Properties

Label 51.3.j.a.37.2
Level $51$
Weight $3$
Character 51.37
Analytic conductor $1.390$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(7,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.j (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 37.2
Character \(\chi\) \(=\) 51.37
Dual form 51.3.j.a.40.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.76539 + 1.14546i) q^{2} +(-1.69877 - 0.337906i) q^{3} +(3.50687 - 3.50687i) q^{4} +(-1.01802 - 1.52358i) q^{5} +(5.08482 - 1.01143i) q^{6} +(5.94423 - 8.89617i) q^{7} +(-1.09904 + 2.65331i) q^{8} +(2.77164 + 1.14805i) q^{9} +(4.56044 + 3.04719i) q^{10} +(-1.10464 - 5.55340i) q^{11} +(-7.14237 + 4.77238i) q^{12} +(-7.64701 - 7.64701i) q^{13} +(-6.24789 + 31.4103i) q^{14} +(1.21456 + 2.93221i) q^{15} +11.2415i q^{16} +(-13.7696 - 9.96991i) q^{17} -8.97971 q^{18} +(-10.0649 + 4.16901i) q^{19} +(-8.91309 - 1.77292i) q^{20} +(-13.1040 + 13.1040i) q^{21} +(9.41598 + 14.0920i) q^{22} +(35.7162 - 7.10439i) q^{23} +(2.76358 - 4.13598i) q^{24} +(8.28216 - 19.9949i) q^{25} +(29.9063 + 12.3876i) q^{26} +(-4.32044 - 2.88683i) q^{27} +(-10.3521 - 52.0434i) q^{28} +(16.5449 - 11.0549i) q^{29} +(-6.71748 - 6.71748i) q^{30} +(-8.38326 + 42.1455i) q^{31} +(-17.2729 - 41.7005i) q^{32} +9.80722i q^{33} +(49.4984 + 11.7982i) q^{34} -19.6054 q^{35} +(13.7459 - 5.69372i) q^{36} +(-40.0038 - 7.95725i) q^{37} +(23.0579 - 23.0579i) q^{38} +(10.4065 + 15.5745i) q^{39} +(5.16137 - 1.02666i) q^{40} +(-0.900494 + 1.34768i) q^{41} +(21.2275 - 51.2476i) q^{42} +(47.3255 + 19.6029i) q^{43} +(-23.3489 - 15.6013i) q^{44} +(-1.07245 - 5.39156i) q^{45} +(-90.6314 + 60.5579i) q^{46} +(22.5271 + 22.5271i) q^{47} +(3.79859 - 19.0968i) q^{48} +(-25.0565 - 60.4917i) q^{49} +64.7806i q^{50} +(20.0224 + 21.5894i) q^{51} -53.6342 q^{52} +(-76.5589 + 31.7117i) q^{53} +(15.2545 + 3.03430i) q^{54} +(-7.33651 + 7.33651i) q^{55} +(17.0713 + 25.5491i) q^{56} +(18.5066 - 3.68120i) q^{57} +(-33.0900 + 49.5227i) q^{58} +(-7.23788 + 17.4738i) q^{59} +(14.5422 + 6.02358i) q^{60} +(89.1552 + 59.5716i) q^{61} +(-25.0931 - 126.151i) q^{62} +(26.6885 - 17.8327i) q^{63} +(63.7368 + 63.7368i) q^{64} +(-3.86600 + 19.4357i) q^{65} +(-11.2338 - 27.1208i) q^{66} -111.776i q^{67} +(-83.2513 + 13.3249i) q^{68} -63.0742 q^{69} +(54.2167 - 22.4573i) q^{70} +(99.1067 + 19.7135i) q^{71} +(-6.09226 + 6.09226i) q^{72} +(-5.05783 - 7.56958i) q^{73} +(119.741 - 23.8180i) q^{74} +(-20.8259 + 31.1681i) q^{75} +(-20.6761 + 49.9164i) q^{76} +(-55.9703 - 23.1837i) q^{77} +(-46.6181 - 31.1492i) q^{78} +(-15.5295 - 78.0722i) q^{79} +(17.1274 - 11.4442i) q^{80} +(6.36396 + 6.36396i) q^{81} +(0.946495 - 4.75835i) q^{82} +(25.9811 + 62.7240i) q^{83} +91.9078i q^{84} +(-1.17222 + 31.1287i) q^{85} -153.328 q^{86} +(-31.8415 + 13.1892i) q^{87} +(15.9489 + 3.17244i) q^{88} +(26.7368 - 26.7368i) q^{89} +(9.14157 + 13.6813i) q^{90} +(-113.485 + 22.5735i) q^{91} +(100.338 - 150.166i) q^{92} +(28.4824 - 68.7627i) q^{93} +(-88.1002 - 36.4923i) q^{94} +(16.5981 + 11.0905i) q^{95} +(15.2518 + 76.6762i) q^{96} +(-10.4438 + 6.97830i) q^{97} +(138.582 + 138.582i) q^{98} +(3.31392 - 16.6602i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{10} - 80 q^{11} - 48 q^{13} - 64 q^{14} + 16 q^{17} + 48 q^{19} + 224 q^{20} + 192 q^{22} + 112 q^{23} - 144 q^{24} + 80 q^{25} - 368 q^{26} - 240 q^{28} - 160 q^{29} - 192 q^{30} - 64 q^{31}+ \cdots + 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.76539 + 1.14546i −1.38270 + 0.572731i −0.945201 0.326490i \(-0.894134\pi\)
−0.437495 + 0.899221i \(0.644134\pi\)
\(3\) −1.69877 0.337906i −0.566257 0.112635i
\(4\) 3.50687 3.50687i 0.876718 0.876718i
\(5\) −1.01802 1.52358i −0.203605 0.304716i 0.715589 0.698522i \(-0.246158\pi\)
−0.919194 + 0.393805i \(0.871158\pi\)
\(6\) 5.08482 1.01143i 0.847470 0.168572i
\(7\) 5.94423 8.89617i 0.849176 1.27088i −0.111655 0.993747i \(-0.535615\pi\)
0.960831 0.277135i \(-0.0893848\pi\)
\(8\) −1.09904 + 2.65331i −0.137379 + 0.331663i
\(9\) 2.77164 + 1.14805i 0.307960 + 0.127561i
\(10\) 4.56044 + 3.04719i 0.456044 + 0.304719i
\(11\) −1.10464 5.55340i −0.100422 0.504855i −0.997956 0.0639093i \(-0.979643\pi\)
0.897534 0.440946i \(-0.145357\pi\)
\(12\) −7.14237 + 4.77238i −0.595197 + 0.397698i
\(13\) −7.64701 7.64701i −0.588232 0.588232i 0.348921 0.937152i \(-0.386548\pi\)
−0.937152 + 0.348921i \(0.886548\pi\)
\(14\) −6.24789 + 31.4103i −0.446278 + 2.24359i
\(15\) 1.21456 + 2.93221i 0.0809708 + 0.195481i
\(16\) 11.2415i 0.702597i
\(17\) −13.7696 9.96991i −0.809974 0.586466i
\(18\) −8.97971 −0.498873
\(19\) −10.0649 + 4.16901i −0.529730 + 0.219422i −0.631485 0.775388i \(-0.717554\pi\)
0.101755 + 0.994810i \(0.467554\pi\)
\(20\) −8.91309 1.77292i −0.445655 0.0886462i
\(21\) −13.1040 + 13.1040i −0.623998 + 0.623998i
\(22\) 9.41598 + 14.0920i 0.427999 + 0.640546i
\(23\) 35.7162 7.10439i 1.55288 0.308887i 0.657243 0.753678i \(-0.271722\pi\)
0.895634 + 0.444792i \(0.146722\pi\)
\(24\) 2.76358 4.13598i 0.115149 0.172333i
\(25\) 8.28216 19.9949i 0.331286 0.799796i
\(26\) 29.9063 + 12.3876i 1.15024 + 0.476447i
\(27\) −4.32044 2.88683i −0.160016 0.106920i
\(28\) −10.3521 52.0434i −0.369717 1.85869i
\(29\) 16.5449 11.0549i 0.570513 0.381205i −0.236595 0.971608i \(-0.576031\pi\)
0.807108 + 0.590404i \(0.201031\pi\)
\(30\) −6.71748 6.71748i −0.223916 0.223916i
\(31\) −8.38326 + 42.1455i −0.270428 + 1.35953i 0.571793 + 0.820398i \(0.306248\pi\)
−0.842220 + 0.539133i \(0.818752\pi\)
\(32\) −17.2729 41.7005i −0.539778 1.30314i
\(33\) 9.80722i 0.297189i
\(34\) 49.4984 + 11.7982i 1.45583 + 0.347006i
\(35\) −19.6054 −0.560155
\(36\) 13.7459 5.69372i 0.381829 0.158159i
\(37\) −40.0038 7.95725i −1.08118 0.215061i −0.377812 0.925882i \(-0.623323\pi\)
−0.703372 + 0.710821i \(0.748323\pi\)
\(38\) 23.0579 23.0579i 0.606786 0.606786i
\(39\) 10.4065 + 15.5745i 0.266834 + 0.399346i
\(40\) 5.16137 1.02666i 0.129034 0.0256665i
\(41\) −0.900494 + 1.34768i −0.0219633 + 0.0328703i −0.842289 0.539027i \(-0.818792\pi\)
0.820326 + 0.571897i \(0.193792\pi\)
\(42\) 21.2275 51.2476i 0.505416 1.22018i
\(43\) 47.3255 + 19.6029i 1.10059 + 0.455881i 0.857689 0.514169i \(-0.171900\pi\)
0.242905 + 0.970050i \(0.421900\pi\)
\(44\) −23.3489 15.6013i −0.530657 0.354574i
\(45\) −1.07245 5.39156i −0.0238322 0.119812i
\(46\) −90.6314 + 60.5579i −1.97025 + 1.31648i
\(47\) 22.5271 + 22.5271i 0.479300 + 0.479300i 0.904908 0.425608i \(-0.139940\pi\)
−0.425608 + 0.904908i \(0.639940\pi\)
\(48\) 3.79859 19.0968i 0.0791373 0.397850i
\(49\) −25.0565 60.4917i −0.511357 1.23453i
\(50\) 64.7806i 1.29561i
\(51\) 20.0224 + 21.5894i 0.392596 + 0.423322i
\(52\) −53.6342 −1.03143
\(53\) −76.5589 + 31.7117i −1.44451 + 0.598334i −0.960886 0.276944i \(-0.910678\pi\)
−0.483620 + 0.875278i \(0.660678\pi\)
\(54\) 15.2545 + 3.03430i 0.282490 + 0.0561908i
\(55\) −7.33651 + 7.33651i −0.133391 + 0.133391i
\(56\) 17.0713 + 25.5491i 0.304845 + 0.456233i
\(57\) 18.5066 3.68120i 0.324678 0.0645825i
\(58\) −33.0900 + 49.5227i −0.570518 + 0.853840i
\(59\) −7.23788 + 17.4738i −0.122676 + 0.296166i −0.973273 0.229653i \(-0.926241\pi\)
0.850597 + 0.525819i \(0.176241\pi\)
\(60\) 14.5422 + 6.02358i 0.242370 + 0.100393i
\(61\) 89.1552 + 59.5716i 1.46156 + 0.976584i 0.995789 + 0.0916799i \(0.0292236\pi\)
0.465773 + 0.884904i \(0.345776\pi\)
\(62\) −25.0931 126.151i −0.404727 2.03470i
\(63\) 26.6885 17.8327i 0.423627 0.283059i
\(64\) 63.7368 + 63.7368i 0.995887 + 0.995887i
\(65\) −3.86600 + 19.4357i −0.0594769 + 0.299011i
\(66\) −11.2338 27.1208i −0.170209 0.410921i
\(67\) 111.776i 1.66829i −0.551542 0.834147i \(-0.685960\pi\)
0.551542 0.834147i \(-0.314040\pi\)
\(68\) −83.2513 + 13.3249i −1.22428 + 0.195954i
\(69\) −63.0742 −0.914119
\(70\) 54.2167 22.4573i 0.774524 0.320818i
\(71\) 99.1067 + 19.7135i 1.39587 + 0.277656i 0.835000 0.550249i \(-0.185467\pi\)
0.560869 + 0.827905i \(0.310467\pi\)
\(72\) −6.09226 + 6.09226i −0.0846147 + 0.0846147i
\(73\) −5.05783 7.56958i −0.0692854 0.103693i 0.795209 0.606336i \(-0.207361\pi\)
−0.864494 + 0.502643i \(0.832361\pi\)
\(74\) 119.741 23.8180i 1.61812 0.321864i
\(75\) −20.8259 + 31.1681i −0.277678 + 0.415575i
\(76\) −20.6761 + 49.9164i −0.272054 + 0.656795i
\(77\) −55.9703 23.1837i −0.726887 0.301086i
\(78\) −46.6181 31.1492i −0.597668 0.399349i
\(79\) −15.5295 78.0722i −0.196576 0.988256i −0.945506 0.325606i \(-0.894432\pi\)
0.748929 0.662650i \(-0.230568\pi\)
\(80\) 17.1274 11.4442i 0.214093 0.143052i
\(81\) 6.36396 + 6.36396i 0.0785674 + 0.0785674i
\(82\) 0.946495 4.75835i 0.0115426 0.0580287i
\(83\) 25.9811 + 62.7240i 0.313026 + 0.755711i 0.999590 + 0.0286416i \(0.00911814\pi\)
−0.686564 + 0.727069i \(0.740882\pi\)
\(84\) 91.9078i 1.09414i
\(85\) −1.17222 + 31.1287i −0.0137909 + 0.366220i
\(86\) −153.328 −1.78288
\(87\) −31.8415 + 13.1892i −0.365994 + 0.151600i
\(88\) 15.9489 + 3.17244i 0.181238 + 0.0360504i
\(89\) 26.7368 26.7368i 0.300414 0.300414i −0.540762 0.841176i \(-0.681864\pi\)
0.841176 + 0.540762i \(0.181864\pi\)
\(90\) 9.14157 + 13.6813i 0.101573 + 0.152015i
\(91\) −113.485 + 22.5735i −1.24709 + 0.248061i
\(92\) 100.338 150.166i 1.09063 1.63224i
\(93\) 28.4824 68.7627i 0.306263 0.739384i
\(94\) −88.1002 36.4923i −0.937236 0.388216i
\(95\) 16.5981 + 11.0905i 0.174717 + 0.116742i
\(96\) 15.2518 + 76.6762i 0.158873 + 0.798710i
\(97\) −10.4438 + 6.97830i −0.107668 + 0.0719412i −0.608238 0.793754i \(-0.708124\pi\)
0.500571 + 0.865696i \(0.333124\pi\)
\(98\) 138.582 + 138.582i 1.41410 + 1.41410i
\(99\) 3.31392 16.6602i 0.0334740 0.168285i
\(100\) −41.0751 99.1641i −0.410751 0.991641i
\(101\) 98.5500i 0.975743i −0.872915 0.487871i \(-0.837773\pi\)
0.872915 0.487871i \(-0.162227\pi\)
\(102\) −80.0997 36.7682i −0.785291 0.360473i
\(103\) 97.0494 0.942227 0.471114 0.882073i \(-0.343852\pi\)
0.471114 + 0.882073i \(0.343852\pi\)
\(104\) 28.6942 11.8855i 0.275906 0.114284i
\(105\) 33.3051 + 6.62480i 0.317191 + 0.0630933i
\(106\) 175.391 175.391i 1.65463 1.65463i
\(107\) 33.8465 + 50.6549i 0.316323 + 0.473410i 0.955226 0.295876i \(-0.0956117\pi\)
−0.638903 + 0.769287i \(0.720612\pi\)
\(108\) −25.2750 + 5.02751i −0.234028 + 0.0465510i
\(109\) −9.72246 + 14.5507i −0.0891969 + 0.133493i −0.873385 0.487031i \(-0.838080\pi\)
0.784188 + 0.620524i \(0.213080\pi\)
\(110\) 11.8846 28.6920i 0.108042 0.260837i
\(111\) 65.2685 + 27.0351i 0.588004 + 0.243559i
\(112\) 100.007 + 66.8224i 0.892917 + 0.596628i
\(113\) 33.5914 + 168.875i 0.297269 + 1.49447i 0.783913 + 0.620871i \(0.213221\pi\)
−0.486644 + 0.873601i \(0.661779\pi\)
\(114\) −46.9614 + 31.3786i −0.411942 + 0.275251i
\(115\) −47.1841 47.1841i −0.410296 0.410296i
\(116\) 19.2525 96.7890i 0.165970 0.834388i
\(117\) −12.4156 29.9739i −0.106116 0.256187i
\(118\) 56.6125i 0.479767i
\(119\) −170.544 + 63.2329i −1.43314 + 0.531369i
\(120\) −9.11490 −0.0759575
\(121\) 82.1694 34.0357i 0.679086 0.281286i
\(122\) −314.786 62.6149i −2.58021 0.513237i
\(123\) 1.98512 1.98512i 0.0161392 0.0161392i
\(124\) 118.400 + 177.198i 0.954837 + 1.42902i
\(125\) −83.8250 + 16.6738i −0.670600 + 0.133391i
\(126\) −53.3775 + 79.8851i −0.423631 + 0.634008i
\(127\) −3.41321 + 8.24022i −0.0268757 + 0.0648836i −0.936748 0.350006i \(-0.886180\pi\)
0.909872 + 0.414889i \(0.136180\pi\)
\(128\) −82.4632 34.1574i −0.644244 0.266854i
\(129\) −73.7713 49.2924i −0.571870 0.382111i
\(130\) −11.5719 58.1757i −0.0890143 0.447505i
\(131\) −42.6658 + 28.5084i −0.325693 + 0.217621i −0.707657 0.706556i \(-0.750248\pi\)
0.381964 + 0.924177i \(0.375248\pi\)
\(132\) 34.3927 + 34.3927i 0.260551 + 0.260551i
\(133\) −22.7398 + 114.320i −0.170976 + 0.859552i
\(134\) 128.035 + 309.104i 0.955484 + 2.30674i
\(135\) 9.52141i 0.0705290i
\(136\) 41.5865 25.5776i 0.305783 0.188070i
\(137\) 12.0176 0.0877195 0.0438597 0.999038i \(-0.486035\pi\)
0.0438597 + 0.999038i \(0.486035\pi\)
\(138\) 174.425 72.2491i 1.26395 0.523544i
\(139\) 151.967 + 30.2282i 1.09329 + 0.217469i 0.708623 0.705587i \(-0.249317\pi\)
0.384666 + 0.923056i \(0.374317\pi\)
\(140\) −68.7537 + 68.7537i −0.491098 + 0.491098i
\(141\) −30.6563 45.8804i −0.217421 0.325393i
\(142\) −296.650 + 59.0073i −2.08908 + 0.415545i
\(143\) −34.0197 + 50.9142i −0.237900 + 0.356043i
\(144\) −12.9059 + 31.1575i −0.0896240 + 0.216372i
\(145\) −33.6862 13.9533i −0.232319 0.0962295i
\(146\) 22.6575 + 15.1393i 0.155189 + 0.103694i
\(147\) 22.1247 + 111.228i 0.150508 + 0.756655i
\(148\) −168.193 + 112.383i −1.13644 + 0.759346i
\(149\) −157.894 157.894i −1.05969 1.05969i −0.998101 0.0615911i \(-0.980383\pi\)
−0.0615911 0.998101i \(-0.519617\pi\)
\(150\) 21.8898 110.047i 0.145932 0.733649i
\(151\) −58.3798 140.941i −0.386621 0.933386i −0.990651 0.136424i \(-0.956439\pi\)
0.604029 0.796962i \(-0.293561\pi\)
\(152\) 31.2871i 0.205836i
\(153\) −26.7183 43.4411i −0.174629 0.283929i
\(154\) 181.336 1.17750
\(155\) 72.7464 30.1326i 0.469332 0.194404i
\(156\) 91.1122 + 18.1233i 0.584053 + 0.116175i
\(157\) −24.8438 + 24.8438i −0.158241 + 0.158241i −0.781787 0.623546i \(-0.785691\pi\)
0.623546 + 0.781787i \(0.285691\pi\)
\(158\) 132.374 + 198.112i 0.837810 + 1.25387i
\(159\) 140.771 28.0012i 0.885355 0.176108i
\(160\) −45.9499 + 68.7688i −0.287187 + 0.429805i
\(161\) 149.103 359.967i 0.926108 2.23582i
\(162\) −24.8885 10.3092i −0.153633 0.0636368i
\(163\) 47.4788 + 31.7243i 0.291281 + 0.194628i 0.692621 0.721301i \(-0.256456\pi\)
−0.401341 + 0.915929i \(0.631456\pi\)
\(164\) 1.56824 + 7.88407i 0.00956244 + 0.0480736i
\(165\) 14.9421 9.98400i 0.0905582 0.0605091i
\(166\) −143.696 143.696i −0.865638 0.865638i
\(167\) 34.2808 172.341i 0.205274 1.03198i −0.731445 0.681900i \(-0.761154\pi\)
0.936719 0.350082i \(-0.113846\pi\)
\(168\) −20.3671 49.1705i −0.121233 0.292682i
\(169\) 52.0464i 0.307967i
\(170\) −32.4151 87.4257i −0.190677 0.514269i
\(171\) −32.6824 −0.191125
\(172\) 234.710 97.2199i 1.36459 0.565232i
\(173\) 95.1890 + 18.9343i 0.550226 + 0.109447i 0.462371 0.886687i \(-0.346999\pi\)
0.0878547 + 0.996133i \(0.471999\pi\)
\(174\) 72.9464 72.9464i 0.419232 0.419232i
\(175\) −128.647 192.534i −0.735126 1.10019i
\(176\) 62.4288 12.4179i 0.354709 0.0705561i
\(177\) 18.2000 27.2382i 0.102825 0.153888i
\(178\) −43.3118 + 104.564i −0.243324 + 0.587437i
\(179\) 88.6200 + 36.7076i 0.495084 + 0.205070i 0.616233 0.787564i \(-0.288658\pi\)
−0.121149 + 0.992634i \(0.538658\pi\)
\(180\) −22.6685 15.1466i −0.125936 0.0841477i
\(181\) 55.4271 + 278.651i 0.306227 + 1.53951i 0.760912 + 0.648855i \(0.224752\pi\)
−0.454686 + 0.890652i \(0.650248\pi\)
\(182\) 287.973 192.417i 1.58227 1.05724i
\(183\) −131.325 131.325i −0.717621 0.717621i
\(184\) −20.4032 + 102.574i −0.110887 + 0.557467i
\(185\) 28.6014 + 69.0498i 0.154602 + 0.373242i
\(186\) 222.781i 1.19775i
\(187\) −40.1565 + 87.4811i −0.214741 + 0.467813i
\(188\) 157.999 0.840423
\(189\) −51.3634 + 21.2754i −0.271764 + 0.112568i
\(190\) −58.6040 11.6571i −0.308442 0.0613530i
\(191\) 25.8379 25.8379i 0.135277 0.135277i −0.636226 0.771503i \(-0.719505\pi\)
0.771503 + 0.636226i \(0.219505\pi\)
\(192\) −86.7371 129.811i −0.451755 0.676100i
\(193\) 25.1712 5.00686i 0.130421 0.0259423i −0.129448 0.991586i \(-0.541321\pi\)
0.259869 + 0.965644i \(0.416321\pi\)
\(194\) 20.8877 31.2607i 0.107669 0.161137i
\(195\) 13.1349 31.7104i 0.0673584 0.162618i
\(196\) −300.007 124.267i −1.53065 0.634015i
\(197\) −114.459 76.4791i −0.581011 0.388219i 0.230052 0.973178i \(-0.426110\pi\)
−0.811062 + 0.584960i \(0.801110\pi\)
\(198\) 9.91936 + 49.8680i 0.0500978 + 0.251858i
\(199\) −197.687 + 132.091i −0.993405 + 0.663772i −0.942247 0.334919i \(-0.891291\pi\)
−0.0511576 + 0.998691i \(0.516291\pi\)
\(200\) 43.9502 + 43.9502i 0.219751 + 0.219751i
\(201\) −37.7697 + 189.881i −0.187909 + 0.944683i
\(202\) 112.885 + 272.529i 0.558838 + 1.34916i
\(203\) 212.899i 1.04876i
\(204\) 145.927 + 5.49524i 0.715331 + 0.0269375i
\(205\) 2.97003 0.0144880
\(206\) −268.379 + 111.166i −1.30281 + 0.539643i
\(207\) 107.149 + 21.3132i 0.517626 + 0.102962i
\(208\) 85.9642 85.9642i 0.413290 0.413290i
\(209\) 34.2703 + 51.2891i 0.163973 + 0.245402i
\(210\) −99.6901 + 19.8296i −0.474715 + 0.0944266i
\(211\) −38.1257 + 57.0591i −0.180690 + 0.270422i −0.910747 0.412964i \(-0.864493\pi\)
0.730057 + 0.683386i \(0.239493\pi\)
\(212\) −157.273 + 379.691i −0.741855 + 1.79100i
\(213\) −161.698 66.9776i −0.759146 0.314449i
\(214\) −151.622 101.311i −0.708515 0.473415i
\(215\) −18.3120 92.0605i −0.0851720 0.428189i
\(216\) 12.4080 8.29073i 0.0574442 0.0383830i
\(217\) 325.101 + 325.101i 1.49816 + 1.49816i
\(218\) 10.2191 51.3751i 0.0468768 0.235665i
\(219\) 6.03428 + 14.5680i 0.0275538 + 0.0665208i
\(220\) 51.4565i 0.233893i
\(221\) 29.0560 + 181.536i 0.131475 + 0.821430i
\(222\) −211.461 −0.952525
\(223\) −279.797 + 115.896i −1.25469 + 0.519711i −0.908277 0.418370i \(-0.862602\pi\)
−0.346417 + 0.938081i \(0.612602\pi\)
\(224\) −473.649 94.2146i −2.11450 0.420601i
\(225\) 45.9103 45.9103i 0.204046 0.204046i
\(226\) −286.334 428.529i −1.26696 1.89614i
\(227\) 71.9272 14.3072i 0.316860 0.0630274i −0.0340982 0.999418i \(-0.510856\pi\)
0.350958 + 0.936391i \(0.385856\pi\)
\(228\) 51.9910 77.8100i 0.228031 0.341272i
\(229\) −62.0965 + 149.914i −0.271164 + 0.654648i −0.999534 0.0305366i \(-0.990278\pi\)
0.728370 + 0.685184i \(0.240278\pi\)
\(230\) 184.530 + 76.4348i 0.802304 + 0.332325i
\(231\) 87.2467 + 58.2964i 0.377691 + 0.252365i
\(232\) 11.1487 + 56.0484i 0.0480548 + 0.241588i
\(233\) 184.013 122.954i 0.789756 0.527698i −0.0940412 0.995568i \(-0.529979\pi\)
0.883797 + 0.467870i \(0.154979\pi\)
\(234\) 68.6680 + 68.6680i 0.293453 + 0.293453i
\(235\) 11.3887 57.2550i 0.0484627 0.243638i
\(236\) 35.8960 + 86.6607i 0.152102 + 0.367206i
\(237\) 137.874i 0.581748i
\(238\) 399.189 370.215i 1.67726 1.55552i
\(239\) 282.155 1.18056 0.590282 0.807197i \(-0.299017\pi\)
0.590282 + 0.807197i \(0.299017\pi\)
\(240\) −32.9626 + 13.6536i −0.137344 + 0.0568898i
\(241\) 315.661 + 62.7888i 1.30980 + 0.260534i 0.800124 0.599835i \(-0.204767\pi\)
0.509671 + 0.860369i \(0.329767\pi\)
\(242\) −188.244 + 188.244i −0.777867 + 0.777867i
\(243\) −8.66048 12.9613i −0.0356398 0.0533388i
\(244\) 521.566 103.746i 2.13757 0.425189i
\(245\) −66.6560 + 99.7577i −0.272065 + 0.407174i
\(246\) −3.21576 + 7.76352i −0.0130722 + 0.0315590i
\(247\) 108.847 + 45.0858i 0.440675 + 0.182534i
\(248\) −102.611 68.5627i −0.413755 0.276462i
\(249\) −22.9411 115.333i −0.0921330 0.463184i
\(250\) 212.710 142.128i 0.850838 0.568512i
\(251\) −129.692 129.692i −0.516700 0.516700i 0.399871 0.916571i \(-0.369055\pi\)
−0.916571 + 0.399871i \(0.869055\pi\)
\(252\) 31.0562 156.130i 0.123239 0.619565i
\(253\) −78.9071 190.499i −0.311886 0.752959i
\(254\) 26.6971i 0.105107i
\(255\) 12.5099 52.4844i 0.0490585 0.205821i
\(256\) −93.3807 −0.364768
\(257\) −265.297 + 109.890i −1.03228 + 0.427586i −0.833536 0.552465i \(-0.813687\pi\)
−0.198748 + 0.980051i \(0.563687\pi\)
\(258\) 260.469 + 51.8105i 1.00957 + 0.200816i
\(259\) −308.581 + 308.581i −1.19143 + 1.19143i
\(260\) 54.6010 + 81.7161i 0.210004 + 0.314293i
\(261\) 58.5480 11.6459i 0.224322 0.0446204i
\(262\) 85.3323 127.709i 0.325696 0.487438i
\(263\) −177.907 + 429.506i −0.676454 + 1.63310i 0.0939730 + 0.995575i \(0.470043\pi\)
−0.770427 + 0.637529i \(0.779957\pi\)
\(264\) −26.0216 10.7785i −0.0985665 0.0408276i
\(265\) 126.254 + 84.3604i 0.476431 + 0.318341i
\(266\) −68.0655 342.188i −0.255885 1.28642i
\(267\) −54.4543 + 36.3852i −0.203949 + 0.136274i
\(268\) −391.983 391.983i −1.46262 1.46262i
\(269\) −26.0248 + 130.835i −0.0967463 + 0.486377i 0.901784 + 0.432186i \(0.142258\pi\)
−0.998531 + 0.0541903i \(0.982742\pi\)
\(270\) −10.9064 26.3304i −0.0403941 0.0975201i
\(271\) 161.290i 0.595167i −0.954696 0.297584i \(-0.903819\pi\)
0.954696 0.297584i \(-0.0961807\pi\)
\(272\) 112.077 154.791i 0.412049 0.569085i
\(273\) 200.412 0.734111
\(274\) −33.2333 + 13.7657i −0.121289 + 0.0502397i
\(275\) −120.189 23.9070i −0.437049 0.0869345i
\(276\) −221.193 + 221.193i −0.801425 + 0.801425i
\(277\) −14.7816 22.1223i −0.0533633 0.0798638i 0.803829 0.594861i \(-0.202793\pi\)
−0.857192 + 0.514997i \(0.827793\pi\)
\(278\) −454.874 + 90.4800i −1.63624 + 0.325468i
\(279\) −71.6205 + 107.188i −0.256704 + 0.384185i
\(280\) 21.5470 52.0192i 0.0769537 0.185783i
\(281\) 226.046 + 93.6314i 0.804435 + 0.333208i 0.746731 0.665126i \(-0.231622\pi\)
0.0577035 + 0.998334i \(0.481622\pi\)
\(282\) 137.331 + 91.7616i 0.486989 + 0.325396i
\(283\) −46.7209 234.882i −0.165092 0.829971i −0.971211 0.238219i \(-0.923436\pi\)
0.806120 0.591752i \(-0.201564\pi\)
\(284\) 416.688 278.422i 1.46721 0.980358i
\(285\) −24.4488 24.4488i −0.0857854 0.0857854i
\(286\) 35.7577 179.766i 0.125027 0.628552i
\(287\) 6.63648 + 16.0219i 0.0231236 + 0.0558254i
\(288\) 135.409i 0.470170i
\(289\) 90.2016 + 274.563i 0.312116 + 0.950044i
\(290\) 109.138 0.376339
\(291\) 20.0996 8.32551i 0.0690707 0.0286100i
\(292\) −44.2827 8.80838i −0.151653 0.0301657i
\(293\) −201.107 + 201.107i −0.686372 + 0.686372i −0.961428 0.275056i \(-0.911304\pi\)
0.275056 + 0.961428i \(0.411304\pi\)
\(294\) −188.591 282.247i −0.641467 0.960023i
\(295\) 33.9911 6.76124i 0.115224 0.0229195i
\(296\) 65.0786 97.3971i 0.219860 0.329044i
\(297\) −11.2592 + 27.1821i −0.0379097 + 0.0915221i
\(298\) 617.501 + 255.777i 2.07215 + 0.858313i
\(299\) −327.449 218.795i −1.09515 0.731755i
\(300\) 36.2690 + 182.336i 0.120897 + 0.607788i
\(301\) 455.705 304.492i 1.51397 1.01160i
\(302\) 322.886 + 322.886i 1.06916 + 1.06916i
\(303\) −33.3007 + 167.414i −0.109903 + 0.552521i
\(304\) −46.8661 113.145i −0.154165 0.372187i
\(305\) 196.481i 0.644199i
\(306\) 123.647 + 89.5269i 0.404074 + 0.292572i
\(307\) −75.0263 −0.244385 −0.122193 0.992506i \(-0.538993\pi\)
−0.122193 + 0.992506i \(0.538993\pi\)
\(308\) −277.583 + 114.979i −0.901243 + 0.373307i
\(309\) −164.865 32.7936i −0.533542 0.106128i
\(310\) −166.657 + 166.657i −0.537602 + 0.537602i
\(311\) 26.6835 + 39.9347i 0.0857991 + 0.128407i 0.871887 0.489708i \(-0.162897\pi\)
−0.786088 + 0.618115i \(0.787897\pi\)
\(312\) −52.7610 + 10.4948i −0.169106 + 0.0336372i
\(313\) 223.180 334.013i 0.713036 1.06713i −0.281171 0.959658i \(-0.590723\pi\)
0.994208 0.107477i \(-0.0342771\pi\)
\(314\) 40.2452 97.1605i 0.128169 0.309428i
\(315\) −54.3391 22.5080i −0.172505 0.0714540i
\(316\) −328.250 219.329i −1.03876 0.694080i
\(317\) −38.4930 193.517i −0.121429 0.610465i −0.992794 0.119830i \(-0.961765\pi\)
0.871365 0.490635i \(-0.163235\pi\)
\(318\) −357.214 + 238.683i −1.12331 + 0.750574i
\(319\) −79.6687 79.6687i −0.249745 0.249745i
\(320\) 32.2226 161.994i 0.100696 0.506231i
\(321\) −40.3809 97.4880i −0.125797 0.303701i
\(322\) 1166.24i 3.62187i
\(323\) 180.154 + 42.9405i 0.557751 + 0.132943i
\(324\) 44.6352 0.137763
\(325\) −216.235 + 89.5675i −0.665339 + 0.275592i
\(326\) −167.636 33.3449i −0.514222 0.102285i
\(327\) 21.4330 21.4330i 0.0655443 0.0655443i
\(328\) −2.58614 3.87044i −0.00788458 0.0118001i
\(329\) 334.311 66.4987i 1.01614 0.202124i
\(330\) −29.8845 + 44.7253i −0.0905590 + 0.135531i
\(331\) 167.757 405.002i 0.506819 1.22357i −0.438886 0.898543i \(-0.644627\pi\)
0.945705 0.325027i \(-0.105373\pi\)
\(332\) 311.078 + 128.853i 0.936981 + 0.388110i
\(333\) −101.741 67.9810i −0.305528 0.204147i
\(334\) 102.610 + 515.858i 0.307217 + 1.54448i
\(335\) −170.299 + 113.790i −0.508357 + 0.339673i
\(336\) −147.309 147.309i −0.438419 0.438419i
\(337\) 39.7297 199.734i 0.117892 0.592684i −0.875998 0.482314i \(-0.839796\pi\)
0.993891 0.110370i \(-0.0352036\pi\)
\(338\) 59.6172 + 143.929i 0.176382 + 0.425824i
\(339\) 298.231i 0.879738i
\(340\) 105.053 + 113.275i 0.308981 + 0.333162i
\(341\) 243.311 0.713523
\(342\) 90.3797 37.4365i 0.264268 0.109463i
\(343\) −172.893 34.3905i −0.504060 0.100264i
\(344\) −104.025 + 104.025i −0.302398 + 0.302398i
\(345\) 64.2111 + 96.0987i 0.186119 + 0.278547i
\(346\) −284.923 + 56.6748i −0.823478 + 0.163800i
\(347\) 222.155 332.478i 0.640215 0.958150i −0.359472 0.933156i \(-0.617043\pi\)
0.999688 0.0249943i \(-0.00795676\pi\)
\(348\) −65.4113 + 157.917i −0.187963 + 0.453784i
\(349\) −244.378 101.225i −0.700222 0.290042i 0.00402941 0.999992i \(-0.498717\pi\)
−0.704252 + 0.709950i \(0.748717\pi\)
\(350\) 576.299 + 385.071i 1.64657 + 1.10020i
\(351\) 10.9629 + 55.1141i 0.0312333 + 0.157020i
\(352\) −212.499 + 141.987i −0.603691 + 0.403374i
\(353\) −52.7998 52.7998i −0.149574 0.149574i 0.628354 0.777928i \(-0.283729\pi\)
−0.777928 + 0.628354i \(0.783729\pi\)
\(354\) −19.1297 + 96.1717i −0.0540388 + 0.271671i
\(355\) −70.8579 171.066i −0.199600 0.481876i
\(356\) 187.525i 0.526757i
\(357\) 311.081 49.7904i 0.871375 0.139469i
\(358\) −287.116 −0.802000
\(359\) 310.454 128.594i 0.864773 0.358201i 0.0942007 0.995553i \(-0.469970\pi\)
0.770572 + 0.637352i \(0.219970\pi\)
\(360\) 15.4841 + 3.07998i 0.0430114 + 0.00855551i
\(361\) −171.344 + 171.344i −0.474638 + 0.474638i
\(362\) −472.461 707.088i −1.30514 1.95328i
\(363\) −151.088 + 30.0532i −0.416220 + 0.0827912i
\(364\) −318.814 + 477.139i −0.875863 + 1.31082i
\(365\) −6.38388 + 15.4120i −0.0174901 + 0.0422248i
\(366\) 513.591 + 212.736i 1.40325 + 0.581247i
\(367\) −40.6220 27.1427i −0.110687 0.0739584i 0.498995 0.866605i \(-0.333703\pi\)
−0.609681 + 0.792647i \(0.708703\pi\)
\(368\) 79.8643 + 401.505i 0.217023 + 1.09105i
\(369\) −4.04305 + 2.70148i −0.0109568 + 0.00732109i
\(370\) −158.188 158.188i −0.427535 0.427535i
\(371\) −172.971 + 869.583i −0.466228 + 2.34389i
\(372\) −141.258 341.027i −0.379725 0.916738i
\(373\) 467.685i 1.25385i 0.779081 + 0.626924i \(0.215686\pi\)
−0.779081 + 0.626924i \(0.784314\pi\)
\(374\) 10.8422 287.917i 0.0289898 0.769832i
\(375\) 148.034 0.394756
\(376\) −84.5294 + 35.0132i −0.224812 + 0.0931202i
\(377\) −211.056 41.9817i −0.559830 0.111357i
\(378\) 117.670 117.670i 0.311296 0.311296i
\(379\) −147.215 220.323i −0.388430 0.581326i 0.584795 0.811181i \(-0.301175\pi\)
−0.973225 + 0.229855i \(0.926175\pi\)
\(380\) 97.1005 19.3145i 0.255528 0.0508276i
\(381\) 8.58268 12.8449i 0.0225267 0.0337136i
\(382\) −41.8556 + 101.048i −0.109570 + 0.264524i
\(383\) −452.009 187.228i −1.18018 0.488847i −0.295636 0.955301i \(-0.595531\pi\)
−0.884546 + 0.466454i \(0.845531\pi\)
\(384\) 128.544 + 85.8904i 0.334750 + 0.223673i
\(385\) 21.6570 + 108.877i 0.0562518 + 0.282797i
\(386\) −63.8729 + 42.6785i −0.165474 + 0.110566i
\(387\) 108.664 + 108.664i 0.280786 + 0.280786i
\(388\) −12.1529 + 61.0970i −0.0313220 + 0.157466i
\(389\) −42.6356 102.931i −0.109603 0.264605i 0.859556 0.511042i \(-0.170740\pi\)
−0.969159 + 0.246437i \(0.920740\pi\)
\(390\) 102.737i 0.263429i
\(391\) −562.626 258.263i −1.43894 0.660519i
\(392\) 188.041 0.479696
\(393\) 82.1125 34.0121i 0.208938 0.0865449i
\(394\) 404.128 + 80.3861i 1.02571 + 0.204026i
\(395\) −103.140 + 103.140i −0.261114 + 0.261114i
\(396\) −46.8038 70.0468i −0.118191 0.176886i
\(397\) −260.711 + 51.8587i −0.656703 + 0.130626i −0.512184 0.858876i \(-0.671163\pi\)
−0.144519 + 0.989502i \(0.546163\pi\)
\(398\) 395.378 591.726i 0.993413 1.48675i
\(399\) 77.2592 186.520i 0.193632 0.467469i
\(400\) 224.774 + 93.1043i 0.561934 + 0.232761i
\(401\) 183.395 + 122.540i 0.457343 + 0.305587i 0.762818 0.646613i \(-0.223815\pi\)
−0.305475 + 0.952200i \(0.598815\pi\)
\(402\) −113.054 568.360i −0.281228 1.41383i
\(403\) 386.394 258.180i 0.958794 0.640645i
\(404\) −345.603 345.603i −0.855452 0.855452i
\(405\) 3.21735 16.1747i 0.00794406 0.0399375i
\(406\) 243.868 + 588.749i 0.600660 + 1.45012i
\(407\) 230.947i 0.567438i
\(408\) −79.2886 + 29.3981i −0.194335 + 0.0720541i
\(409\) 139.981 0.342251 0.171126 0.985249i \(-0.445260\pi\)
0.171126 + 0.985249i \(0.445260\pi\)
\(410\) −8.21330 + 3.40206i −0.0200324 + 0.00829770i
\(411\) −20.4151 4.06081i −0.0496717 0.00988033i
\(412\) 340.340 340.340i 0.826068 0.826068i
\(413\) 112.426 + 168.258i 0.272218 + 0.407403i
\(414\) −320.721 + 63.7954i −0.774688 + 0.154095i
\(415\) 69.1157 103.439i 0.166544 0.249251i
\(416\) −186.798 + 450.970i −0.449034 + 1.08406i
\(417\) −247.943 102.701i −0.594587 0.246286i
\(418\) −153.520 102.579i −0.367274 0.245404i
\(419\) −71.1999 357.946i −0.169928 0.854286i −0.967851 0.251526i \(-0.919068\pi\)
0.797922 0.602760i \(-0.205932\pi\)
\(420\) 140.029 93.5645i 0.333403 0.222773i
\(421\) 196.189 + 196.189i 0.466006 + 0.466006i 0.900618 0.434612i \(-0.143114\pi\)
−0.434612 + 0.900618i \(0.643114\pi\)
\(422\) 40.0733 201.462i 0.0949605 0.477398i
\(423\) 36.5747 + 88.2992i 0.0864651 + 0.208745i
\(424\) 237.986i 0.561288i
\(425\) −313.389 + 192.749i −0.737386 + 0.453526i
\(426\) 523.879 1.22976
\(427\) 1059.92 439.033i 2.48225 1.02818i
\(428\) 296.336 + 58.9449i 0.692374 + 0.137722i
\(429\) 74.9959 74.9959i 0.174816 0.174816i
\(430\) 156.092 + 233.608i 0.363004 + 0.543274i
\(431\) 443.882 88.2936i 1.02989 0.204858i 0.348906 0.937158i \(-0.386553\pi\)
0.680982 + 0.732300i \(0.261553\pi\)
\(432\) 32.4524 48.5685i 0.0751213 0.112427i
\(433\) 185.595 448.067i 0.428627 1.03480i −0.551096 0.834442i \(-0.685790\pi\)
0.979723 0.200355i \(-0.0642096\pi\)
\(434\) −1271.42 526.641i −2.92955 1.21346i
\(435\) 52.5102 + 35.0862i 0.120713 + 0.0806579i
\(436\) 16.9320 + 85.1229i 0.0388348 + 0.195236i
\(437\) −329.861 + 220.406i −0.754830 + 0.504361i
\(438\) −33.3743 33.3743i −0.0761970 0.0761970i
\(439\) 45.5906 229.199i 0.103851 0.522094i −0.893481 0.449100i \(-0.851745\pi\)
0.997332 0.0729940i \(-0.0232554\pi\)
\(440\) −11.4029 27.5291i −0.0259157 0.0625661i
\(441\) 196.427i 0.445413i
\(442\) −288.294 468.736i −0.652248 1.06049i
\(443\) −47.6565 −0.107577 −0.0537884 0.998552i \(-0.517130\pi\)
−0.0537884 + 0.998552i \(0.517130\pi\)
\(444\) 323.697 134.080i 0.729047 0.301981i
\(445\) −67.9545 13.5170i −0.152707 0.0303753i
\(446\) 640.993 640.993i 1.43720 1.43720i
\(447\) 214.872 + 321.579i 0.480699 + 0.719417i
\(448\) 945.879 188.147i 2.11134 0.419971i
\(449\) −39.5237 + 59.1513i −0.0880260 + 0.131740i −0.872869 0.487954i \(-0.837743\pi\)
0.784843 + 0.619694i \(0.212743\pi\)
\(450\) −74.3714 + 179.548i −0.165270 + 0.398997i
\(451\) 8.47896 + 3.51210i 0.0188003 + 0.00778736i
\(452\) 710.025 + 474.424i 1.57085 + 1.04961i
\(453\) 51.5489 + 259.154i 0.113794 + 0.572083i
\(454\) −182.519 + 121.955i −0.402023 + 0.268623i
\(455\) 149.923 + 149.923i 0.329501 + 0.329501i
\(456\) −10.5721 + 53.1496i −0.0231844 + 0.116556i
\(457\) 65.9745 + 159.276i 0.144364 + 0.348526i 0.979478 0.201551i \(-0.0645982\pi\)
−0.835114 + 0.550077i \(0.814598\pi\)
\(458\) 485.701i 1.06048i
\(459\) 30.7092 + 82.8248i 0.0669045 + 0.180446i
\(460\) −330.937 −0.719429
\(461\) −652.067 + 270.095i −1.41446 + 0.585890i −0.953463 0.301510i \(-0.902509\pi\)
−0.461000 + 0.887400i \(0.652509\pi\)
\(462\) −308.048 61.2745i −0.666770 0.132629i
\(463\) −612.164 + 612.164i −1.32217 + 1.32217i −0.410150 + 0.912018i \(0.634524\pi\)
−0.912018 + 0.410150i \(0.865476\pi\)
\(464\) 124.275 + 185.990i 0.267833 + 0.400840i
\(465\) −133.761 + 26.6068i −0.287659 + 0.0572189i
\(466\) −368.029 + 550.795i −0.789763 + 1.18196i
\(467\) −196.565 + 474.550i −0.420911 + 1.01617i 0.561169 + 0.827701i \(0.310352\pi\)
−0.982080 + 0.188467i \(0.939648\pi\)
\(468\) −148.655 61.5748i −0.317638 0.131570i
\(469\) −994.376 664.421i −2.12021 1.41668i
\(470\) 34.0892 + 171.378i 0.0725302 + 0.364634i
\(471\) 50.5988 33.8090i 0.107428 0.0717814i
\(472\) −38.4086 38.4086i −0.0813741 0.0813741i
\(473\) 56.5850 284.472i 0.119630 0.601421i
\(474\) −157.930 381.276i −0.333185 0.804380i
\(475\) 235.775i 0.496368i
\(476\) −376.325 + 819.825i −0.790598 + 1.72232i
\(477\) −248.600 −0.521174
\(478\) −780.268 + 323.198i −1.63236 + 0.676146i
\(479\) 815.305 + 162.174i 1.70210 + 0.338568i 0.948018 0.318216i \(-0.103084\pi\)
0.754079 + 0.656784i \(0.228084\pi\)
\(480\) 101.296 101.296i 0.211033 0.211033i
\(481\) 245.060 + 366.759i 0.509481 + 0.762493i
\(482\) −944.847 + 187.942i −1.96026 + 0.389921i
\(483\) −374.928 + 561.119i −0.776248 + 1.16174i
\(484\) 168.799 407.516i 0.348758 0.841976i
\(485\) 21.2640 + 8.80785i 0.0438433 + 0.0181605i
\(486\) 38.7963 + 25.9229i 0.0798278 + 0.0533393i
\(487\) 155.236 + 780.422i 0.318759 + 1.60251i 0.725004 + 0.688745i \(0.241838\pi\)
−0.406245 + 0.913764i \(0.633162\pi\)
\(488\) −256.046 + 171.085i −0.524685 + 0.350584i
\(489\) −69.9356 69.9356i −0.143018 0.143018i
\(490\) 70.0611 352.221i 0.142982 0.718818i
\(491\) 257.166 + 620.853i 0.523759 + 1.26447i 0.935552 + 0.353189i \(0.114903\pi\)
−0.411793 + 0.911277i \(0.635097\pi\)
\(492\) 13.9231i 0.0282991i
\(493\) −338.032 12.7294i −0.685664 0.0258203i
\(494\) −352.648 −0.713862
\(495\) −28.7569 + 11.9115i −0.0580947 + 0.0240636i
\(496\) −473.780 94.2408i −0.955202 0.190002i
\(497\) 764.488 764.488i 1.53821 1.53821i
\(498\) 195.551 + 292.662i 0.392672 + 0.587675i
\(499\) 10.6279 2.11403i 0.0212985 0.00423653i −0.184430 0.982846i \(-0.559044\pi\)
0.205728 + 0.978609i \(0.434044\pi\)
\(500\) −235.491 + 352.437i −0.470981 + 0.704873i
\(501\) −116.470 + 281.184i −0.232476 + 0.561246i
\(502\) 507.205 + 210.091i 1.01037 + 0.418509i
\(503\) −367.862 245.798i −0.731336 0.488663i 0.133291 0.991077i \(-0.457445\pi\)
−0.864627 + 0.502414i \(0.832445\pi\)
\(504\) 17.9840 + 90.4115i 0.0356825 + 0.179388i
\(505\) −150.149 + 100.326i −0.297325 + 0.198666i
\(506\) 436.418 + 436.418i 0.862486 + 0.862486i
\(507\) −17.5868 + 88.4149i −0.0346880 + 0.174388i
\(508\) 16.9277 + 40.8671i 0.0333223 + 0.0804471i
\(509\) 124.505i 0.244607i −0.992493 0.122304i \(-0.960972\pi\)
0.992493 0.122304i \(-0.0390281\pi\)
\(510\) 25.5240 + 159.469i 0.0500471 + 0.312685i
\(511\) −97.4052 −0.190617
\(512\) 588.087 243.594i 1.14861 0.475769i
\(513\) 55.5199 + 11.0436i 0.108226 + 0.0215275i
\(514\) 607.776 607.776i 1.18244 1.18244i
\(515\) −98.7987 147.863i −0.191842 0.287112i
\(516\) −431.569 + 85.8443i −0.836373 + 0.166365i
\(517\) 100.218 149.986i 0.193845 0.290109i
\(518\) 499.879 1206.82i 0.965018 2.32976i
\(519\) −155.306 64.3299i −0.299241 0.123950i
\(520\) −47.3200 31.6182i −0.0909999 0.0608042i
\(521\) −51.0680 256.736i −0.0980191 0.492775i −0.998342 0.0575537i \(-0.981670\pi\)
0.900323 0.435222i \(-0.143330\pi\)
\(522\) −148.568 + 99.2701i −0.284613 + 0.190173i
\(523\) 687.886 + 687.886i 1.31527 + 1.31527i 0.917474 + 0.397795i \(0.130224\pi\)
0.397795 + 0.917474i \(0.369776\pi\)
\(524\) −49.6483 + 249.599i −0.0947487 + 0.476334i
\(525\) 153.483 + 370.541i 0.292349 + 0.705793i
\(526\) 1391.54i 2.64551i
\(527\) 535.621 496.744i 1.01636 0.942589i
\(528\) −110.248 −0.208804
\(529\) 736.441 305.044i 1.39214 0.576642i
\(530\) −445.774 88.6699i −0.841083 0.167302i
\(531\) −40.1216 + 40.1216i −0.0755585 + 0.0755585i
\(532\) 321.162 + 480.653i 0.603688 + 0.903483i
\(533\) 17.1918 3.41967i 0.0322549 0.00641589i
\(534\) 108.910 162.995i 0.203950 0.305233i
\(535\) 42.7203 103.136i 0.0798510 0.192777i
\(536\) 296.575 + 122.845i 0.553312 + 0.229189i
\(537\) −138.141 92.3031i −0.257246 0.171887i
\(538\) −77.8983 391.621i −0.144792 0.727920i
\(539\) −308.257 + 205.970i −0.571905 + 0.382135i
\(540\) 33.3904 + 33.3904i 0.0618340 + 0.0618340i
\(541\) 96.3014 484.140i 0.178006 0.894898i −0.783768 0.621054i \(-0.786705\pi\)
0.961774 0.273844i \(-0.0882952\pi\)
\(542\) 184.752 + 446.031i 0.340871 + 0.822935i
\(543\) 492.093i 0.906248i
\(544\) −177.910 + 746.407i −0.327040 + 1.37207i
\(545\) 32.0669 0.0588383
\(546\) −554.218 + 229.565i −1.01505 + 0.420448i
\(547\) −101.427 20.1751i −0.185424 0.0368831i 0.101505 0.994835i \(-0.467634\pi\)
−0.286929 + 0.957952i \(0.592634\pi\)
\(548\) 42.1441 42.1441i 0.0769053 0.0769053i
\(549\) 178.715 + 267.466i 0.325528 + 0.487187i
\(550\) 359.753 71.5593i 0.654096 0.130108i
\(551\) −120.434 + 180.242i −0.218574 + 0.327118i
\(552\) 69.3207 167.355i 0.125581 0.303180i
\(553\) −786.855 325.926i −1.42288 0.589378i
\(554\) 66.2172 + 44.2449i 0.119526 + 0.0798645i
\(555\) −25.2548 126.964i −0.0455041 0.228764i
\(556\) 638.936 426.923i 1.14917 0.767848i
\(557\) −463.495 463.495i −0.832127 0.832127i 0.155680 0.987808i \(-0.450243\pi\)
−0.987808 + 0.155680i \(0.950243\pi\)
\(558\) 75.2792 378.454i 0.134909 0.678233i
\(559\) −211.996 511.802i −0.379241 0.915568i
\(560\) 220.395i 0.393563i
\(561\) 97.7772 135.041i 0.174291 0.240715i
\(562\) −732.357 −1.30313
\(563\) 668.501 276.902i 1.18739 0.491833i 0.300486 0.953786i \(-0.402851\pi\)
0.886904 + 0.461953i \(0.152851\pi\)
\(564\) −268.405 53.3890i −0.475895 0.0946614i
\(565\) 223.099 223.099i 0.394865 0.394865i
\(566\) 398.250 + 596.023i 0.703622 + 1.05304i
\(567\) 94.4438 18.7860i 0.166567 0.0331323i
\(568\) −161.228 + 241.294i −0.283852 + 0.424814i
\(569\) −390.523 + 942.806i −0.686332 + 1.65695i 0.0657114 + 0.997839i \(0.479068\pi\)
−0.752043 + 0.659113i \(0.770932\pi\)
\(570\) 95.6158 + 39.6054i 0.167747 + 0.0694831i
\(571\) 833.078 + 556.645i 1.45898 + 0.974860i 0.996081 + 0.0884494i \(0.0281912\pi\)
0.462900 + 0.886410i \(0.346809\pi\)
\(572\) 59.2465 + 297.852i 0.103578 + 0.520721i
\(573\) −52.6235 + 35.1619i −0.0918385 + 0.0613645i
\(574\) −36.7049 36.7049i −0.0639459 0.0639459i
\(575\) 153.756 772.981i 0.267401 1.34431i
\(576\) 103.482 + 249.828i 0.179657 + 0.433730i
\(577\) 577.755i 1.00131i 0.865647 + 0.500655i \(0.166907\pi\)
−0.865647 + 0.500655i \(0.833093\pi\)
\(578\) −563.944 655.950i −0.975682 1.13486i
\(579\) −44.4519 −0.0767735
\(580\) −167.066 + 69.2008i −0.288044 + 0.119312i
\(581\) 712.441 + 141.713i 1.22623 + 0.243913i
\(582\) −46.0466 + 46.0466i −0.0791178 + 0.0791178i
\(583\) 260.678 + 390.132i 0.447132 + 0.669180i
\(584\) 25.6431 5.10074i 0.0439095 0.00873414i
\(585\) −33.0283 + 49.4304i −0.0564587 + 0.0844964i
\(586\) 325.779 786.500i 0.555937 1.34215i
\(587\) −181.745 75.2813i −0.309617 0.128247i 0.222464 0.974941i \(-0.428590\pi\)
−0.532081 + 0.846693i \(0.678590\pi\)
\(588\) 467.652 + 312.475i 0.795327 + 0.531420i
\(589\) −91.3284 459.139i −0.155057 0.779523i
\(590\) −86.2538 + 57.6330i −0.146193 + 0.0976830i
\(591\) 168.597 + 168.597i 0.285274 + 0.285274i
\(592\) 89.4518 449.705i 0.151101 0.759636i
\(593\) −397.065 958.600i −0.669587 1.61653i −0.782303 0.622898i \(-0.785955\pi\)
0.112716 0.993627i \(-0.464045\pi\)
\(594\) 88.0660i 0.148259i
\(595\) 269.958 + 195.464i 0.453711 + 0.328512i
\(596\) −1107.43 −1.85810
\(597\) 380.460 157.592i 0.637286 0.263973i
\(598\) 1156.15 + 229.972i 1.93336 + 0.384568i
\(599\) −507.791 + 507.791i −0.847731 + 0.847731i −0.989850 0.142118i \(-0.954609\pi\)
0.142118 + 0.989850i \(0.454609\pi\)
\(600\) −59.8102 89.5123i −0.0996837 0.149187i
\(601\) −959.570 + 190.870i −1.59662 + 0.317588i −0.911645 0.410978i \(-0.865187\pi\)
−0.684976 + 0.728565i \(0.740187\pi\)
\(602\) −911.417 + 1364.03i −1.51398 + 2.26583i
\(603\) 128.324 309.802i 0.212810 0.513768i
\(604\) −698.994 289.533i −1.15728 0.479359i
\(605\) −135.507 90.5426i −0.223978 0.149657i
\(606\) −99.6768 501.109i −0.164483 0.826913i
\(607\) −332.737 + 222.327i −0.548166 + 0.366273i −0.798601 0.601861i \(-0.794426\pi\)
0.250435 + 0.968133i \(0.419426\pi\)
\(608\) 347.699 + 347.699i 0.571874 + 0.571874i
\(609\) −71.9400 + 361.667i −0.118128 + 0.593870i
\(610\) 225.061 + 543.346i 0.368953 + 0.890731i
\(611\) 344.530i 0.563879i
\(612\) −246.040 58.6450i −0.402027 0.0958251i
\(613\) −124.279 −0.202739 −0.101370 0.994849i \(-0.532322\pi\)
−0.101370 + 0.994849i \(0.532322\pi\)
\(614\) 207.477 85.9398i 0.337910 0.139967i
\(615\) −5.04540 1.00359i −0.00820390 0.00163186i
\(616\) 123.027 123.027i 0.199719 0.199719i
\(617\) 111.245 + 166.490i 0.180300 + 0.269839i 0.910600 0.413288i \(-0.135620\pi\)
−0.730300 + 0.683127i \(0.760620\pi\)
\(618\) 493.479 98.1590i 0.798509 0.158833i
\(619\) 211.859 317.069i 0.342259 0.512227i −0.619912 0.784671i \(-0.712832\pi\)
0.962172 + 0.272444i \(0.0878318\pi\)
\(620\) 149.442 360.784i 0.241035 0.581909i
\(621\) −174.819 72.4123i −0.281512 0.116606i
\(622\) −119.534 79.8701i −0.192177 0.128408i
\(623\) −78.9255 396.786i −0.126686 0.636895i
\(624\) −175.081 + 116.986i −0.280579 + 0.187477i
\(625\) −271.846 271.846i −0.434954 0.434954i
\(626\) −234.582 + 1179.32i −0.374731 + 1.88390i
\(627\) −40.8864 98.7085i −0.0652096 0.157430i
\(628\) 174.248i 0.277465i
\(629\) 471.502 + 508.403i 0.749606 + 0.808271i
\(630\) 176.051 0.279446
\(631\) −325.555 + 134.849i −0.515935 + 0.213707i −0.625430 0.780280i \(-0.715077\pi\)
0.109495 + 0.993987i \(0.465077\pi\)
\(632\) 224.217 + 44.5995i 0.354774 + 0.0705689i
\(633\) 84.0473 84.0473i 0.132776 0.132776i
\(634\) 328.115 + 491.059i 0.517532 + 0.774541i
\(635\) 16.0294 3.18844i 0.0252431 0.00502117i
\(636\) 395.471 591.864i 0.621810 0.930604i
\(637\) −270.974 + 654.188i −0.425390 + 1.02698i
\(638\) 311.572 + 129.058i 0.488358 + 0.202284i
\(639\) 252.056 + 168.418i 0.394454 + 0.263565i
\(640\) 31.9080 + 160.412i 0.0498563 + 0.250644i
\(641\) −464.966 + 310.680i −0.725376 + 0.484681i −0.862617 0.505857i \(-0.831176\pi\)
0.137241 + 0.990538i \(0.456176\pi\)
\(642\) 223.338 + 223.338i 0.347878 + 0.347878i
\(643\) −200.678 + 1008.88i −0.312097 + 1.56902i 0.432583 + 0.901594i \(0.357602\pi\)
−0.744680 + 0.667422i \(0.767398\pi\)
\(644\) −739.474 1785.25i −1.14825 2.77212i
\(645\) 162.577i 0.252058i
\(646\) −547.382 + 87.6118i −0.847340 + 0.135622i
\(647\) −239.057 −0.369485 −0.184742 0.982787i \(-0.559145\pi\)
−0.184742 + 0.982787i \(0.559145\pi\)
\(648\) −23.8797 + 9.89132i −0.0368515 + 0.0152644i
\(649\) 105.034 + 20.8926i 0.161840 + 0.0321920i
\(650\) 495.378 495.378i 0.762120 0.762120i
\(651\) −442.419 662.126i −0.679599 1.01709i
\(652\) 277.755 55.2489i 0.426005 0.0847376i
\(653\) 258.571 386.978i 0.395973 0.592616i −0.578894 0.815403i \(-0.696515\pi\)
0.974867 + 0.222787i \(0.0715154\pi\)
\(654\) −34.7199 + 83.8213i −0.0530886 + 0.128167i
\(655\) 86.8697 + 35.9826i 0.132625 + 0.0549353i
\(656\) −15.1500 10.1229i −0.0230946 0.0154313i
\(657\) −5.32822 26.7868i −0.00810993 0.0407714i
\(658\) −848.330 + 566.836i −1.28925 + 0.861453i
\(659\) 371.262 + 371.262i 0.563372 + 0.563372i 0.930264 0.366892i \(-0.119578\pi\)
−0.366892 + 0.930264i \(0.619578\pi\)
\(660\) 17.3875 87.4127i 0.0263446 0.132443i
\(661\) −180.420 435.573i −0.272950 0.658960i 0.726657 0.687001i \(-0.241073\pi\)
−0.999607 + 0.0280407i \(0.991073\pi\)
\(662\) 1312.15i 1.98209i
\(663\) 11.9828 318.206i 0.0180736 0.479949i
\(664\) −194.980 −0.293645
\(665\) 197.326 81.7352i 0.296731 0.122910i
\(666\) 359.223 + 71.4539i 0.539374 + 0.107288i
\(667\) 512.381 512.381i 0.768188 0.768188i
\(668\) −484.160 724.597i −0.724790 1.08473i
\(669\) 514.472 102.335i 0.769016 0.152967i
\(670\) 340.602 509.747i 0.508361 0.760816i
\(671\) 232.341 560.920i 0.346261 0.835947i
\(672\) 772.785 + 320.098i 1.14998 + 0.476336i
\(673\) −216.306 144.531i −0.321405 0.214756i 0.384392 0.923170i \(-0.374411\pi\)
−0.705797 + 0.708414i \(0.749411\pi\)
\(674\) 118.920 + 597.853i 0.176440 + 0.887022i
\(675\) −93.5044 + 62.4777i −0.138525 + 0.0925595i
\(676\) −182.520 182.520i −0.270000 0.270000i
\(677\) 0.136553 0.686499i 0.000201703 0.00101403i −0.980684 0.195597i \(-0.937335\pi\)
0.980886 + 0.194583i \(0.0623355\pi\)
\(678\) 341.612 + 824.725i 0.503853 + 1.21641i
\(679\) 134.390i 0.197924i
\(680\) −81.3056 37.3218i −0.119567 0.0548850i
\(681\) −127.022 −0.186523
\(682\) −672.851 + 278.704i −0.986585 + 0.408657i
\(683\) −674.620 134.190i −0.987731 0.196472i −0.325313 0.945606i \(-0.605470\pi\)
−0.662418 + 0.749134i \(0.730470\pi\)
\(684\) −114.613 + 114.613i −0.167563 + 0.167563i
\(685\) −12.2342 18.3098i −0.0178601 0.0267296i
\(686\) 517.509 102.939i 0.754386 0.150057i
\(687\) 156.145 233.687i 0.227285 0.340156i
\(688\) −220.367 + 532.012i −0.320300 + 0.773274i
\(689\) 827.946 + 342.947i 1.20166 + 0.497745i
\(690\) −287.646 192.199i −0.416878 0.278549i
\(691\) 73.8905 + 371.473i 0.106933 + 0.537587i 0.996700 + 0.0811728i \(0.0258666\pi\)
−0.889767 + 0.456414i \(0.849133\pi\)
\(692\) 400.216 267.416i 0.578347 0.386439i
\(693\) −128.513 128.513i −0.185445 0.185445i
\(694\) −233.504 + 1173.90i −0.336460 + 1.69150i
\(695\) −108.651 262.307i −0.156333 0.377421i
\(696\) 98.9805i 0.142213i
\(697\) 25.8357 9.57917i 0.0370670 0.0137434i
\(698\) 791.748 1.13431
\(699\) −354.143 + 146.691i −0.506642 + 0.209858i
\(700\) −1126.34 224.043i −1.60906 0.320062i
\(701\) −47.7250 + 47.7250i −0.0680813 + 0.0680813i −0.740328 0.672246i \(-0.765330\pi\)
0.672246 + 0.740328i \(0.265330\pi\)
\(702\) −93.4477 139.854i −0.133116 0.199223i
\(703\) 435.807 86.6875i 0.619925 0.123311i
\(704\) 283.550 424.362i 0.402770 0.602787i
\(705\) −38.6937 + 93.4148i −0.0548847 + 0.132503i
\(706\) 206.492 + 85.5318i 0.292482 + 0.121150i
\(707\) −876.718 585.804i −1.24005 0.828578i
\(708\) −31.6959 159.346i −0.0447682 0.225065i
\(709\) 136.937 91.4983i 0.193141 0.129053i −0.455240 0.890369i \(-0.650447\pi\)
0.648381 + 0.761316i \(0.275447\pi\)
\(710\) 391.899 + 391.899i 0.551971 + 0.551971i
\(711\) 46.5886 234.217i 0.0655255 0.329419i
\(712\) 41.5563 + 100.326i 0.0583656 + 0.140907i
\(713\) 1564.83i 2.19472i
\(714\) −803.228 + 494.022i −1.12497 + 0.691907i
\(715\) 112.205 0.156930
\(716\) 439.508 182.050i 0.613838 0.254260i
\(717\) −479.316 95.3419i −0.668502 0.132973i
\(718\) −711.226 + 711.226i −0.990565 + 0.990565i
\(719\) 548.289 + 820.572i 0.762571 + 1.14127i 0.986032 + 0.166555i \(0.0532645\pi\)
−0.223461 + 0.974713i \(0.571736\pi\)
\(720\) 60.6095 12.0560i 0.0841798 0.0167444i
\(721\) 576.884 863.368i 0.800117 1.19746i
\(722\) 277.566 670.103i 0.384440 0.928120i
\(723\) −515.018 213.327i −0.712335 0.295059i
\(724\) 1171.57 + 782.817i 1.61819 + 1.08124i
\(725\) −84.0150 422.372i −0.115883 0.582582i
\(726\) 383.392 256.174i 0.528088 0.352857i
\(727\) 244.476 + 244.476i 0.336281 + 0.336281i 0.854966 0.518685i \(-0.173578\pi\)
−0.518685 + 0.854966i \(0.673578\pi\)
\(728\) 64.8293 325.919i 0.0890512 0.447691i
\(729\) 10.3325 + 24.9447i 0.0141735 + 0.0342178i
\(730\) 49.9328i 0.0684011i
\(731\) −456.213 741.755i −0.624094 1.01471i
\(732\) −921.078 −1.25830
\(733\) −440.763 + 182.570i −0.601314 + 0.249072i −0.662510 0.749053i \(-0.730509\pi\)
0.0611957 + 0.998126i \(0.480509\pi\)
\(734\) 143.427 + 28.5293i 0.195404 + 0.0388683i
\(735\) 146.942 146.942i 0.199921 0.199921i
\(736\) −913.179 1366.67i −1.24073 1.85689i
\(737\) −620.736 + 123.472i −0.842247 + 0.167533i
\(738\) 8.08617 12.1018i 0.0109569 0.0163981i
\(739\) −301.663 + 728.278i −0.408204 + 0.985491i 0.577406 + 0.816457i \(0.304065\pi\)
−0.985610 + 0.169034i \(0.945935\pi\)
\(740\) 342.450 + 141.848i 0.462771 + 0.191686i
\(741\) −169.671 113.370i −0.228975 0.152996i
\(742\) −517.742 2602.87i −0.697766 3.50791i
\(743\) −671.111 + 448.422i −0.903245 + 0.603529i −0.918095 0.396361i \(-0.870273\pi\)
0.0148497 + 0.999890i \(0.495273\pi\)
\(744\) 151.145 + 151.145i 0.203152 + 0.203152i
\(745\) −79.8245 + 401.305i −0.107147 + 0.538664i
\(746\) −535.716 1293.33i −0.718118 1.73369i
\(747\) 203.676i 0.272659i
\(748\) 165.961 + 447.609i 0.221873 + 0.598408i
\(749\) 651.827 0.870262
\(750\) −409.371 + 169.567i −0.545828 + 0.226089i
\(751\) −564.672 112.320i −0.751894 0.149561i −0.195758 0.980652i \(-0.562717\pi\)
−0.556136 + 0.831091i \(0.687717\pi\)
\(752\) −253.239 + 253.239i −0.336755 + 0.336755i
\(753\) 176.493 + 264.140i 0.234386 + 0.350784i
\(754\) 631.741 125.661i 0.837853 0.166659i
\(755\) −155.304 + 232.428i −0.205700 + 0.307852i
\(756\) −105.515 + 254.735i −0.139570 + 0.336951i
\(757\) 772.341 + 319.914i 1.02027 + 0.422608i 0.829190 0.558967i \(-0.188802\pi\)
0.191076 + 0.981575i \(0.438802\pi\)
\(758\) 659.478 + 440.649i 0.870024 + 0.581331i
\(759\) 69.6743 + 350.276i 0.0917975 + 0.461497i
\(760\) −47.6684 + 31.8510i −0.0627216 + 0.0419092i
\(761\) −990.680 990.680i −1.30181 1.30181i −0.927168 0.374646i \(-0.877764\pi\)
−0.374646 0.927168i \(-0.622236\pi\)
\(762\) −9.02113 + 45.3523i −0.0118388 + 0.0595174i
\(763\) 71.6529 + 172.985i 0.0939094 + 0.226717i
\(764\) 181.221i 0.237200i
\(765\) −38.9863 + 84.9317i −0.0509624 + 0.111022i
\(766\) 1464.45 1.91181
\(767\) 188.970 78.2741i 0.246376 0.102052i
\(768\) 158.632 + 31.5539i 0.206553 + 0.0410859i
\(769\) −235.285 + 235.285i −0.305962 + 0.305962i −0.843341 0.537379i \(-0.819415\pi\)
0.537379 + 0.843341i \(0.319415\pi\)
\(770\) −184.604 276.280i −0.239746 0.358805i
\(771\) 487.811 97.0317i 0.632699 0.125852i
\(772\) 70.7137 105.831i 0.0915980 0.137086i
\(773\) 558.885 1349.27i 0.723008 1.74549i 0.0584106 0.998293i \(-0.481397\pi\)
0.664597 0.747202i \(-0.268603\pi\)
\(774\) −424.970 176.028i −0.549056 0.227427i
\(775\) 773.263 + 516.678i 0.997759 + 0.666681i
\(776\) −7.03750 35.3799i −0.00906894 0.0455926i
\(777\) 628.480 419.937i 0.808854 0.540459i
\(778\) 235.808 + 235.808i 0.303095 + 0.303095i
\(779\) 3.44485 17.3184i 0.00442215 0.0222316i
\(780\) −65.1421 157.267i −0.0835155 0.201624i
\(781\) 572.156i 0.732594i
\(782\) 1851.71 + 69.7306i 2.36792 + 0.0891695i
\(783\) −103.395 −0.132050
\(784\) 680.021 281.674i 0.867373 0.359278i
\(785\) 63.1432 + 12.5600i 0.0804372 + 0.0159999i
\(786\) −188.114 + 188.114i −0.239330 + 0.239330i
\(787\) −364.195 545.056i −0.462764 0.692575i 0.524546 0.851382i \(-0.324235\pi\)
−0.987310 + 0.158808i \(0.949235\pi\)
\(788\) −669.596 + 133.191i −0.849741 + 0.169024i
\(789\) 447.356 669.516i 0.566992 0.848563i
\(790\) 167.079 403.365i 0.211493 0.510589i
\(791\) 1702.02 + 704.999i 2.15173 + 0.891276i
\(792\) 40.5625 + 27.1030i 0.0512153 + 0.0342210i
\(793\) −226.226 1137.32i −0.285279 1.43419i
\(794\) 661.566 442.044i 0.833206 0.556731i
\(795\) −185.971 185.971i −0.233926 0.233926i
\(796\) −230.040 + 1156.49i −0.288995 + 1.45288i
\(797\) 555.221 + 1340.42i 0.696639 + 1.68184i 0.730956 + 0.682425i \(0.239075\pi\)
−0.0343165 + 0.999411i \(0.510925\pi\)
\(798\) 604.299i 0.757267i
\(799\) −85.5951 534.782i −0.107128 0.669314i
\(800\) −976.854 −1.22107
\(801\) 104.800 43.4096i 0.130837 0.0541943i
\(802\) −647.523 128.800i −0.807385 0.160599i
\(803\) −36.4498 + 36.4498i −0.0453921 + 0.0453921i
\(804\) 533.436 + 798.343i 0.663478 + 0.992964i
\(805\) −700.231 + 139.285i −0.869852 + 0.173024i
\(806\) −772.794 + 1156.57i −0.958802 + 1.43495i
\(807\) 88.4202 213.465i 0.109567 0.264517i
\(808\) 261.483 + 108.310i 0.323618 + 0.134047i
\(809\) −205.527 137.329i −0.254051 0.169751i 0.422023 0.906585i \(-0.361320\pi\)
−0.676074 + 0.736834i \(0.736320\pi\)
\(810\) 9.63028 + 48.4147i 0.0118892 + 0.0597712i
\(811\) 742.611 496.197i 0.915674 0.611834i −0.00592294 0.999982i \(-0.501885\pi\)
0.921597 + 0.388149i \(0.126885\pi\)
\(812\) −746.610 746.610i −0.919471 0.919471i
\(813\) −54.5010 + 273.995i −0.0670369 + 0.337017i
\(814\) −264.541 638.659i −0.324989 0.784594i
\(815\) 104.634i 0.128385i
\(816\) −242.698 + 225.083i −0.297424 + 0.275837i
\(817\) −558.050 −0.683048
\(818\) −387.102 + 160.343i −0.473229 + 0.196018i
\(819\) −340.454 67.7206i −0.415695 0.0826869i
\(820\) 10.4155 10.4155i 0.0127019 0.0127019i
\(821\) −105.448 157.815i −0.128439 0.192222i 0.761677 0.647957i \(-0.224376\pi\)
−0.890116 + 0.455735i \(0.849376\pi\)
\(822\) 61.1072 12.1550i 0.0743397 0.0147871i
\(823\) −311.015 + 465.467i −0.377904 + 0.565574i −0.970856 0.239664i \(-0.922963\pi\)
0.592952 + 0.805238i \(0.297963\pi\)
\(824\) −106.661 + 257.502i −0.129443 + 0.312502i
\(825\) 196.094 + 81.2250i 0.237690 + 0.0984545i
\(826\) −503.635 336.518i −0.609727 0.407407i
\(827\) 12.0743 + 60.7016i 0.0146001 + 0.0733998i 0.987398 0.158254i \(-0.0505864\pi\)
−0.972798 + 0.231654i \(0.925586\pi\)
\(828\) 450.499 301.014i 0.544081 0.363543i
\(829\) 454.439 + 454.439i 0.548178 + 0.548178i 0.925913 0.377736i \(-0.123297\pi\)
−0.377736 + 0.925913i \(0.623297\pi\)
\(830\) −72.6465 + 365.219i −0.0875259 + 0.440022i
\(831\) 17.6353 + 42.5755i 0.0212218 + 0.0512340i
\(832\) 974.792i 1.17162i
\(833\) −258.080 + 1082.76i −0.309820 + 1.29983i
\(834\) 803.300 0.963189
\(835\) −297.474 + 123.218i −0.356257 + 0.147566i
\(836\) 300.046 + 59.6828i 0.358907 + 0.0713909i
\(837\) 157.886 157.886i 0.188633 0.188633i
\(838\) 606.909 + 908.304i 0.724235 + 1.08389i
\(839\) 804.501 160.025i 0.958881 0.190733i 0.309248 0.950981i \(-0.399923\pi\)
0.649633 + 0.760248i \(0.274923\pi\)
\(840\) −54.1811 + 81.0877i −0.0645013 + 0.0965330i
\(841\) −170.315 + 411.178i −0.202515 + 0.488915i
\(842\) −767.265 317.812i −0.911241 0.377448i
\(843\) −352.362 235.441i −0.417985 0.279289i
\(844\) 66.3971 + 333.801i 0.0786696 + 0.395499i
\(845\) −79.2970 + 52.9845i −0.0938426 + 0.0627036i
\(846\) −202.287 202.287i −0.239110 0.239110i
\(847\) 185.647 933.309i 0.219181 1.10190i
\(848\) −356.489 860.640i −0.420388 1.01491i
\(849\) 414.797i 0.488572i
\(850\) 645.857 892.001i 0.759832 1.04941i
\(851\) −1485.32 −1.74538
\(852\) −801.937 + 332.173i −0.941241 + 0.389875i
\(853\) 131.809 + 26.2184i 0.154524 + 0.0307367i 0.271746 0.962369i \(-0.412399\pi\)
−0.117222 + 0.993106i \(0.537399\pi\)
\(854\) −2428.19 + 2428.19i −2.84332 + 2.84332i
\(855\) 33.2715 + 49.7944i 0.0389141 + 0.0582390i
\(856\) −171.602 + 34.1337i −0.200469 + 0.0398758i
\(857\) 126.005 188.580i 0.147031 0.220047i −0.750643 0.660708i \(-0.770256\pi\)
0.897673 + 0.440661i \(0.145256\pi\)
\(858\) −121.488 + 293.298i −0.141594 + 0.341839i
\(859\) 291.424 + 120.712i 0.339259 + 0.140526i 0.545807 0.837911i \(-0.316223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(860\) −387.063 258.627i −0.450073 0.300729i
\(861\) −5.85996 29.4600i −0.00680600 0.0342160i
\(862\) −1126.37 + 752.616i −1.30669 + 0.873105i
\(863\) −80.2596 80.2596i −0.0930007 0.0930007i 0.659076 0.752076i \(-0.270948\pi\)
−0.752076 + 0.659076i \(0.770948\pi\)
\(864\) −45.7555 + 230.028i −0.0529578 + 0.266237i
\(865\) −68.0569 164.304i −0.0786785 0.189947i
\(866\) 1451.67i 1.67630i
\(867\) −60.4554 496.899i −0.0697294 0.573124i
\(868\) 2280.18 2.62693
\(869\) −416.412 + 172.484i −0.479185 + 0.198485i
\(870\) −185.401 36.8786i −0.213105 0.0423892i
\(871\) −854.751 + 854.751i −0.981344 + 0.981344i
\(872\) −27.9221 41.7884i −0.0320208 0.0479224i
\(873\) −36.9578 + 7.35136i −0.0423342 + 0.00842080i
\(874\) 659.727 987.351i 0.754836 1.12969i
\(875\) −349.942 + 844.835i −0.399934 + 0.965525i
\(876\) 72.2498 + 29.9268i 0.0824769 + 0.0341631i
\(877\) 1266.64 + 846.340i 1.44428 + 0.965040i 0.997520 + 0.0703879i \(0.0224237\pi\)
0.446764 + 0.894652i \(0.352576\pi\)
\(878\) 136.463 + 686.048i 0.155425 + 0.781376i
\(879\) 409.590 273.679i 0.465972 0.311353i
\(880\) −82.4738 82.4738i −0.0937202 0.0937202i
\(881\) 197.802 994.419i 0.224520 1.12874i −0.689879 0.723925i \(-0.742336\pi\)
0.914399 0.404814i \(-0.132664\pi\)
\(882\) 225.000 + 543.198i 0.255102 + 0.615871i
\(883\) 1200.42i 1.35948i −0.733452 0.679741i \(-0.762092\pi\)
0.733452 0.679741i \(-0.237908\pi\)
\(884\) 738.520 + 534.728i 0.835429 + 0.604896i
\(885\) −60.0277 −0.0678279
\(886\) 131.789 54.5887i 0.148746 0.0616126i
\(887\) −1297.21 258.031i −1.46247 0.290903i −0.601219 0.799084i \(-0.705318\pi\)
−0.861251 + 0.508181i \(0.830318\pi\)
\(888\) −143.465 + 143.465i −0.161559 + 0.161559i
\(889\) 53.0175 + 79.3463i 0.0596372 + 0.0892534i
\(890\) 203.404 40.4596i 0.228544 0.0454602i
\(891\) 28.3118 42.3715i 0.0317753 0.0475550i
\(892\) −574.780 + 1387.64i −0.644373 + 1.55565i
\(893\) −320.648 132.817i −0.359069 0.148731i
\(894\) −962.563 643.164i −1.07669 0.719423i
\(895\) −34.2903 172.389i −0.0383132 0.192614i
\(896\) −794.050 + 530.567i −0.886217 + 0.592151i
\(897\) 482.329 + 482.329i 0.537714 + 0.537714i
\(898\) 41.5427 208.849i 0.0462614 0.232572i
\(899\) 327.215 + 789.968i 0.363977 + 0.878719i
\(900\) 322.003i 0.357781i
\(901\) 1370.34 + 326.629i 1.52092 + 0.362518i
\(902\) −27.4706 −0.0304552
\(903\) −877.027 + 363.276i −0.971237 + 0.402300i
\(904\) −484.996 96.4717i −0.536500 0.106716i
\(905\) 368.121 368.121i 0.406764 0.406764i
\(906\) −439.404 657.614i −0.484993 0.725843i
\(907\) 505.346 100.520i 0.557162 0.110826i 0.0915258 0.995803i \(-0.470826\pi\)
0.465636 + 0.884976i \(0.345826\pi\)
\(908\) 202.066 302.413i 0.222540 0.333054i
\(909\) 113.140 273.145i 0.124467 0.300490i
\(910\) −586.326 242.864i −0.644315 0.266884i
\(911\) −515.920 344.727i −0.566322 0.378405i 0.239200 0.970970i \(-0.423115\pi\)
−0.805522 + 0.592566i \(0.798115\pi\)
\(912\) 41.3824 + 208.043i 0.0453754 + 0.228118i
\(913\) 319.632 213.571i 0.350090 0.233922i
\(914\) −364.890 364.890i −0.399224 0.399224i
\(915\) −66.3921 + 333.776i −0.0725597 + 0.364782i
\(916\) 307.966 + 743.495i 0.336207 + 0.811676i
\(917\) 549.023i 0.598716i
\(918\) −179.796 193.867i −0.195856 0.211184i
\(919\) −125.245 −0.136284 −0.0681420 0.997676i \(-0.521707\pi\)
−0.0681420 + 0.997676i \(0.521707\pi\)
\(920\) 177.051 73.3368i 0.192446 0.0797139i
\(921\) 127.452 + 25.3519i 0.138385 + 0.0275265i
\(922\) 1493.84 1493.84i 1.62021 1.62021i
\(923\) −607.120 908.620i −0.657769 0.984420i
\(924\) 510.401 101.525i 0.552382 0.109876i
\(925\) −490.423 + 733.969i −0.530186 + 0.793480i
\(926\) 991.662 2394.08i 1.07091 2.58540i
\(927\) 268.986 + 111.418i 0.290168 + 0.120192i
\(928\) −746.774 498.979i −0.804714 0.537692i
\(929\) 309.673 + 1556.83i 0.333340 + 1.67581i 0.676427 + 0.736510i \(0.263528\pi\)
−0.343086 + 0.939304i \(0.611472\pi\)
\(930\) 339.426 226.797i 0.364974 0.243868i
\(931\) 504.381 + 504.381i 0.541763 + 0.541763i
\(932\) 214.128 1076.49i 0.229751 1.15504i
\(933\) −31.8350 76.8564i −0.0341211 0.0823755i
\(934\) 1537.48i 1.64612i
\(935\) 174.165 27.8762i 0.186273 0.0298141i
\(936\) 93.1751 0.0995461
\(937\) −1418.74 + 587.661i −1.51413 + 0.627173i −0.976405 0.215948i \(-0.930716\pi\)
−0.537724 + 0.843121i \(0.680716\pi\)
\(938\) 3510.91 + 698.363i 3.74297 + 0.744523i
\(939\) −491.997 + 491.997i −0.523959 + 0.523959i
\(940\) −160.847 240.725i −0.171114 0.256091i
\(941\) 150.395 29.9154i 0.159825 0.0317911i −0.114529 0.993420i \(-0.536536\pi\)
0.274354 + 0.961629i \(0.411536\pi\)
\(942\) −101.198 + 151.454i −0.107429 + 0.160779i
\(943\) −22.5877 + 54.5316i −0.0239530 + 0.0578278i
\(944\) −196.432 81.3649i −0.208085 0.0861916i
\(945\) 84.7041 + 56.5975i 0.0896340 + 0.0598915i
\(946\) 169.372 + 851.492i 0.179041 + 0.900097i
\(947\) 50.1805 33.5295i 0.0529889 0.0354061i −0.528794 0.848750i \(-0.677355\pi\)
0.581783 + 0.813344i \(0.302355\pi\)
\(948\) 483.508 + 483.508i 0.510029 + 0.510029i
\(949\) −19.2074 + 96.5620i −0.0202396 + 0.101751i
\(950\) −270.071 652.009i −0.284285 0.686325i
\(951\) 341.749i 0.359357i
\(952\) 19.6571 521.999i 0.0206482 0.548319i
\(953\) 777.736 0.816093 0.408046 0.912961i \(-0.366210\pi\)
0.408046 + 0.912961i \(0.366210\pi\)
\(954\) 687.476 284.762i 0.720625 0.298493i
\(955\) −65.6698 13.0625i −0.0687642 0.0136780i
\(956\) 989.481 989.481i 1.03502 1.03502i
\(957\) 108.418 + 162.259i 0.113290 + 0.169550i
\(958\) −2440.40 + 485.426i −2.54739 + 0.506707i
\(959\) 71.4352 106.910i 0.0744893 0.111481i
\(960\) −109.477 + 264.302i −0.114039 + 0.275315i
\(961\) −818.114 338.874i −0.851315 0.352626i
\(962\) −1097.80 733.524i −1.14116 0.762499i
\(963\) 35.6560 + 179.255i 0.0370259 + 0.186142i
\(964\) 1327.17 886.790i 1.37674 0.919906i
\(965\) −33.2532 33.2532i −0.0344593 0.0344593i
\(966\) 394.081 1981.18i 0.407951 2.05091i
\(967\) 324.490 + 783.389i 0.335564 + 0.810123i 0.998130 + 0.0611199i \(0.0194672\pi\)
−0.662566 + 0.749003i \(0.730533\pi\)
\(968\) 255.427i 0.263871i
\(969\) −291.530 133.821i −0.300856 0.138102i
\(970\) −68.8924 −0.0710231
\(971\) 1004.73 416.171i 1.03473 0.428601i 0.200315 0.979732i \(-0.435804\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(972\) −75.8250 15.0825i −0.0780092 0.0155170i
\(973\) 1172.24 1172.24i 1.20477 1.20477i
\(974\) −1323.23 1980.35i −1.35855 2.03322i
\(975\) 397.599 79.0874i 0.407794 0.0811152i
\(976\) −669.677 + 1002.24i −0.686145 + 1.02689i
\(977\) −287.786 + 694.777i −0.294561 + 0.711133i 0.705436 + 0.708773i \(0.250751\pi\)
−0.999997 + 0.00235960i \(0.999249\pi\)
\(978\) 273.508 + 113.291i 0.279661 + 0.115839i
\(979\) −178.015 118.946i −0.181834 0.121497i
\(980\) 116.084 + 583.592i 0.118453 + 0.595502i
\(981\) −43.6521 + 29.1674i −0.0444975 + 0.0297323i
\(982\) −1422.33 1422.33i −1.44840 1.44840i
\(983\) 68.4864 344.305i 0.0696708 0.350259i −0.930188 0.367084i \(-0.880356\pi\)
0.999858 + 0.0168255i \(0.00535599\pi\)
\(984\) 3.08542 + 7.44885i 0.00313559 + 0.00756997i
\(985\) 252.245i 0.256087i
\(986\) 949.373 352.002i 0.962853 0.357000i
\(987\) −590.388 −0.598165
\(988\) 539.822 223.602i 0.546378 0.226317i
\(989\) 1829.55 + 363.921i 1.84990 + 0.367969i
\(990\) 65.8798 65.8798i 0.0665452 0.0665452i
\(991\) −365.475 546.972i −0.368794 0.551940i 0.599938 0.800046i \(-0.295192\pi\)
−0.968733 + 0.248106i \(0.920192\pi\)
\(992\) 1902.29 378.389i 1.91763 0.381441i
\(993\) −421.833 + 631.318i −0.424807 + 0.635769i
\(994\) −1238.42 + 2989.80i −1.24589 + 3.00785i
\(995\) 402.502 + 166.722i 0.404524 + 0.167559i
\(996\) −484.909 324.006i −0.486857 0.325307i
\(997\) 29.0007 + 145.796i 0.0290880 + 0.146235i 0.992600 0.121430i \(-0.0387479\pi\)
−0.963512 + 0.267665i \(0.913748\pi\)
\(998\) −26.9688 + 18.0200i −0.0270229 + 0.0180561i
\(999\) 149.863 + 149.863i 0.150013 + 0.150013i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.j.a.37.2 48
3.2 odd 2 153.3.p.c.37.5 48
17.6 odd 16 inner 51.3.j.a.40.2 yes 48
51.23 even 16 153.3.p.c.91.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.j.a.37.2 48 1.1 even 1 trivial
51.3.j.a.40.2 yes 48 17.6 odd 16 inner
153.3.p.c.37.5 48 3.2 odd 2
153.3.p.c.91.5 48 51.23 even 16