 0.640689 0.767801i \(-0.278649\pi\)
−0.954536 + 0.298095i \(0.903649\pi\)
\(620\) 8.95442 + 21.6179i 0.0144426 + 0.0348675i
\(621\) 4.56478 1.89079i 0.00735069 0.00304476i
\(622\) −1198.72 + 800.958i −1.92720 + 1.28771i
\(623\) −3.28724 + 16.5261i −0.00527646 + 0.0265266i
\(624\) −89.7616 59.9768i −0.143849 0.0961167i
\(625\) −440.794 + 440.794i −0.705271 + 0.705271i
\(626\) −176.009 884.857i −0.281165 1.41351i
\(627\) −242.961 + 586.559i −0.387497 + 0.935501i
\(628\) 916.961i 1.46013i
\(629\) −126.090 + 75.0712i −0.200461 + 0.119350i
\(630\) −5.92242 −0.00940067
\(631\) −652.499 270.274i −1.03407 0.428327i −0.199891 0.979818i \(-0.564059\pi\)
−0.834180 + 0.551492i \(0.814059\pi\)
\(632\) 179.254 35.6558i 0.283630 0.0564174i
\(633\) 370.243 + 370.243i 0.584901 + 0.584901i
\(634\) 362.097 541.916i 0.571130 0.854757i
\(635\) 13.2280 + 2.63121i 0.0208315 + 0.00414364i
\(636\) −0.862961 1.29151i −0.00135686 0.00203068i
\(637\) 206.232 + 497.889i 0.323756 + 0.781616i
\(638\) −1070.84 + 443.557i −1.67843 + 0.695230i
\(639\) 194.084 129.683i 0.303730 0.202946i
\(640\) 5.18522 26.0679i 0.00810190 0.0407310i
\(641\) 112.788 + 75.3625i 0.175956 + 0.117570i 0.640430 0.768017i \(-0.278756\pi\)
−0.464473 + 0.885587i \(0.653756\pi\)
\(642\) −219.179 + 219.179i −0.341401 + 0.341401i
\(643\) −26.2415 131.925i −0.0408111 0.205171i 0.955000 0.296606i \(-0.0958547\pi\)
−0.995811 + 0.0914346i \(0.970855\pi\)
\(644\) −9.31967 + 22.4997i −0.0144715 + 0.0349374i
\(645\) 5.70579i 0.00884619i
\(646\) −1629.28 776.477i −2.52210 1.20198i
\(647\) 220.979 0.341544 0.170772 0.985311i \(-0.445374\pi\)
0.170772 + 0.985311i \(0.445374\pi\)
\(648\) 54.0475 + 22.3872i 0.0834067 + 0.0345482i
\(649\) −1217.82 + 242.240i −1.87646 + 0.373251i
\(650\) −970.873 970.873i −1.49365 1.49365i
\(651\) −107.089 + 160.270i −0.164499 + 0.246190i
\(652\) −1671.62 332.505i −2.56383 0.509978i
\(653\) 365.630 + 547.204i 0.559924 + 0.837985i 0.998145 0.0608819i \(-0.0193913\pi\)
−0.438221 + 0.898867i \(0.644391\pi\)
\(654\) −381.176 920.239i −0.582837 1.40709i
\(655\) 2.43918 1.01034i 0.00372393 0.00154250i
\(656\) 105.146 70.2562i 0.160283 0.107098i
\(657\) 51.7866 260.349i 0.0788229 0.396269i
\(658\) −555.932 371.462i −0.844881 0.564531i
\(659\) −503.274 + 503.274i −0.763693 + 0.763693i −0.976988 0.213295i \(-0.931580\pi\)
0.213295 + 0.976988i \(0.431580\pi\)
\(660\) 3.29186 + 16.5493i 0.00498767 + 0.0250747i
\(661\) 165.181 398.781i 0.249895 0.603300i −0.748300 0.663361i \(-0.769130\pi\)
0.998195 + 0.0600610i \(0.0191295\pi\)
\(662\) 286.780i 0.433203i
\(663\) −125.511 + 494.875i −0.189308 + 0.746418i
\(664\) −587.969 −0.885496
\(665\) −19.2665 7.98045i −0.0289722 0.0120007i
\(666\) 80.5199 16.0164i 0.120901 0.0240487i
\(667\) 22.4591 + 22.4591i 0.0336717 + 0.0336717i
\(668\) 636.958 953.275i 0.953530 1.42706i
\(669\) −270.622 53.8300i −0.404517 0.0804634i
\(670\) −6.36495 9.52583i −0.00949993 0.0142177i
\(671\) 413.668 + 998.682i 0.616494 + 1.48835i
\(672\) 253.315 104.927i 0.376957 0.156141i
\(673\) 163.755 109.418i 0.243321 0.162582i −0.427930 0.903812i \(-0.640757\pi\)
0.671251 + 0.741230i \(0.265757\pi\)
\(674\) 287.400 1444.86i 0.426410 2.14371i
\(675\) −107.918 72.1082i −0.159878 0.106827i
\(676\) 563.186 563.186i 0.833116 0.833116i
\(677\) 91.3086 + 459.039i 0.134872 + 0.678049i 0.987763 + 0.155960i \(0.0498472\pi\)
−0.852891 + 0.522089i \(0.825153\pi\)
\(678\) 392.049 946.491i 0.578244 1.39600i
\(679\) 62.8413i 0.0925497i
\(680\) −16.0864 + 2.33775i −0.0236565 + 0.00343786i
\(681\) 213.495 0.313503
\(682\) 842.808 + 349.102i 1.23579 + 0.511880i
\(683\) −290.137 + 57.7118i −0.424798 + 0.0844975i −0.402860 0.915262i \(-0.631984\pi\)
−0.0219382 + 0.999759i \(0.506984\pi\)
\(684\) 429.821 + 429.821i 0.628393 + 0.628393i
\(685\) 10.7407 16.0746i 0.0156799 0.0234666i
\(686\) −1054.03 209.659i −1.53648 0.305625i
\(687\) 298.234 + 446.338i 0.434110 + 0.649692i
\(688\) 30.8053 + 74.3706i 0.0447752 + 0.108097i
\(689\) −2.37438 + 0.983500i −0.00344612 + 0.00142743i
\(690\) 0.638631 0.426720i 0.000925553 0.000618434i
\(691\) 186.934 939.780i 0.270526 1.36003i −0.571504 0.820599i \(-0.693640\pi\)
0.842031 0.539429i \(-0.181360\pi\)
\(692\) −1317.24 880.152i −1.90353 1.27190i
\(693\) −98.2876 + 98.2876i −0.141829 + 0.141829i
\(694\) 182.816 + 919.080i 0.263424 + 1.32432i
\(695\) 0.845297 2.04073i 0.00121625 0.00293630i
\(696\) 376.065i 0.540323i
\(697\) −479.302 357.670i −0.687665 0.513156i
\(698\) −224.598 −0.321774
\(699\) 67.2277 + 27.8466i 0.0961769 + 0.0398378i
\(700\) 627.445 124.807i 0.896350 0.178295i
\(701\) 789.024 + 789.024i 1.12557 + 1.12557i 0.990889 + 0.134680i \(0.0430006\pi\)
0.134680 + 0.990889i \(0.456999\pi\)
\(702\) 158.685 237.488i 0.226046 0.338302i
\(703\) 283.525 + 56.3967i 0.403308 + 0.0802229i
\(704\) −633.492 948.088i −0.899847 1.34672i
\(705\) 4.85799 + 11.7282i 0.00689077 + 0.0166358i
\(706\) 229.836 95.2014i 0.325547 0.134846i
\(707\) −24.6954 + 16.5009i −0.0349298 + 0.0233394i
\(708\) −231.927 + 1165.98i −0.327581 + 1.64686i
\(709\) 732.595 + 489.504i 1.03328 + 0.690415i 0.951944 0.306272i \(-0.0990816\pi\)
0.0813353 + 0.996687i \(0.474082\pi\)
\(710\) 25.6582 25.6582i 0.0361384 0.0361384i
\(711\) −16.4564 82.7317i −0.0231454 0.116360i
\(712\) 9.90138 23.9040i 0.0139064 0.0335731i
\(713\) 24.9983i 0.0350607i
\(714\) −264.500 293.565i −0.370448 0.411155i
\(715\) 27.9182 0.0390465
\(716\) 470.473 + 194.876i 0.657085 + 0.272173i
\(717\) 117.842 23.4402i 0.164354 0.0326921i
\(718\) 326.362 + 326.362i 0.454544 + 0.454544i
\(719\) −569.678 + 852.583i −0.792320 + 1.18579i 0.186779 + 0.982402i \(0.440195\pi\)
−0.979098 + 0.203388i \(0.934805\pi\)
\(720\) −1.55591 0.309491i −0.00216099 0.000429848i
\(721\) 300.548 + 449.802i 0.416849 + 0.623858i
\(722\) 922.640 + 2227.45i 1.27789 + 3.08511i
\(723\) −534.047 + 221.209i −0.738654 + 0.305960i
\(724\) 768.229 513.314i 1.06109 0.708997i
\(725\) 162.773 818.317i 0.224515 1.12871i
\(726\) −5.46180 3.64946i −0.00752314 0.00502680i
\(727\) 325.279 325.279i 0.447426 0.447426i −0.447072 0.894498i \(-0.647533\pi\)
0.894498 + 0.447072i \(0.147533\pi\)
\(728\) 93.0753 + 467.921i 0.127851 + 0.642749i
\(729\) 10.3325 24.9447i 0.0141735 0.0342178i
\(730\) 41.2649i 0.0565273i
\(731\) 282.827 254.825i 0.386904 0.348598i
\(732\) 1034.95 1.41386
\(733\) 219.374 + 90.8676i 0.299282 + 0.123967i 0.527271 0.849697i \(-0.323215\pi\)
−0.227989 + 0.973664i \(0.573215\pi\)
\(734\) −616.931 + 122.715i −0.840506 + 0.167187i
\(735\) 5.59976 + 5.59976i 0.00761873 + 0.00761873i
\(736\) −19.7556 + 29.5663i −0.0268418 + 0.0401716i
\(737\) −263.721 52.4574i −0.357831 0.0711769i
\(738\) 185.881 + 278.191i 0.251872 + 0.376953i
\(739\) −86.4161 208.627i −0.116937 0.282310i 0.854564 0.519345i \(-0.173824\pi\)
−0.971501 + 0.237036i \(0.923824\pi\)
\(740\) 7.09812 2.94014i 0.00959205 0.00397316i
\(741\) 836.240 558.757i 1.12853 0.754059i
\(742\) 0.388057 1.95089i 0.000522988 0.00262924i
\(743\) −577.764 386.050i −0.777610 0.519582i 0.102282 0.994755i \(-0.467385\pi\)
−0.879892 + 0.475173i \(0.842385\pi\)
\(744\) 209.291 209.291i 0.281306 0.281306i
\(745\) 0.440111 + 2.21259i 0.000590753 + 0.00296992i
\(746\) −284.822 + 687.621i −0.381799 + 0.921743i
\(747\) 271.368i 0.363277i
\(748\) −673.306 + 902.277i −0.900142 + 1.20625i
\(749\) −238.958 −0.319035
\(750\) −37.2974 15.4491i −0.0497298 0.0205988i
\(751\) 246.753 49.0821i 0.328565 0.0653557i −0.0280514 0.999606i \(-0.508930\pi\)
0.356617 + 0.934251i \(0.383930\pi\)
\(752\) −126.640 126.640i −0.168405 0.168405i
\(753\) −42.4099 + 63.4709i −0.0563213 + 0.0842907i
\(754\) 1800.82 + 358.206i 2.38836 + 0.475074i
\(755\) −0.973923 1.45758i −0.00128996 0.00193057i
\(756\) 50.9283 + 122.952i 0.0673655 + 0.162635i
\(757\) −1268.13 + 525.275i −1.67520 + 0.693890i −0.999079 0.0429009i \(-0.986340\pi\)
−0.676120 + 0.736791i \(0.736340\pi\)
\(758\) 523.963 350.101i 0.691244 0.461874i
\(759\) 3.51685 17.6804i 0.00463354 0.0232944i
\(760\) 26.6253 + 17.7905i 0.0350333 + 0.0234085i
\(761\) −792.972 + 792.972i −1.04201 + 1.04201i −0.0429349 + 0.999078i \(0.513671\pi\)
−0.999078 + 0.0429349i \(0.986329\pi\)
\(762\) −98.2148 493.759i −0.128891 0.647978i
\(763\) 293.854 709.426i 0.385130 0.929785i
\(764\) 1826.25i 2.39038i
\(765\) 1.07895 + 7.42441i 0.00141039 + 0.00970511i
\(766\) 601.888 0.785754
\(767\) 1817.24 + 752.727i 2.36929 + 0.981391i
\(768\) −265.147 + 52.7411i −0.345244 + 0.0686733i
\(769\) 428.511 + 428.511i 0.557231 + 0.557231i 0.928518 0.371287i \(-0.121083\pi\)
−0.371287 + 0.928518i \(0.621083\pi\)
\(770\) −12.0047 + 17.9663i −0.0155905 + 0.0233329i
\(771\) −549.658 109.334i −0.712915 0.141808i
\(772\) 849.162 + 1270.86i 1.09995 + 1.64619i
\(773\) −289.006 697.723i −0.373876 0.902617i −0.993086 0.117391i \(-0.962547\pi\)
0.619210 0.785226i \(-0.287453\pi\)
\(774\) −196.767 + 81.5037i −0.254221 + 0.105302i
\(775\) −546.006 + 364.830i −0.704524 + 0.470748i
\(776\) 18.8253 94.6410i 0.0242594 0.121960i
\(777\) 52.6238 + 35.1621i 0.0677269 + 0.0452537i
\(778\) −653.335 + 653.335i −0.839763 + 0.839763i
\(779\) 229.838 + 1155.47i 0.295042 + 1.48328i
\(780\) 10.2290 24.6950i 0.0131141 0.0316603i
\(781\) 851.641i 1.09045i
\(782\) 49.6736 + 12.5983i 0.0635212 + 0.0161104i
\(783\) 173.566 0.221668
\(784\) −103.221 42.7557i −0.131660 0.0545354i
\(785\) −21.8663 + 4.34947i −0.0278551 + 0.00554072i
\(786\) −69.6842 69.6842i −0.0886567 0.0886567i
\(787\) −78.2193 + 117.063i −0.0993892 + 0.148746i −0.877831 0.478970i \(-0.841010\pi\)
0.778442 + 0.627716i \(0.216010\pi\)
\(788\) −1943.52 386.590i −2.46640 0.490597i
\(789\) −49.6618 74.3241i −0.0629427 0.0942004i
\(790\) −5.01807 12.1147i −0.00635199 0.0153351i
\(791\) 729.664 302.237i 0.922458 0.382094i
\(792\) 177.468 118.581i 0.224076 0.149723i
\(793\) 334.068 1679.48i 0.421272 2.11788i
\(794\) 189.668 + 126.732i 0.238877 + 0.159612i
\(795\) −0.0267047 + 0.0267047i −3.35908e−5 + 3.35908e-5i
\(796\) 38.5505 + 193.806i 0.0484302 + 0.243475i
\(797\) −79.4807 + 191.883i −0.0997248 + 0.240757i −0.965866 0.259043i \(-0.916593\pi\)
0.866141 + 0.499800i \(0.166593\pi\)
\(798\) 778.412i 0.975453i
\(799\) −364.388 + 764.595i −0.456056 + 0.956939i
\(800\) 934.097 1.16762
\(801\) −11.0325 4.56982i −0.0137734 0.00570514i
\(802\) −208.608 + 41.4946i −0.260109 + 0.0517390i
\(803\) −684.827 684.827i −0.852836 0.852836i
\(804\) −143.026 + 214.054i −0.177893 + 0.266236i
\(805\) 0.580743 + 0.115517i 0.000721420 + 0.000143499i
\(806\) −802.861 1201.57i −0.996105 1.49078i
\(807\) −258.609 624.338i −0.320457 0.773652i
\(808\) 42.1352 17.4530i 0.0521476 0.0216002i
\(809\) 605.877 404.834i 0.748920 0.500413i −0.121579 0.992582i \(-0.538796\pi\)
0.870500 + 0.492169i \(0.163796\pi\)
\(810\) 0.818839 4.11658i 0.00101091 0.00508220i
\(811\) −943.587 630.485i −1.16349 0.777417i −0.184800 0.982776i \(-0.559164\pi\)
−0.978687 + 0.205359i \(0.934164\pi\)
\(812\) −604.932 + 604.932i −0.744990 + 0.744990i
\(813\) −117.467 590.544i −0.144485 0.726377i
\(814\) 114.626 276.732i 0.140818 0.339965i
\(815\) 41.4393i 0.0508458i
\(816\) −54.1473 90.9463i −0.0663570 0.111454i
\(817\) −749.939 −0.917918
\(818\) 493.713 + 204.502i 0.603561 + 0.250003i
\(819\) 215.961 42.9574i 0.263689 0.0524510i
\(820\) 22.1401 + 22.1401i 0.0270002 + 0.0270002i
\(821\) 631.689 945.389i 0.769414 1.15151i −0.215166 0.976577i \(-0.569029\pi\)
0.984580 0.174932i \(-0.0559706\pi\)
\(822\) −707.767 140.784i −0.861031 0.171270i
\(823\) −521.180 780.000i −0.633268 0.947753i −0.999849 0.0173666i \(-0.994472\pi\)
0.366581 0.930386i \(-0.380528\pi\)
\(824\) −317.889 767.451i −0.385787 0.931373i
\(825\) −437.497 + 181.217i −0.530299 + 0.219657i
\(826\) −1265.81 + 845.789i −1.53246 + 1.02396i
\(827\) −178.315 + 896.451i −0.215617 + 1.08398i 0.709618 + 0.704586i \(0.248867\pi\)
−0.925235 + 0.379394i \(0.876133\pi\)
\(828\) −14.3506 9.58878i −0.0173317 0.0115807i
\(829\) 275.393 275.393i 0.332199 0.332199i −0.521222 0.853421i \(-0.674524\pi\)
0.853421 + 0.521222i \(0.174524\pi\)
\(830\) 8.22987 + 41.3743i 0.00991550 + 0.0498486i
\(831\) −86.8890 + 209.769i −0.104560 + 0.252429i
\(832\) 1806.30i 2.17104i
\(833\) −27.4818 + 527.661i −0.0329914 + 0.633446i
\(834\) −82.4500 −0.0988610
\(835\) −25.7535 10.6675i −0.0308425 0.0127754i
\(836\) 2175.15 432.665i 2.60186 0.517542i
\(837\) −96.5949 96.5949i −0.115406 0.115406i
\(838\) −422.968 + 633.016i −0.504735 + 0.755389i
\(839\) −1222.45 243.160i −1.45703 0.289821i −0.597896 0.801574i \(-0.703996\pi\)
−0.859133 + 0.511753i \(0.828996\pi\)
\(840\) 3.89498 + 5.82925i 0.00463688 + 0.00693958i
\(841\) 105.143 + 253.837i 0.125021 + 0.301827i
\(842\) −1626.49 + 673.715i −1.93170 + 0.800137i
\(843\) 118.928 79.4653i 0.141077 0.0942649i
\(844\) 356.826 1793.89i 0.422780 2.12546i
\(845\) −16.1014 10.7586i −0.0190549 0.0127321i
\(846\) 335.061 335.061i 0.396053 0.396053i
\(847\) −0.987942 4.96672i −0.00116640 0.00586390i
\(848\) 0.203897 0.492252i 0.000240445 0.000580486i
\(849\) 283.433i 0.333843i
\(850\) −449.776 1268.82i −0.529148 1.49273i
\(851\) −8.20806 −0.00964519
\(852\) −753.317 312.034i −0.884175 0.366237i
\(853\) 590.983 117.554i 0.692829 0.137812i 0.163898 0.986477i \(-0.447593\pi\)
0.528931 + 0.848665i \(0.322593\pi\)
\(854\) 937.151 + 937.151i 1.09737 + 1.09737i
\(855\) 8.21090 12.2885i 0.00960339 0.0143725i
\(856\) 359.878 + 71.5842i 0.420418 + 0.0836264i
\(857\) −104.359 156.184i −0.121772 0.182245i 0.765575 0.643346i \(-0.222454\pi\)
−0.887348 + 0.461101i \(0.847454\pi\)
\(858\) −398.794 962.775i −0.464795 1.12212i
\(859\) 218.252 90.4030i 0.254077 0.105242i −0.252010 0.967725i \(-0.581092\pi\)
0.506087 + 0.862483i \(0.331092\pi\)
\(860\) −16.5723 + 11.0732i −0.0192701 + 0.0128759i
\(861\) −50.3198 + 252.975i −0.0584435 + 0.293815i
\(862\) 2107.33 + 1408.07i 2.44470 + 1.63350i
\(863\) 730.895 730.895i 0.846924 0.846924i −0.142824 0.989748i \(-0.545618\pi\)
0.989748 + 0.142824i \(0.0456183\pi\)
\(864\) 37.9093 + 190.583i 0.0438765 + 0.220582i
\(865\) −14.7403 + 35.5863i −0.0170409 + 0.0411403i
\(866\) 2026.69i 2.34029i
\(867\) −319.829 + 385.061i −0.368892 + 0.444131i
\(868\) 673.326 0.775721
\(869\) −284.333 117.775i −0.327195 0.135529i
\(870\) 26.4630 5.26381i 0.0304172 0.00605036i
\(871\) 301.192 + 301.192i 0.345801 + 0.345801i
\(872\) −655.076 + 980.390i −0.751233 + 1.12430i
\(873\) −43.6800 8.68849i −0.0500344 0.00995245i
\(874\) −56.0858 83.9383i −0.0641714 0.0960393i
\(875\) −11.9099 28.7531i −0.0136113 0.0328607i
\(876\) −856.677 + 354.847i −0.977942 + 0.405077i
\(877\) −391.441 + 261.552i −0.446341 + 0.298235i −0.758355 0.651842i \(-0.773996\pi\)
0.312014 + 0.950078i \(0.398996\pi\)
\(878\) 269.633 1355.54i 0.307099 1.54389i
\(879\) 165.764 + 110.760i 0.188582 + 0.126007i
\(880\) −4.09271 + 4.09271i −0.00465080 + 0.00465080i
\(881\) −116.853 587.462i −0.132637 0.666813i −0.988696 0.149934i \(-0.952094\pi\)
0.856059 0.516879i \(-0.172906\pi\)
\(882\) 113.122 273.100i 0.128256 0.309637i
\(883\) 666.108i 0.754369i −0.926138 0.377184i \(-0.876892\pi\)
0.926138 0.377184i \(-0.123108\pi\)
\(884\) 1680.93 595.862i 1.90150 0.674052i
\(885\) 28.9045 0.0326604
\(886\) 198.125 + 82.0659i 0.223617 + 0.0926252i
\(887\) 572.685 113.914i 0.645643 0.128426i 0.138602 0.990348i \(-0.455739\pi\)
0.507041 + 0.861922i \(0.330739\pi\)
\(888\) −68.7197 68.7197i −0.0773871 0.0773871i
\(889\) 215.619 322.696i 0.242541 0.362988i
\(890\) −1.82067 0.362155i −0.00204570 0.000406915i
\(891\) −54.7289 81.9076i −0.0614241 0.0919277i
\(892\) 368.849 + 890.480i 0.413508 + 0.998296i
\(893\) 1541.50 638.509i 1.72620 0.715016i
\(894\) 70.0155 46.7829i 0.0783171 0.0523298i
\(895\) 2.41548 12.1435i 0.00269886 0.0135681i
\(896\) −635.924 424.911i −0.709737 0.474231i
\(897\) −20.1926 + 20.1926i −0.0225112 + 0.0225112i
\(898\) 225.669 + 1134.52i 0.251302 + 1.26338i
\(899\) 336.055 811.309i 0.373810 0.902458i
\(900\) 453.383i 0.503759i
\(901\) −2.51636 0.131058i −0.00279285 0.000145458i
\(902\) 1220.71 1.35333
\(903\) −151.691 62.8324i −0.167985 0.0695818i
\(904\) −1189.44 + 236.594i −1.31575 + 0.261719i
\(905\) −15.8847 15.8847i −0.0175521 0.0175521i
\(906\) −36.3535 + 54.4068i −0.0401252 + 0.0600517i
\(907\) 1039.96 + 206.862i 1.14660 + 0.228073i 0.731590 0.681745i \(-0.238779\pi\)
0.415009 + 0.909818i \(0.363779\pi\)
\(908\) −414.331 620.090i −0.456312 0.682918i
\(909\) −8.05513 19.4468i −0.00886153 0.0213936i
\(910\) 31.6240 13.0991i 0.0347516 0.0143946i
\(911\) −1302.32 + 870.182i −1.42955 + 0.955194i −0.430945 + 0.902378i \(0.641820\pi\)
−0.998604 + 0.0528157i \(0.983180\pi\)
\(912\) −40.6778 + 204.501i −0.0446028 + 0.224234i
\(913\) 823.224 + 550.061i 0.901670 + 0.602476i
\(914\) −692.556 + 692.556i −0.757720 + 0.757720i
\(915\) −4.90911 24.6798i −0.00536515 0.0269724i
\(916\) 717.591 1732.42i 0.783397 1.89129i
\(917\) 75.9723i 0.0828488i
\(918\) 240.622 143.261i 0.262116 0.156058i
\(919\) −1243.67 −1.35329 −0.676645 0.736310i \(-0.736567\pi\)
−0.676645 + 0.736310i \(0.736567\pi\)
\(920\) −0.840013 0.347945i −0.000913058 0.000378201i
\(921\) −990.570 + 197.037i −1.07554 + 0.213938i
\(922\) −1626.04 1626.04i −1.76361 1.76361i
\(923\) −749.521 + 1121.74i −0.812048 + 1.21532i
\(924\) 476.220 + 94.7260i 0.515390 + 0.102517i
\(925\) 119.790 + 179.278i 0.129503 + 0.193814i
\(926\) −504.132 1217.08i −0.544419 1.31434i
\(927\) −354.204 + 146.716i −0.382097 + 0.158270i
\(928\) −1038.62 + 693.986i −1.11921 + 0.747830i
\(929\) −212.341 + 1067.51i −0.228569 + 1.14909i 0.680596 + 0.732659i \(0.261721\pi\)
−0.909165 + 0.416435i \(0.863279\pi\)
\(930\) −17.6569 11.7980i −0.0189859 0.0126860i
\(931\) 736.003 736.003i 0.790551 0.790551i
\(932\) −49.5893 249.302i −0.0532074 0.267492i
\(933\) 301.426 727.706i 0.323072 0.779964i
\(934\) 2013.16i 2.15542i
\(935\) 24.7098 + 11.7761i 0.0264276 + 0.0125948i
\(936\) −338.113 −0.361232
\(937\) −476.362 197.316i −0.508391 0.210582i 0.113718 0.993513i \(-0.463724\pi\)
−0.622109 + 0.782931i \(0.713724\pi\)
\(938\) −323.339 + 64.3161i −0.344711 + 0.0685673i
\(939\) 348.541 + 348.541i 0.371184 + 0.371184i
\(940\) 24.6363 36.8709i 0.0262089 0.0392243i
\(941\) 255.677 + 50.8573i 0.271708 + 0.0540460i 0.329063 0.944308i \(-0.393267\pi\)
−0.0573559 + 0.998354i \(0.518267\pi\)
\(942\) 462.339 + 691.939i 0.490806 + 0.734543i
\(943\) −12.8011 30.9046i −0.0135749 0.0327727i
\(944\) −376.748 + 156.054i −0.399097 + 0.165311i
\(945\) 2.69039 1.79766i 0.00284698 0.00190229i
\(946\) −151.596 + 762.123i −0.160249 + 0.805627i
\(947\) −875.169 584.769i −0.924148 0.617496i −0.000194452 1.00000i \(-0.500062\pi\)
−0.923954 + 0.382504i \(0.875062\pi\)
\(948\) −208.354 + 208.354i −0.219783 + 0.219783i
\(949\) 299.309 + 1504.73i 0.315394 + 1.58559i
\(950\) −1014.83 + 2450.02i −1.06825 + 2.57897i
\(951\) 356.087i 0.374434i
\(952\) −114.994 + 453.406i −0.120792 + 0.476267i
\(953\) 76.9694 0.0807653 0.0403827 0.999184i \(-0.487142\pi\)
0.0403827 + 0.999184i \(0.487142\pi\)
\(954\) 1.30238 + 0.539465i 0.00136518 + 0.000565476i
\(955\) −43.5496 + 8.66255i −0.0456017 + 0.00907073i
\(956\) −296.777 296.777i −0.310437 0.310437i
\(957\) 351.818 526.533i 0.367626 0.550191i
\(958\) 657.402 + 130.765i 0.686224 + 0.136498i
\(959\) −309.074 462.561i −0.322287 0.482337i
\(960\) 10.1577 + 24.5230i 0.0105810 + 0.0255448i
\(961\) 249.305 103.266i 0.259422 0.107456i
\(962\) −394.528 + 263.615i −0.410112 + 0.274028i
\(963\) 33.0385 166.096i 0.0343079 0.172477i
\(964\) 1678.92 + 1121.82i 1.74162 + 1.16371i
\(965\) 26.2776 26.2776i 0.0272307 0.0272307i
\(966\) −4.31189 21.6773i −0.00446365 0.0224403i
\(967\) −161.491 + 389.874i −0.167002 + 0.403179i −0.985119 0.171873i \(-0.945018\pi\)
0.818117 + 0.575052i \(0.195018\pi\)
\(968\) 7.77600i 0.00803306i
\(969\) 975.825 141.811i 1.00704 0.146348i
\(970\) −6.92321 −0.00713733
\(971\) −199.129 82.4820i −0.205076 0.0849455i 0.277781 0.960644i \(-0.410401\pi\)
−0.482857 + 0.875699i \(0.660401\pi\)
\(972\) −92.5033 + 18.4001i −0.0951680 + 0.0189301i
\(973\) −44.9451 44.9451i −0.0461923 0.0461923i
\(974\) 298.470 446.692i 0.306437 0.458616i
\(975\) 735.735 + 146.347i 0.754600 + 0.150099i
\(976\) 197.231 + 295.178i 0.202081 + 0.302436i
\(977\) −674.807 1629.13i −0.690693 1.66748i −0.743379 0.668870i \(-0.766778\pi\)
0.0526861 0.998611i \(-0.483222\pi\)
\(978\) 1429.06 591.934i 1.46120 0.605250i
\(979\) −36.2259 + 24.2054i −0.0370030 + 0.0247246i
\(980\) 5.39685 27.1318i 0.00550699 0.0276855i
\(981\) 452.483 + 302.339i 0.461246 + 0.308195i
\(982\) 260.522 260.522i 0.265298 0.265298i
\(983\) 144.812 + 728.020i 0.147317 + 0.740610i 0.981851 + 0.189654i \(0.0607368\pi\)
−0.834534 + 0.550956i \(0.814263\pi\)
\(984\) 151.567 365.914i 0.154031 0.371864i
\(985\) 48.1798i 0.0489135i
\(986\) 1442.77 + 1076.64i 1.46326 + 1.09193i
\(987\) 365.296 0.370107
\(988\) −3245.78 1344.45i −3.28520 1.36078i
\(989\) 20.8844 4.15417i 0.0211167 0.00420037i
\(990\) −10.8283 10.8283i −0.0109377 0.0109377i
\(991\) −153.630 + 229.924i −0.155025 + 0.232012i −0.900850 0.434131i \(-0.857056\pi\)
0.745825 + 0.666142i \(0.232056\pi\)
\(992\) 964.250 + 191.801i 0.972026 + 0.193348i
\(993\) −87.0478 130.276i −0.0876615 0.131195i
\(994\) −399.585 964.684i −0.401997 0.970507i
\(995\) 4.43873 1.83858i 0.00446104 0.00184782i
\(996\) 788.177 526.643i 0.791343 0.528758i
\(997\) −146.304 + 735.517i −0.146744 + 0.737731i 0.835407 + 0.549633i \(0.185232\pi\)
−0.982150 + 0.188098i \(0.939768\pi\)
\(998\) 1596.97 + 1067.06i 1.60017 + 1.06920i
\(999\) −31.7164 + 31.7164i −0.0317482 + 0.0317482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.j.a.40.6 yes 48
3.2 odd 2 153.3.p.c.91.1 48
17.3 odd 16 inner 51.3.j.a.37.6 48
51.20 even 16 153.3.p.c.37.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.j.a.37.6 48 17.3 odd 16 inner
51.3.j.a.40.6 yes 48 1.1 even 1 trivial
153.3.p.c.37.1 48 51.20 even 16
153.3.p.c.91.1 48 3.2 odd 2