Properties

Label 51.3.f.a.38.7
Level $51$
Weight $3$
Character 51.38
Analytic conductor $1.390$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(38,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.38"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 62 x^{18} + 1545 x^{16} + 20120 x^{14} + 149608 x^{12} + 655792 x^{10} + 1690896 x^{8} + \cdots + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.7
Root \(0.284142i\) of defining polynomial
Character \(\chi\) \(=\) 51.38
Dual form 51.3.f.a.47.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28414 q^{2} +(2.92586 - 0.662833i) q^{3} -2.35098 q^{4} +(2.50753 + 2.50753i) q^{5} +(3.75722 - 0.851171i) q^{6} +(-3.77510 - 3.77510i) q^{7} -8.15556 q^{8} +(8.12131 - 3.87871i) q^{9} +(3.22003 + 3.22003i) q^{10} +(-8.31510 + 8.31510i) q^{11} +(-6.87863 + 1.55831i) q^{12} +3.14376 q^{13} +(-4.84777 - 4.84777i) q^{14} +(8.99877 + 5.67462i) q^{15} -1.06899 q^{16} +(-9.78386 - 13.9024i) q^{17} +(10.4289 - 4.98082i) q^{18} +12.4867i q^{19} +(-5.89516 - 5.89516i) q^{20} +(-13.5477 - 8.54316i) q^{21} +(-10.6778 + 10.6778i) q^{22} +(-12.7032 + 12.7032i) q^{23} +(-23.8620 + 5.40577i) q^{24} -12.4245i q^{25} +4.03704 q^{26} +(21.1909 - 16.7316i) q^{27} +(8.87518 + 8.87518i) q^{28} +(27.7634 + 27.7634i) q^{29} +(11.5557 + 7.28702i) q^{30} +(38.3677 - 38.3677i) q^{31} +31.2495 q^{32} +(-18.8173 + 29.8403i) q^{33} +(-12.5639 - 17.8526i) q^{34} -18.9324i q^{35} +(-19.0930 + 9.11876i) q^{36} +(9.59085 - 9.59085i) q^{37} +16.0348i q^{38} +(9.19820 - 2.08379i) q^{39} +(-20.4504 - 20.4504i) q^{40} +(19.4127 - 19.4127i) q^{41} +(-17.3971 - 10.9706i) q^{42} +76.3223i q^{43} +(19.5486 - 19.5486i) q^{44} +(30.0905 + 10.6385i) q^{45} +(-16.3127 + 16.3127i) q^{46} +4.62947i q^{47} +(-3.12770 + 0.708559i) q^{48} -20.4972i q^{49} -15.9549i q^{50} +(-37.8411 - 34.1913i) q^{51} -7.39092 q^{52} -11.0714 q^{53} +(27.2121 - 21.4858i) q^{54} -41.7008 q^{55} +(30.7881 + 30.7881i) q^{56} +(8.27662 + 36.5345i) q^{57} +(35.6521 + 35.6521i) q^{58} -90.6793 q^{59} +(-21.1559 - 13.3409i) q^{60} +(0.602631 + 0.602631i) q^{61} +(49.2696 - 49.2696i) q^{62} +(-45.3013 - 16.0162i) q^{63} +44.4048 q^{64} +(7.88309 + 7.88309i) q^{65} +(-24.1641 + 38.3193i) q^{66} -122.226 q^{67} +(23.0016 + 32.6842i) q^{68} +(-28.7477 + 45.5879i) q^{69} -24.3119i q^{70} +(-64.8440 - 64.8440i) q^{71} +(-66.2338 + 31.6331i) q^{72} +(-0.537311 + 0.537311i) q^{73} +(12.3160 - 12.3160i) q^{74} +(-8.23539 - 36.3525i) q^{75} -29.3561i q^{76} +62.7807 q^{77} +(11.8118 - 2.67588i) q^{78} +(90.5467 + 90.5467i) q^{79} +(-2.68052 - 2.68052i) q^{80} +(50.9112 - 63.0004i) q^{81} +(24.9287 - 24.9287i) q^{82} -24.5241 q^{83} +(31.8503 + 20.0848i) q^{84} +(10.3273 - 59.3941i) q^{85} +98.0086i q^{86} +(99.6341 + 62.8292i) q^{87} +(67.8143 - 67.8143i) q^{88} +36.2481i q^{89} +(38.6404 + 13.6613i) q^{90} +(-11.8680 - 11.8680i) q^{91} +(29.8650 - 29.8650i) q^{92} +(86.8272 - 137.690i) q^{93} +5.94489i q^{94} +(-31.3110 + 31.3110i) q^{95} +(91.4317 - 20.7132i) q^{96} +(8.31577 - 8.31577i) q^{97} -26.3213i q^{98} +(-35.2776 + 99.7814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28414 0.642071 0.321036 0.947067i \(-0.395969\pi\)
0.321036 + 0.947067i \(0.395969\pi\)
\(3\) 2.92586 0.662833i 0.975286 0.220944i
\(4\) −2.35098 −0.587745
\(5\) 2.50753 + 2.50753i 0.501507 + 0.501507i 0.911906 0.410399i \(-0.134611\pi\)
−0.410399 + 0.911906i \(0.634611\pi\)
\(6\) 3.75722 0.851171i 0.626203 0.141862i
\(7\) −3.77510 3.77510i −0.539300 0.539300i 0.384023 0.923323i \(-0.374538\pi\)
−0.923323 + 0.384023i \(0.874538\pi\)
\(8\) −8.15556 −1.01945
\(9\) 8.12131 3.87871i 0.902367 0.430968i
\(10\) 3.22003 + 3.22003i 0.322003 + 0.322003i
\(11\) −8.31510 + 8.31510i −0.755919 + 0.755919i −0.975577 0.219658i \(-0.929506\pi\)
0.219658 + 0.975577i \(0.429506\pi\)
\(12\) −6.87863 + 1.55831i −0.573219 + 0.129859i
\(13\) 3.14376 0.241828 0.120914 0.992663i \(-0.461417\pi\)
0.120914 + 0.992663i \(0.461417\pi\)
\(14\) −4.84777 4.84777i −0.346269 0.346269i
\(15\) 8.99877 + 5.67462i 0.599918 + 0.378308i
\(16\) −1.06899 −0.0668116
\(17\) −9.78386 13.9024i −0.575521 0.817787i
\(18\) 10.4289 4.98082i 0.579384 0.276712i
\(19\) 12.4867i 0.657197i 0.944470 + 0.328599i \(0.106576\pi\)
−0.944470 + 0.328599i \(0.893424\pi\)
\(20\) −5.89516 5.89516i −0.294758 0.294758i
\(21\) −13.5477 8.54316i −0.645127 0.406817i
\(22\) −10.6778 + 10.6778i −0.485353 + 0.485353i
\(23\) −12.7032 + 12.7032i −0.552313 + 0.552313i −0.927108 0.374795i \(-0.877713\pi\)
0.374795 + 0.927108i \(0.377713\pi\)
\(24\) −23.8620 + 5.40577i −0.994251 + 0.225240i
\(25\) 12.4245i 0.496982i
\(26\) 4.03704 0.155271
\(27\) 21.1909 16.7316i 0.784847 0.619690i
\(28\) 8.87518 + 8.87518i 0.316971 + 0.316971i
\(29\) 27.7634 + 27.7634i 0.957357 + 0.957357i 0.999127 0.0417701i \(-0.0132997\pi\)
−0.0417701 + 0.999127i \(0.513300\pi\)
\(30\) 11.5557 + 7.28702i 0.385190 + 0.242901i
\(31\) 38.3677 38.3677i 1.23767 1.23767i 0.276717 0.960951i \(-0.410754\pi\)
0.960951 0.276717i \(-0.0892464\pi\)
\(32\) 31.2495 0.976547
\(33\) −18.8173 + 29.8403i −0.570221 + 0.904253i
\(34\) −12.5639 17.8526i −0.369525 0.525077i
\(35\) 18.9324i 0.540926i
\(36\) −19.0930 + 9.11876i −0.530362 + 0.253299i
\(37\) 9.59085 9.59085i 0.259212 0.259212i −0.565521 0.824734i \(-0.691325\pi\)
0.824734 + 0.565521i \(0.191325\pi\)
\(38\) 16.0348i 0.421967i
\(39\) 9.19820 2.08379i 0.235851 0.0534305i
\(40\) −20.4504 20.4504i −0.511259 0.511259i
\(41\) 19.4127 19.4127i 0.473481 0.473481i −0.429558 0.903039i \(-0.641331\pi\)
0.903039 + 0.429558i \(0.141331\pi\)
\(42\) −17.3971 10.9706i −0.414218 0.261205i
\(43\) 76.3223i 1.77494i 0.460869 + 0.887468i \(0.347538\pi\)
−0.460869 + 0.887468i \(0.652462\pi\)
\(44\) 19.5486 19.5486i 0.444287 0.444287i
\(45\) 30.0905 + 10.6385i 0.668677 + 0.236410i
\(46\) −16.3127 + 16.3127i −0.354624 + 0.354624i
\(47\) 4.62947i 0.0984993i 0.998787 + 0.0492496i \(0.0156830\pi\)
−0.998787 + 0.0492496i \(0.984317\pi\)
\(48\) −3.12770 + 0.708559i −0.0651605 + 0.0147616i
\(49\) 20.4972i 0.418311i
\(50\) 15.9549i 0.319098i
\(51\) −37.8411 34.1913i −0.741983 0.670419i
\(52\) −7.39092 −0.142133
\(53\) −11.0714 −0.208895 −0.104447 0.994530i \(-0.533307\pi\)
−0.104447 + 0.994530i \(0.533307\pi\)
\(54\) 27.2121 21.4858i 0.503927 0.397885i
\(55\) −41.7008 −0.758197
\(56\) 30.7881 + 30.7881i 0.549787 + 0.549787i
\(57\) 8.27662 + 36.5345i 0.145204 + 0.640956i
\(58\) 35.6521 + 35.6521i 0.614691 + 0.614691i
\(59\) −90.6793 −1.53694 −0.768469 0.639887i \(-0.778981\pi\)
−0.768469 + 0.639887i \(0.778981\pi\)
\(60\) −21.1559 13.3409i −0.352599 0.222348i
\(61\) 0.602631 + 0.602631i 0.00987920 + 0.00987920i 0.712029 0.702150i \(-0.247776\pi\)
−0.702150 + 0.712029i \(0.747776\pi\)
\(62\) 49.2696 49.2696i 0.794671 0.794671i
\(63\) −45.3013 16.0162i −0.719068 0.254226i
\(64\) 44.4048 0.693824
\(65\) 7.88309 + 7.88309i 0.121278 + 0.121278i
\(66\) −24.1641 + 38.3193i −0.366123 + 0.580595i
\(67\) −122.226 −1.82428 −0.912138 0.409884i \(-0.865569\pi\)
−0.912138 + 0.409884i \(0.865569\pi\)
\(68\) 23.0016 + 32.6842i 0.338259 + 0.480650i
\(69\) −28.7477 + 45.5879i −0.416633 + 0.660694i
\(70\) 24.3119i 0.347313i
\(71\) −64.8440 64.8440i −0.913296 0.913296i 0.0832343 0.996530i \(-0.473475\pi\)
−0.996530 + 0.0832343i \(0.973475\pi\)
\(72\) −66.2338 + 31.6331i −0.919914 + 0.439348i
\(73\) −0.537311 + 0.537311i −0.00736043 + 0.00736043i −0.710777 0.703417i \(-0.751657\pi\)
0.703417 + 0.710777i \(0.251657\pi\)
\(74\) 12.3160 12.3160i 0.166433 0.166433i
\(75\) −8.23539 36.3525i −0.109805 0.484699i
\(76\) 29.3561i 0.386264i
\(77\) 62.7807 0.815334
\(78\) 11.8118 2.67588i 0.151433 0.0343062i
\(79\) 90.5467 + 90.5467i 1.14616 + 1.14616i 0.987301 + 0.158860i \(0.0507819\pi\)
0.158860 + 0.987301i \(0.449218\pi\)
\(80\) −2.68052 2.68052i −0.0335065 0.0335065i
\(81\) 50.9112 63.0004i 0.628534 0.777782i
\(82\) 24.9287 24.9287i 0.304008 0.304008i
\(83\) −24.5241 −0.295471 −0.147735 0.989027i \(-0.547198\pi\)
−0.147735 + 0.989027i \(0.547198\pi\)
\(84\) 31.8503 + 20.0848i 0.379170 + 0.239104i
\(85\) 10.3273 59.3941i 0.121498 0.698754i
\(86\) 98.0086i 1.13964i
\(87\) 99.6341 + 62.8292i 1.14522 + 0.722175i
\(88\) 67.8143 67.8143i 0.770617 0.770617i
\(89\) 36.2481i 0.407282i 0.979046 + 0.203641i \(0.0652775\pi\)
−0.979046 + 0.203641i \(0.934722\pi\)
\(90\) 38.6404 + 13.6613i 0.429338 + 0.151792i
\(91\) −11.8680 11.8680i −0.130418 0.130418i
\(92\) 29.8650 29.8650i 0.324619 0.324619i
\(93\) 86.8272 137.690i 0.933626 1.48054i
\(94\) 5.94489i 0.0632435i
\(95\) −31.3110 + 31.3110i −0.329589 + 0.329589i
\(96\) 91.4317 20.7132i 0.952413 0.215762i
\(97\) 8.31577 8.31577i 0.0857296 0.0857296i −0.662942 0.748671i \(-0.730692\pi\)
0.748671 + 0.662942i \(0.230692\pi\)
\(98\) 26.3213i 0.268585i
\(99\) −35.2776 + 99.7814i −0.356340 + 1.00789i
\(100\) 29.2098i 0.292098i
\(101\) 173.133i 1.71419i 0.515159 + 0.857095i \(0.327733\pi\)
−0.515159 + 0.857095i \(0.672267\pi\)
\(102\) −48.5934 43.9066i −0.476406 0.430456i
\(103\) 0.780246 0.00757521 0.00378760 0.999993i \(-0.498794\pi\)
0.00378760 + 0.999993i \(0.498794\pi\)
\(104\) −25.6391 −0.246530
\(105\) −12.5490 55.3935i −0.119514 0.527557i
\(106\) −14.2173 −0.134125
\(107\) −127.556 127.556i −1.19211 1.19211i −0.976474 0.215636i \(-0.930818\pi\)
−0.215636 0.976474i \(-0.569182\pi\)
\(108\) −49.8193 + 39.3357i −0.461290 + 0.364219i
\(109\) 37.4643 + 37.4643i 0.343709 + 0.343709i 0.857760 0.514051i \(-0.171856\pi\)
−0.514051 + 0.857760i \(0.671856\pi\)
\(110\) −53.5498 −0.486816
\(111\) 21.7043 34.4186i 0.195535 0.310078i
\(112\) 4.03553 + 4.03553i 0.0360315 + 0.0360315i
\(113\) 17.2064 17.2064i 0.152269 0.152269i −0.626862 0.779131i \(-0.715661\pi\)
0.779131 + 0.626862i \(0.215661\pi\)
\(114\) 10.6284 + 46.9155i 0.0932312 + 0.411539i
\(115\) −63.7074 −0.553978
\(116\) −65.2711 65.2711i −0.562682 0.562682i
\(117\) 25.5315 12.1937i 0.218218 0.104220i
\(118\) −116.445 −0.986823
\(119\) −15.5478 + 89.4179i −0.130654 + 0.751411i
\(120\) −73.3900 46.2797i −0.611583 0.385664i
\(121\) 17.2819i 0.142826i
\(122\) 0.773864 + 0.773864i 0.00634315 + 0.00634315i
\(123\) 43.9315 69.6663i 0.357167 0.566392i
\(124\) −90.2017 + 90.2017i −0.727433 + 0.727433i
\(125\) 93.8433 93.8433i 0.750747 0.750747i
\(126\) −58.1733 20.5671i −0.461693 0.163231i
\(127\) 20.7584i 0.163452i −0.996655 0.0817260i \(-0.973957\pi\)
0.996655 0.0817260i \(-0.0260432\pi\)
\(128\) −67.9760 −0.531063
\(129\) 50.5889 + 223.308i 0.392162 + 1.73107i
\(130\) 10.1230 + 10.1230i 0.0778693 + 0.0778693i
\(131\) 79.5242 + 79.5242i 0.607055 + 0.607055i 0.942175 0.335120i \(-0.108777\pi\)
−0.335120 + 0.942175i \(0.608777\pi\)
\(132\) 44.2391 70.1540i 0.335144 0.531470i
\(133\) 47.1387 47.1387i 0.354427 0.354427i
\(134\) −156.956 −1.17131
\(135\) 95.0920 + 11.1817i 0.704385 + 0.0828274i
\(136\) 79.7928 + 113.382i 0.586712 + 0.833689i
\(137\) 169.532i 1.23746i −0.785602 0.618732i \(-0.787647\pi\)
0.785602 0.618732i \(-0.212353\pi\)
\(138\) −36.9161 + 58.5413i −0.267508 + 0.424212i
\(139\) 20.3389 20.3389i 0.146323 0.146323i −0.630150 0.776473i \(-0.717007\pi\)
0.776473 + 0.630150i \(0.217007\pi\)
\(140\) 44.5097i 0.317926i
\(141\) 3.06856 + 13.5452i 0.0217628 + 0.0960650i
\(142\) −83.2689 83.2689i −0.586401 0.586401i
\(143\) −26.1407 + 26.1407i −0.182802 + 0.182802i
\(144\) −8.68156 + 4.14629i −0.0602886 + 0.0287937i
\(145\) 139.235i 0.960243i
\(146\) −0.689984 + 0.689984i −0.00472592 + 0.00472592i
\(147\) −13.5862 59.9720i −0.0924233 0.407973i
\(148\) −22.5479 + 22.5479i −0.152351 + 0.152351i
\(149\) 27.3025i 0.183238i 0.995794 + 0.0916190i \(0.0292042\pi\)
−0.995794 + 0.0916190i \(0.970796\pi\)
\(150\) −10.5754 46.6817i −0.0705027 0.311211i
\(151\) 132.262i 0.875909i −0.898997 0.437954i \(-0.855703\pi\)
0.898997 0.437954i \(-0.144297\pi\)
\(152\) 101.836i 0.669976i
\(153\) −133.381 74.9567i −0.871771 0.489913i
\(154\) 80.6194 0.523502
\(155\) 192.417 1.24140
\(156\) −21.6248 + 4.89894i −0.138620 + 0.0314035i
\(157\) 41.4444 0.263977 0.131989 0.991251i \(-0.457864\pi\)
0.131989 + 0.991251i \(0.457864\pi\)
\(158\) 116.275 + 116.275i 0.735917 + 0.735917i
\(159\) −32.3934 + 7.33850i −0.203732 + 0.0461541i
\(160\) 78.3592 + 78.3592i 0.489745 + 0.489745i
\(161\) 95.9117 0.595725
\(162\) 65.3773 80.9015i 0.403563 0.499392i
\(163\) −38.1113 38.1113i −0.233812 0.233812i 0.580470 0.814282i \(-0.302869\pi\)
−0.814282 + 0.580470i \(0.802869\pi\)
\(164\) −45.6389 + 45.6389i −0.278286 + 0.278286i
\(165\) −122.011 + 27.6407i −0.739459 + 0.167519i
\(166\) −31.4924 −0.189713
\(167\) −38.0861 38.0861i −0.228060 0.228060i 0.583822 0.811882i \(-0.301557\pi\)
−0.811882 + 0.583822i \(0.801557\pi\)
\(168\) 110.489 + 69.6742i 0.657672 + 0.414728i
\(169\) −159.117 −0.941519
\(170\) 13.2618 76.2704i 0.0780104 0.448650i
\(171\) 48.4325 + 101.409i 0.283231 + 0.593033i
\(172\) 179.432i 1.04321i
\(173\) 150.781 + 150.781i 0.871565 + 0.871565i 0.992643 0.121078i \(-0.0386350\pi\)
−0.121078 + 0.992643i \(0.538635\pi\)
\(174\) 127.944 + 80.6817i 0.735313 + 0.463688i
\(175\) −46.9039 + 46.9039i −0.268022 + 0.268022i
\(176\) 8.88873 8.88873i 0.0505041 0.0505041i
\(177\) −265.315 + 60.1052i −1.49895 + 0.339577i
\(178\) 46.5477i 0.261504i
\(179\) 115.141 0.643248 0.321624 0.946867i \(-0.395771\pi\)
0.321624 + 0.946867i \(0.395771\pi\)
\(180\) −70.7420 25.0108i −0.393011 0.138949i
\(181\) −148.256 148.256i −0.819095 0.819095i 0.166882 0.985977i \(-0.446630\pi\)
−0.985977 + 0.166882i \(0.946630\pi\)
\(182\) −15.2402 15.2402i −0.0837375 0.0837375i
\(183\) 2.16266 + 1.36377i 0.0118178 + 0.00745230i
\(184\) 103.602 103.602i 0.563053 0.563053i
\(185\) 48.0988 0.259993
\(186\) 111.498 176.813i 0.599454 0.950610i
\(187\) 196.954 + 34.2459i 1.05323 + 0.183133i
\(188\) 10.8838i 0.0578924i
\(189\) −143.161 16.8341i −0.757467 0.0890692i
\(190\) −40.2077 + 40.2077i −0.211620 + 0.211620i
\(191\) 117.726i 0.616366i 0.951327 + 0.308183i \(0.0997209\pi\)
−0.951327 + 0.308183i \(0.900279\pi\)
\(192\) 129.922 29.4329i 0.676678 0.153296i
\(193\) 149.549 + 149.549i 0.774867 + 0.774867i 0.978953 0.204086i \(-0.0654223\pi\)
−0.204086 + 0.978953i \(0.565422\pi\)
\(194\) 10.6786 10.6786i 0.0550445 0.0550445i
\(195\) 28.2900 + 17.8396i 0.145077 + 0.0914854i
\(196\) 48.1885i 0.245860i
\(197\) 226.468 226.468i 1.14958 1.14958i 0.162950 0.986634i \(-0.447899\pi\)
0.986634 0.162950i \(-0.0521009\pi\)
\(198\) −45.3015 + 128.133i −0.228795 + 0.647139i
\(199\) 264.902 264.902i 1.33116 1.33116i 0.426834 0.904330i \(-0.359629\pi\)
0.904330 0.426834i \(-0.140371\pi\)
\(200\) 101.329i 0.506645i
\(201\) −357.617 + 81.0157i −1.77919 + 0.403063i
\(202\) 222.328i 1.10063i
\(203\) 209.619i 1.03261i
\(204\) 88.9637 + 80.3831i 0.436097 + 0.394035i
\(205\) 97.3561 0.474908
\(206\) 1.00195 0.00486382
\(207\) −53.8946 + 152.439i −0.260360 + 0.736418i
\(208\) −3.36064 −0.0161569
\(209\) −103.829 103.829i −0.496788 0.496788i
\(210\) −16.1147 71.1332i −0.0767367 0.338729i
\(211\) 30.9868 + 30.9868i 0.146857 + 0.146857i 0.776712 0.629855i \(-0.216886\pi\)
−0.629855 + 0.776712i \(0.716886\pi\)
\(212\) 26.0287 0.122777
\(213\) −232.705 146.744i −1.09251 0.688938i
\(214\) −163.800 163.800i −0.765419 0.765419i
\(215\) −191.381 + 191.381i −0.890143 + 0.890143i
\(216\) −172.823 + 136.456i −0.800108 + 0.631740i
\(217\) −289.684 −1.33495
\(218\) 48.1095 + 48.1095i 0.220686 + 0.220686i
\(219\) −1.21595 + 1.92825i −0.00555228 + 0.00880477i
\(220\) 98.0377 0.445626
\(221\) −30.7581 43.7058i −0.139177 0.197764i
\(222\) 27.8715 44.1984i 0.125547 0.199092i
\(223\) 144.813i 0.649386i 0.945819 + 0.324693i \(0.105261\pi\)
−0.945819 + 0.324693i \(0.894739\pi\)
\(224\) −117.970 117.970i −0.526652 0.526652i
\(225\) −48.1912 100.903i −0.214183 0.448460i
\(226\) 22.0955 22.0955i 0.0977676 0.0977676i
\(227\) −139.620 + 139.620i −0.615064 + 0.615064i −0.944261 0.329197i \(-0.893222\pi\)
0.329197 + 0.944261i \(0.393222\pi\)
\(228\) −19.4582 85.8918i −0.0853428 0.376718i
\(229\) 327.781i 1.43136i 0.698429 + 0.715680i \(0.253883\pi\)
−0.698429 + 0.715680i \(0.746117\pi\)
\(230\) −81.8094 −0.355693
\(231\) 183.688 41.6131i 0.795184 0.180143i
\(232\) −226.426 226.426i −0.975973 0.975973i
\(233\) −169.516 169.516i −0.727537 0.727537i 0.242592 0.970128i \(-0.422002\pi\)
−0.970128 + 0.242592i \(0.922002\pi\)
\(234\) 32.7860 15.6585i 0.140111 0.0669167i
\(235\) −11.6085 + 11.6085i −0.0493981 + 0.0493981i
\(236\) 213.185 0.903327
\(237\) 324.944 + 204.910i 1.37107 + 0.864598i
\(238\) −19.9656 + 114.825i −0.0838892 + 0.482460i
\(239\) 213.706i 0.894166i −0.894492 0.447083i \(-0.852463\pi\)
0.894492 0.447083i \(-0.147537\pi\)
\(240\) −9.61956 6.06609i −0.0400815 0.0252754i
\(241\) −138.841 + 138.841i −0.576105 + 0.576105i −0.933828 0.357723i \(-0.883553\pi\)
0.357723 + 0.933828i \(0.383553\pi\)
\(242\) 22.1924i 0.0917042i
\(243\) 107.200 218.076i 0.441154 0.897432i
\(244\) −1.41677 1.41677i −0.00580644 0.00580644i
\(245\) 51.3975 51.3975i 0.209786 0.209786i
\(246\) 56.4143 89.4614i 0.229326 0.363664i
\(247\) 39.2554i 0.158929i
\(248\) −312.910 + 312.910i −1.26173 + 1.26173i
\(249\) −71.7540 + 16.2554i −0.288169 + 0.0652826i
\(250\) 120.508 120.508i 0.482033 0.482033i
\(251\) 292.094i 1.16372i 0.813289 + 0.581860i \(0.197675\pi\)
−0.813289 + 0.581860i \(0.802325\pi\)
\(252\) 106.502 + 37.6538i 0.422628 + 0.149420i
\(253\) 211.257i 0.835007i
\(254\) 26.6568i 0.104948i
\(255\) −9.15198 180.624i −0.0358901 0.708329i
\(256\) −264.910 −1.03480
\(257\) −288.943 −1.12429 −0.562145 0.827039i \(-0.690024\pi\)
−0.562145 + 0.827039i \(0.690024\pi\)
\(258\) 64.9633 + 286.759i 0.251796 + 1.11147i
\(259\) −72.4129 −0.279586
\(260\) −18.5330 18.5330i −0.0712807 0.0712807i
\(261\) 333.161 + 117.789i 1.27648 + 0.451298i
\(262\) 102.120 + 102.120i 0.389772 + 0.389772i
\(263\) 104.513 0.397390 0.198695 0.980061i \(-0.436330\pi\)
0.198695 + 0.980061i \(0.436330\pi\)
\(264\) 153.466 243.365i 0.581309 0.921836i
\(265\) −27.7620 27.7620i −0.104762 0.104762i
\(266\) 60.5329 60.5329i 0.227567 0.227567i
\(267\) 24.0264 + 106.057i 0.0899866 + 0.397217i
\(268\) 287.352 1.07221
\(269\) 181.700 + 181.700i 0.675464 + 0.675464i 0.958970 0.283507i \(-0.0914978\pi\)
−0.283507 + 0.958970i \(0.591498\pi\)
\(270\) 122.112 + 14.3589i 0.452265 + 0.0531811i
\(271\) 138.854 0.512375 0.256188 0.966627i \(-0.417534\pi\)
0.256188 + 0.966627i \(0.417534\pi\)
\(272\) 10.4588 + 14.8614i 0.0384515 + 0.0546377i
\(273\) −42.5907 26.8576i −0.156010 0.0983797i
\(274\) 217.704i 0.794539i
\(275\) 103.311 + 103.311i 0.375678 + 0.375678i
\(276\) 67.5852 107.176i 0.244874 0.388319i
\(277\) 89.7588 89.7588i 0.324039 0.324039i −0.526275 0.850314i \(-0.676412\pi\)
0.850314 + 0.526275i \(0.176412\pi\)
\(278\) 26.1180 26.1180i 0.0939498 0.0939498i
\(279\) 162.779 460.413i 0.583436 1.65023i
\(280\) 154.404i 0.551444i
\(281\) −159.678 −0.568248 −0.284124 0.958788i \(-0.591703\pi\)
−0.284124 + 0.958788i \(0.591703\pi\)
\(282\) 3.94047 + 17.3939i 0.0139733 + 0.0616806i
\(283\) −89.8931 89.8931i −0.317644 0.317644i 0.530218 0.847861i \(-0.322110\pi\)
−0.847861 + 0.530218i \(0.822110\pi\)
\(284\) 152.447 + 152.447i 0.536785 + 0.536785i
\(285\) −70.8575 + 112.365i −0.248623 + 0.394264i
\(286\) −33.5684 + 33.5684i −0.117372 + 0.117372i
\(287\) −146.570 −0.510697
\(288\) 253.787 121.208i 0.881204 0.420860i
\(289\) −97.5523 + 272.038i −0.337551 + 0.941307i
\(290\) 178.798i 0.616544i
\(291\) 18.8188 29.8427i 0.0646694 0.102552i
\(292\) 1.26321 1.26321i 0.00432605 0.00432605i
\(293\) 447.233i 1.52639i −0.646166 0.763197i \(-0.723629\pi\)
0.646166 0.763197i \(-0.276371\pi\)
\(294\) −17.4466 77.0126i −0.0593423 0.261947i
\(295\) −227.382 227.382i −0.770785 0.770785i
\(296\) −78.2188 + 78.2188i −0.264253 + 0.264253i
\(297\) −37.0790 + 315.329i −0.124845 + 1.06172i
\(298\) 35.0603i 0.117652i
\(299\) −39.9358 + 39.9358i −0.133565 + 0.133565i
\(300\) 19.3612 + 85.4638i 0.0645374 + 0.284879i
\(301\) 288.124 288.124i 0.957223 0.957223i
\(302\) 169.844i 0.562396i
\(303\) 114.758 + 506.563i 0.378740 + 1.67183i
\(304\) 13.3482i 0.0439084i
\(305\) 3.02224i 0.00990897i
\(306\) −171.280 96.2551i −0.559739 0.314559i
\(307\) 234.122 0.762612 0.381306 0.924449i \(-0.375474\pi\)
0.381306 + 0.924449i \(0.375474\pi\)
\(308\) −147.596 −0.479208
\(309\) 2.28289 0.517173i 0.00738800 0.00167370i
\(310\) 247.091 0.797066
\(311\) 163.527 + 163.527i 0.525811 + 0.525811i 0.919321 0.393510i \(-0.128739\pi\)
−0.393510 + 0.919321i \(0.628739\pi\)
\(312\) −75.0165 + 16.9945i −0.240438 + 0.0544694i
\(313\) 192.302 + 192.302i 0.614384 + 0.614384i 0.944085 0.329701i \(-0.106948\pi\)
−0.329701 + 0.944085i \(0.606948\pi\)
\(314\) 53.2205 0.169492
\(315\) −73.4333 153.756i −0.233121 0.488114i
\(316\) −212.873 212.873i −0.673650 0.673650i
\(317\) −45.9466 + 45.9466i −0.144942 + 0.144942i −0.775854 0.630912i \(-0.782681\pi\)
0.630912 + 0.775854i \(0.282681\pi\)
\(318\) −41.5978 + 9.42368i −0.130811 + 0.0296342i
\(319\) −461.710 −1.44737
\(320\) 111.346 + 111.346i 0.347958 + 0.347958i
\(321\) −457.758 288.662i −1.42604 0.899259i
\(322\) 123.164 0.382498
\(323\) 173.596 122.169i 0.537447 0.378231i
\(324\) −119.691 + 148.113i −0.369417 + 0.457137i
\(325\) 39.0598i 0.120184i
\(326\) −48.9403 48.9403i −0.150124 0.150124i
\(327\) 134.448 + 84.7827i 0.411155 + 0.259274i
\(328\) −158.322 + 158.322i −0.482688 + 0.482688i
\(329\) 17.4767 17.4767i 0.0531207 0.0531207i
\(330\) −156.679 + 35.4945i −0.474785 + 0.107559i
\(331\) 386.026i 1.16624i 0.812386 + 0.583121i \(0.198168\pi\)
−0.812386 + 0.583121i \(0.801832\pi\)
\(332\) 57.6556 0.173661
\(333\) 40.6901 115.090i 0.122192 0.345617i
\(334\) −48.9080 48.9080i −0.146431 0.146431i
\(335\) −306.487 306.487i −0.914887 0.914887i
\(336\) 14.4823 + 9.13251i 0.0431020 + 0.0271801i
\(337\) 281.585 281.585i 0.835563 0.835563i −0.152708 0.988271i \(-0.548799\pi\)
0.988271 + 0.152708i \(0.0487994\pi\)
\(338\) −204.329 −0.604522
\(339\) 38.9386 61.7485i 0.114863 0.182149i
\(340\) −24.2794 + 139.634i −0.0714099 + 0.410689i
\(341\) 638.063i 1.87115i
\(342\) 62.1942 + 130.223i 0.181854 + 0.380770i
\(343\) −262.359 + 262.359i −0.764895 + 0.764895i
\(344\) 622.451i 1.80945i
\(345\) −186.399 + 42.2274i −0.540287 + 0.122398i
\(346\) 193.624 + 193.624i 0.559607 + 0.559607i
\(347\) −65.8162 + 65.8162i −0.189672 + 0.189672i −0.795554 0.605882i \(-0.792820\pi\)
0.605882 + 0.795554i \(0.292820\pi\)
\(348\) −234.238 147.710i −0.673097 0.424454i
\(349\) 134.299i 0.384812i −0.981315 0.192406i \(-0.938371\pi\)
0.981315 0.192406i \(-0.0616290\pi\)
\(350\) −60.2313 + 60.2313i −0.172089 + 0.172089i
\(351\) 66.6190 52.6002i 0.189798 0.149858i
\(352\) −259.843 + 259.843i −0.738190 + 0.738190i
\(353\) 205.257i 0.581464i −0.956805 0.290732i \(-0.906101\pi\)
0.956805 0.290732i \(-0.0938988\pi\)
\(354\) −340.702 + 77.1836i −0.962435 + 0.218033i
\(355\) 325.197i 0.916048i
\(356\) 85.2185i 0.239378i
\(357\) 13.7783 + 271.930i 0.0385948 + 0.761709i
\(358\) 147.858 0.413011
\(359\) 108.031 0.300921 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(360\) −245.405 86.7626i −0.681679 0.241007i
\(361\) 205.081 0.568092
\(362\) −190.382 190.382i −0.525917 0.525917i
\(363\) −11.4550 50.5644i −0.0315565 0.139296i
\(364\) 27.9015 + 27.9015i 0.0766524 + 0.0766524i
\(365\) −2.69465 −0.00738261
\(366\) 2.77716 + 1.75127i 0.00758787 + 0.00478490i
\(367\) −37.3027 37.3027i −0.101642 0.101642i 0.654457 0.756099i \(-0.272897\pi\)
−0.756099 + 0.654457i \(0.772897\pi\)
\(368\) 13.5795 13.5795i 0.0369009 0.0369009i
\(369\) 82.3603 232.953i 0.223199 0.631309i
\(370\) 61.7657 0.166934
\(371\) 41.7958 + 41.7958i 0.112657 + 0.112657i
\(372\) −204.129 + 323.706i −0.548733 + 0.870178i
\(373\) −597.865 −1.60286 −0.801428 0.598092i \(-0.795926\pi\)
−0.801428 + 0.598092i \(0.795926\pi\)
\(374\) 252.916 + 43.9767i 0.676247 + 0.117585i
\(375\) 212.370 336.775i 0.566320 0.898066i
\(376\) 37.7559i 0.100415i
\(377\) 87.2814 + 87.2814i 0.231516 + 0.231516i
\(378\) −183.839 21.6174i −0.486348 0.0571888i
\(379\) 170.986 170.986i 0.451151 0.451151i −0.444585 0.895736i \(-0.646649\pi\)
0.895736 + 0.444585i \(0.146649\pi\)
\(380\) 73.6114 73.6114i 0.193714 0.193714i
\(381\) −13.7594 60.7362i −0.0361138 0.159413i
\(382\) 151.177i 0.395751i
\(383\) −145.744 −0.380533 −0.190266 0.981732i \(-0.560935\pi\)
−0.190266 + 0.981732i \(0.560935\pi\)
\(384\) −198.888 + 45.0567i −0.517938 + 0.117335i
\(385\) 157.425 + 157.425i 0.408896 + 0.408896i
\(386\) 192.043 + 192.043i 0.497520 + 0.497520i
\(387\) 296.032 + 619.836i 0.764940 + 1.60164i
\(388\) −19.5502 + 19.5502i −0.0503871 + 0.0503871i
\(389\) 431.129 1.10830 0.554150 0.832417i \(-0.313043\pi\)
0.554150 + 0.832417i \(0.313043\pi\)
\(390\) 36.3284 + 22.9086i 0.0931497 + 0.0587401i
\(391\) 300.891 + 52.3184i 0.769542 + 0.133807i
\(392\) 167.166i 0.426445i
\(393\) 285.388 + 179.965i 0.726178 + 0.457927i
\(394\) 290.817 290.817i 0.738115 0.738115i
\(395\) 454.098i 1.14962i
\(396\) 82.9369 234.584i 0.209437 0.592384i
\(397\) 33.7419 + 33.7419i 0.0849922 + 0.0849922i 0.748325 0.663333i \(-0.230858\pi\)
−0.663333 + 0.748325i \(0.730858\pi\)
\(398\) 340.171 340.171i 0.854702 0.854702i
\(399\) 106.676 169.166i 0.267359 0.423976i
\(400\) 13.2817i 0.0332041i
\(401\) 290.697 290.697i 0.724930 0.724930i −0.244675 0.969605i \(-0.578681\pi\)
0.969605 + 0.244675i \(0.0786813\pi\)
\(402\) −459.232 + 104.036i −1.14237 + 0.258795i
\(403\) 120.619 120.619i 0.299303 0.299303i
\(404\) 407.032i 1.00751i
\(405\) 285.637 30.3140i 0.705277 0.0748493i
\(406\) 269.181i 0.663006i
\(407\) 159.498i 0.391887i
\(408\) 308.616 + 278.850i 0.756411 + 0.683455i
\(409\) −144.942 −0.354382 −0.177191 0.984176i \(-0.556701\pi\)
−0.177191 + 0.984176i \(0.556701\pi\)
\(410\) 125.019 0.304925
\(411\) −112.372 496.028i −0.273410 1.20688i
\(412\) −1.83434 −0.00445229
\(413\) 342.324 + 342.324i 0.828871 + 0.828871i
\(414\) −69.2083 + 195.753i −0.167170 + 0.472833i
\(415\) −61.4950 61.4950i −0.148181 0.148181i
\(416\) 98.2410 0.236156
\(417\) 46.0275 72.9901i 0.110378 0.175036i
\(418\) −133.331 133.331i −0.318973 0.318973i
\(419\) 240.532 240.532i 0.574061 0.574061i −0.359200 0.933261i \(-0.616950\pi\)
0.933261 + 0.359200i \(0.116950\pi\)
\(420\) 29.5025 + 130.229i 0.0702439 + 0.310069i
\(421\) −385.932 −0.916704 −0.458352 0.888771i \(-0.651560\pi\)
−0.458352 + 0.888771i \(0.651560\pi\)
\(422\) 39.7915 + 39.7915i 0.0942926 + 0.0942926i
\(423\) 17.9564 + 37.5973i 0.0424500 + 0.0888825i
\(424\) 90.2937 0.212957
\(425\) −172.731 + 121.560i −0.406425 + 0.286023i
\(426\) −298.826 188.440i −0.701471 0.442347i
\(427\) 4.54999i 0.0106557i
\(428\) 299.881 + 299.881i 0.700656 + 0.700656i
\(429\) −59.1571 + 93.8109i −0.137895 + 0.218674i
\(430\) −245.760 + 245.760i −0.571535 + 0.571535i
\(431\) −166.296 + 166.296i −0.385838 + 0.385838i −0.873200 0.487362i \(-0.837959\pi\)
0.487362 + 0.873200i \(0.337959\pi\)
\(432\) −22.6527 + 17.8859i −0.0524369 + 0.0414025i
\(433\) 476.462i 1.10037i −0.835041 0.550187i \(-0.814556\pi\)
0.835041 0.550187i \(-0.185444\pi\)
\(434\) −371.996 −0.857133
\(435\) 92.2896 + 407.383i 0.212160 + 0.936512i
\(436\) −88.0777 88.0777i −0.202013 0.202013i
\(437\) −158.622 158.622i −0.362979 0.362979i
\(438\) −1.56145 + 2.47614i −0.00356496 + 0.00565329i
\(439\) −256.092 + 256.092i −0.583352 + 0.583352i −0.935823 0.352471i \(-0.885342\pi\)
0.352471 + 0.935823i \(0.385342\pi\)
\(440\) 340.094 0.772940
\(441\) −79.5028 166.464i −0.180278 0.377470i
\(442\) −39.4978 56.1244i −0.0893615 0.126978i
\(443\) 838.977i 1.89385i −0.321448 0.946927i \(-0.604170\pi\)
0.321448 0.946927i \(-0.395830\pi\)
\(444\) −51.0265 + 80.9174i −0.114924 + 0.182246i
\(445\) −90.8934 + 90.8934i −0.204255 + 0.204255i
\(446\) 185.961i 0.416952i
\(447\) 18.0970 + 79.8832i 0.0404854 + 0.178710i
\(448\) −167.632 167.632i −0.374180 0.374180i
\(449\) −491.600 + 491.600i −1.09488 + 1.09488i −0.0998774 + 0.995000i \(0.531845\pi\)
−0.995000 + 0.0998774i \(0.968155\pi\)
\(450\) −61.8843 129.574i −0.137521 0.287943i
\(451\) 322.837i 0.715826i
\(452\) −40.4519 + 40.4519i −0.0894953 + 0.0894953i
\(453\) −87.6677 386.981i −0.193527 0.854262i
\(454\) −179.291 + 179.291i −0.394915 + 0.394915i
\(455\) 59.5189i 0.130811i
\(456\) −67.5005 297.959i −0.148027 0.653419i
\(457\) 473.298i 1.03566i 0.855483 + 0.517832i \(0.173261\pi\)
−0.855483 + 0.517832i \(0.826739\pi\)
\(458\) 420.918i 0.919035i
\(459\) −439.938 130.904i −0.958470 0.285193i
\(460\) 149.775 0.325597
\(461\) −142.935 −0.310055 −0.155027 0.987910i \(-0.549547\pi\)
−0.155027 + 0.987910i \(0.549547\pi\)
\(462\) 235.881 53.4371i 0.510565 0.115665i
\(463\) 36.4646 0.0787572 0.0393786 0.999224i \(-0.487462\pi\)
0.0393786 + 0.999224i \(0.487462\pi\)
\(464\) −29.6786 29.6786i −0.0639626 0.0639626i
\(465\) 562.984 127.540i 1.21072 0.274280i
\(466\) −217.683 217.683i −0.467130 0.467130i
\(467\) 342.979 0.734430 0.367215 0.930136i \(-0.380311\pi\)
0.367215 + 0.930136i \(0.380311\pi\)
\(468\) −60.0239 + 28.6672i −0.128256 + 0.0612547i
\(469\) 461.417 + 461.417i 0.983832 + 0.983832i
\(470\) −14.9070 + 14.9070i −0.0317171 + 0.0317171i
\(471\) 121.261 27.4707i 0.257453 0.0583242i
\(472\) 739.541 1.56682
\(473\) −634.627 634.627i −1.34171 1.34171i
\(474\) 417.275 + 263.133i 0.880327 + 0.555133i
\(475\) 155.142 0.326615
\(476\) 36.5526 210.220i 0.0767913 0.441638i
\(477\) −89.9144 + 42.9428i −0.188500 + 0.0900269i
\(478\) 274.429i 0.574118i
\(479\) −255.653 255.653i −0.533723 0.533723i 0.387955 0.921678i \(-0.373181\pi\)
−0.921678 + 0.387955i \(0.873181\pi\)
\(480\) 281.207 + 177.329i 0.585848 + 0.369436i
\(481\) 30.1513 30.1513i 0.0626847 0.0626847i
\(482\) −178.292 + 178.292i −0.369901 + 0.369901i
\(483\) 280.624 63.5734i 0.581003 0.131622i
\(484\) 40.6294i 0.0839450i
\(485\) 41.7042 0.0859880
\(486\) 137.661 280.040i 0.283252 0.576215i
\(487\) 256.394 + 256.394i 0.526477 + 0.526477i 0.919520 0.393043i \(-0.128578\pi\)
−0.393043 + 0.919520i \(0.628578\pi\)
\(488\) −4.91479 4.91479i −0.0100713 0.0100713i
\(489\) −136.770 86.2469i −0.279693 0.176374i
\(490\) 66.0017 66.0017i 0.134697 0.134697i
\(491\) −741.566 −1.51032 −0.755158 0.655542i \(-0.772440\pi\)
−0.755158 + 0.655542i \(0.772440\pi\)
\(492\) −103.282 + 163.784i −0.209923 + 0.332894i
\(493\) 114.344 657.609i 0.231935 1.33389i
\(494\) 50.4095i 0.102043i
\(495\) −338.665 + 161.745i −0.684172 + 0.326758i
\(496\) −41.0145 + 41.0145i −0.0826906 + 0.0826906i
\(497\) 489.585i 0.985081i
\(498\) −92.1424 + 20.8742i −0.185025 + 0.0419161i
\(499\) −182.719 182.719i −0.366170 0.366170i 0.499908 0.866079i \(-0.333367\pi\)
−0.866079 + 0.499908i \(0.833367\pi\)
\(500\) −220.624 + 220.624i −0.441247 + 0.441247i
\(501\) −136.679 86.1899i −0.272813 0.172036i
\(502\) 375.090i 0.747191i
\(503\) −286.319 + 286.319i −0.569222 + 0.569222i −0.931911 0.362688i \(-0.881859\pi\)
0.362688 + 0.931911i \(0.381859\pi\)
\(504\) 369.457 + 130.621i 0.733050 + 0.259169i
\(505\) −434.137 + 434.137i −0.859678 + 0.859678i
\(506\) 271.284i 0.536134i
\(507\) −465.553 + 105.468i −0.918251 + 0.208023i
\(508\) 48.8026i 0.0960681i
\(509\) 385.256i 0.756887i −0.925624 0.378444i \(-0.876459\pi\)
0.925624 0.378444i \(-0.123541\pi\)
\(510\) −11.7524 231.947i −0.0230440 0.454798i
\(511\) 4.05681 0.00793896
\(512\) −68.2780 −0.133355
\(513\) 208.924 + 264.605i 0.407258 + 0.515799i
\(514\) −371.044 −0.721875
\(515\) 1.95649 + 1.95649i 0.00379902 + 0.00379902i
\(516\) −118.933 524.993i −0.230491 1.01743i
\(517\) −38.4945 38.4945i −0.0744574 0.0744574i
\(518\) −92.9884 −0.179514
\(519\) 541.106 + 341.221i 1.04259 + 0.657459i
\(520\) −64.2910 64.2910i −0.123637 0.123637i
\(521\) −12.5129 + 12.5129i −0.0240170 + 0.0240170i −0.719013 0.694996i \(-0.755406\pi\)
0.694996 + 0.719013i \(0.255406\pi\)
\(522\) 427.826 + 151.257i 0.819590 + 0.289765i
\(523\) −9.61347 −0.0183814 −0.00919070 0.999958i \(-0.502926\pi\)
−0.00919070 + 0.999958i \(0.502926\pi\)
\(524\) −186.960 186.960i −0.356793 0.356793i
\(525\) −106.145 + 168.324i −0.202181 + 0.320616i
\(526\) 134.210 0.255152
\(527\) −908.787 158.018i −1.72445 0.299845i
\(528\) 20.1154 31.8989i 0.0380974 0.0604146i
\(529\) 206.257i 0.389900i
\(530\) −35.6503 35.6503i −0.0672648 0.0672648i
\(531\) −736.434 + 351.719i −1.38688 + 0.662371i
\(532\) −110.822 + 110.822i −0.208312 + 0.208312i
\(533\) 61.0290 61.0290i 0.114501 0.114501i
\(534\) 30.8533 + 136.192i 0.0577778 + 0.255041i
\(535\) 639.701i 1.19570i
\(536\) 996.825 1.85975
\(537\) 336.888 76.3195i 0.627351 0.142122i
\(538\) 233.328 + 233.328i 0.433696 + 0.433696i
\(539\) 170.436 + 170.436i 0.316209 + 0.316209i
\(540\) −223.559 26.2879i −0.413998 0.0486813i
\(541\) 324.234 324.234i 0.599323 0.599323i −0.340809 0.940132i \(-0.610701\pi\)
0.940132 + 0.340809i \(0.110701\pi\)
\(542\) 178.308 0.328981
\(543\) −532.046 335.508i −0.979826 0.617878i
\(544\) −305.741 434.443i −0.562023 0.798608i
\(545\) 187.886i 0.344745i
\(546\) −54.6925 34.4890i −0.100169 0.0631667i
\(547\) 262.759 262.759i 0.480364 0.480364i −0.424884 0.905248i \(-0.639685\pi\)
0.905248 + 0.424884i \(0.139685\pi\)
\(548\) 398.567i 0.727312i
\(549\) 7.23158 + 2.55672i 0.0131723 + 0.00465705i
\(550\) 132.666 + 132.666i 0.241212 + 0.241212i
\(551\) −346.674 + 346.674i −0.629173 + 0.629173i
\(552\) 234.453 371.795i 0.424735 0.673541i
\(553\) 683.646i 1.23625i
\(554\) 115.263 115.263i 0.208056 0.208056i
\(555\) 140.730 31.8814i 0.253568 0.0574440i
\(556\) −47.8163 + 47.8163i −0.0860006 + 0.0860006i
\(557\) 413.538i 0.742439i 0.928545 + 0.371219i \(0.121060\pi\)
−0.928545 + 0.371219i \(0.878940\pi\)
\(558\) 209.031 591.236i 0.374608 1.05956i
\(559\) 239.939i 0.429229i
\(560\) 20.2385i 0.0361401i
\(561\) 598.958 30.3484i 1.06766 0.0540969i
\(562\) −205.049 −0.364856
\(563\) 560.023 0.994713 0.497356 0.867546i \(-0.334304\pi\)
0.497356 + 0.867546i \(0.334304\pi\)
\(564\) −7.21412 31.8444i −0.0127910 0.0564617i
\(565\) 86.2913 0.152728
\(566\) −115.436 115.436i −0.203950 0.203950i
\(567\) −430.028 + 45.6378i −0.758427 + 0.0804899i
\(568\) 528.839 + 528.839i 0.931055 + 0.931055i
\(569\) 21.2798 0.0373985 0.0186993 0.999825i \(-0.494047\pi\)
0.0186993 + 0.999825i \(0.494047\pi\)
\(570\) −90.9912 + 144.293i −0.159634 + 0.253146i
\(571\) 493.008 + 493.008i 0.863411 + 0.863411i 0.991733 0.128322i \(-0.0409590\pi\)
−0.128322 + 0.991733i \(0.540959\pi\)
\(572\) 61.4562 61.4562i 0.107441 0.107441i
\(573\) 78.0325 + 344.449i 0.136182 + 0.601133i
\(574\) −188.217 −0.327904
\(575\) 157.831 + 157.831i 0.274489 + 0.274489i
\(576\) 360.625 172.233i 0.626084 0.299016i
\(577\) −472.279 −0.818508 −0.409254 0.912421i \(-0.634211\pi\)
−0.409254 + 0.912421i \(0.634211\pi\)
\(578\) −125.271 + 349.335i −0.216732 + 0.604386i
\(579\) 536.686 + 338.434i 0.926919 + 0.584515i
\(580\) 327.339i 0.564377i
\(581\) 92.5809 + 92.5809i 0.159348 + 0.159348i
\(582\) 24.1660 38.3223i 0.0415224 0.0658459i
\(583\) 92.0601 92.0601i 0.157907 0.157907i
\(584\) 4.38208 4.38208i 0.00750355 0.00750355i
\(585\) 94.5972 + 33.4448i 0.161705 + 0.0571706i
\(586\) 574.311i 0.980053i
\(587\) 483.706 0.824031 0.412015 0.911177i \(-0.364825\pi\)
0.412015 + 0.911177i \(0.364825\pi\)
\(588\) 31.9409 + 140.993i 0.0543213 + 0.239784i
\(589\) 479.088 + 479.088i 0.813392 + 0.813392i
\(590\) −291.990 291.990i −0.494899 0.494899i
\(591\) 512.503 812.724i 0.867180 1.37517i
\(592\) −10.2525 + 10.2525i −0.0173184 + 0.0173184i
\(593\) 599.472 1.01091 0.505457 0.862852i \(-0.331324\pi\)
0.505457 + 0.862852i \(0.331324\pi\)
\(594\) −47.6148 + 404.928i −0.0801595 + 0.681697i
\(595\) −263.205 + 185.232i −0.442362 + 0.311314i
\(596\) 64.1875i 0.107697i
\(597\) 599.480 950.650i 1.00415 1.59238i
\(598\) −51.2833 + 51.2833i −0.0857580 + 0.0857580i
\(599\) 384.650i 0.642153i −0.947053 0.321077i \(-0.895955\pi\)
0.947053 0.321077i \(-0.104045\pi\)
\(600\) 67.1642 + 296.475i 0.111940 + 0.494124i
\(601\) −194.467 194.467i −0.323572 0.323572i 0.526563 0.850136i \(-0.323480\pi\)
−0.850136 + 0.526563i \(0.823480\pi\)
\(602\) 369.993 369.993i 0.614606 0.614606i
\(603\) −992.639 + 474.081i −1.64617 + 0.786204i
\(604\) 310.946i 0.514811i
\(605\) 43.3350 43.3350i 0.0716280 0.0716280i
\(606\) 147.366 + 650.499i 0.243178 + 1.07343i
\(607\) −110.888 + 110.888i −0.182682 + 0.182682i −0.792523 0.609842i \(-0.791233\pi\)
0.609842 + 0.792523i \(0.291233\pi\)
\(608\) 390.205i 0.641784i
\(609\) −138.942 613.316i −0.228148 1.00709i
\(610\) 3.88098i 0.00636227i
\(611\) 14.5539i 0.0238199i
\(612\) 313.576 + 176.222i 0.512379 + 0.287944i
\(613\) −342.714 −0.559076 −0.279538 0.960135i \(-0.590181\pi\)
−0.279538 + 0.960135i \(0.590181\pi\)
\(614\) 300.646 0.489651
\(615\) 284.850 64.5308i 0.463171 0.104928i
\(616\) −512.012 −0.831188
\(617\) −167.602 167.602i −0.271639 0.271639i 0.558121 0.829760i \(-0.311523\pi\)
−0.829760 + 0.558121i \(0.811523\pi\)
\(618\) 2.93156 0.664123i 0.00474362 0.00107463i
\(619\) −467.825 467.825i −0.755776 0.755776i 0.219775 0.975551i \(-0.429468\pi\)
−0.975551 + 0.219775i \(0.929468\pi\)
\(620\) −452.368 −0.729625
\(621\) −56.6466 + 481.737i −0.0912184 + 0.775744i
\(622\) 209.992 + 209.992i 0.337608 + 0.337608i
\(623\) 136.840 136.840i 0.219647 0.219647i
\(624\) −9.83275 + 2.22754i −0.0157576 + 0.00356977i
\(625\) 160.017 0.256028
\(626\) 246.944 + 246.944i 0.394479 + 0.394479i
\(627\) −372.609 234.967i −0.594273 0.374748i
\(628\) −97.4349 −0.155151
\(629\) −227.171 39.5001i −0.361162 0.0627983i
\(630\) −94.2988 197.444i −0.149681 0.313404i
\(631\) 509.287i 0.807110i 0.914955 + 0.403555i \(0.132226\pi\)
−0.914955 + 0.403555i \(0.867774\pi\)
\(632\) −738.459 738.459i −1.16845 1.16845i
\(633\) 111.202 + 70.1240i 0.175675 + 0.110780i
\(634\) −59.0020 + 59.0020i −0.0930631 + 0.0930631i
\(635\) 52.0524 52.0524i 0.0819723 0.0819723i
\(636\) 76.1563 17.2527i 0.119743 0.0271268i
\(637\) 64.4384i 0.101159i
\(638\) −592.902 −0.929313
\(639\) −778.129 275.107i −1.21773 0.430527i
\(640\) −170.452 170.452i −0.266332 0.266332i
\(641\) 320.062 + 320.062i 0.499317 + 0.499317i 0.911225 0.411909i \(-0.135138\pi\)
−0.411909 + 0.911225i \(0.635138\pi\)
\(642\) −587.827 370.683i −0.915618 0.577388i
\(643\) −323.732 + 323.732i −0.503471 + 0.503471i −0.912515 0.409044i \(-0.865862\pi\)
0.409044 + 0.912515i \(0.365862\pi\)
\(644\) −225.486 −0.350134
\(645\) −433.100 + 686.806i −0.671472 + 1.06482i
\(646\) 222.921 156.882i 0.345079 0.242851i
\(647\) 199.285i 0.308014i −0.988070 0.154007i \(-0.950782\pi\)
0.988070 0.154007i \(-0.0492179\pi\)
\(648\) −415.210 + 513.803i −0.640755 + 0.792906i
\(649\) 754.008 754.008i 1.16180 1.16180i
\(650\) 50.1583i 0.0771667i
\(651\) −847.575 + 192.012i −1.30196 + 0.294949i
\(652\) 89.5989 + 89.5989i 0.137422 + 0.137422i
\(653\) 544.966 544.966i 0.834557 0.834557i −0.153579 0.988136i \(-0.549080\pi\)
0.988136 + 0.153579i \(0.0490801\pi\)
\(654\) 172.650 + 108.873i 0.263991 + 0.166473i
\(655\) 398.819i 0.608884i
\(656\) −20.7519 + 20.7519i −0.0316340 + 0.0316340i
\(657\) −2.27960 + 6.44775i −0.00346970 + 0.00981392i
\(658\) 22.4426 22.4426i 0.0341073 0.0341073i
\(659\) 301.152i 0.456983i −0.973546 0.228492i \(-0.926621\pi\)
0.973546 0.228492i \(-0.0733793\pi\)
\(660\) 286.845 64.9826i 0.434613 0.0984585i
\(661\) 616.135i 0.932125i 0.884752 + 0.466062i \(0.154328\pi\)
−0.884752 + 0.466062i \(0.845672\pi\)
\(662\) 495.712i 0.748810i
\(663\) −118.964 107.489i −0.179432 0.162126i
\(664\) 200.008 0.301216
\(665\) 236.404 0.355495
\(666\) 52.2519 147.792i 0.0784563 0.221910i
\(667\) −705.367 −1.05752
\(668\) 89.5396 + 89.5396i 0.134041 + 0.134041i
\(669\) 95.9868 + 423.703i 0.143478 + 0.633337i
\(670\) −393.573 393.573i −0.587423 0.587423i
\(671\) −10.0219 −0.0149357
\(672\) −423.358 266.969i −0.629997 0.397276i
\(673\) −172.202 172.202i −0.255872 0.255872i 0.567501 0.823373i \(-0.307910\pi\)
−0.823373 + 0.567501i \(0.807910\pi\)
\(674\) 361.595 361.595i 0.536491 0.536491i
\(675\) −207.883 263.287i −0.307974 0.390054i
\(676\) 374.080 0.553373
\(677\) 173.154 + 173.154i 0.255766 + 0.255766i 0.823330 0.567563i \(-0.192114\pi\)
−0.567563 + 0.823330i \(0.692114\pi\)
\(678\) 50.0026 79.2938i 0.0737502 0.116953i
\(679\) −62.7857 −0.0924680
\(680\) −84.2252 + 484.392i −0.123861 + 0.712341i
\(681\) −315.963 + 501.052i −0.463969 + 0.735759i
\(682\) 819.364i 1.20141i
\(683\) −64.4148 64.4148i −0.0943116 0.0943116i 0.658377 0.752688i \(-0.271243\pi\)
−0.752688 + 0.658377i \(0.771243\pi\)
\(684\) −113.864 238.410i −0.166467 0.348552i
\(685\) 425.108 425.108i 0.620596 0.620596i
\(686\) −336.906 + 336.906i −0.491117 + 0.491117i
\(687\) 217.264 + 959.042i 0.316251 + 1.39599i
\(688\) 81.5874i 0.118586i
\(689\) −34.8059 −0.0505166
\(690\) −239.363 + 54.2259i −0.346903 + 0.0785883i
\(691\) 77.0550 + 77.0550i 0.111512 + 0.111512i 0.760661 0.649149i \(-0.224875\pi\)
−0.649149 + 0.760661i \(0.724875\pi\)
\(692\) −354.482 354.482i −0.512258 0.512258i
\(693\) 509.861 243.508i 0.735731 0.351383i
\(694\) −84.5173 + 84.5173i −0.121783 + 0.121783i
\(695\) 102.001 0.146764
\(696\) −812.572 512.408i −1.16749 0.736218i
\(697\) −459.814 79.9517i −0.659705 0.114708i
\(698\) 172.459i 0.247077i
\(699\) −608.341 383.619i −0.870302 0.548812i
\(700\) 110.270 110.270i 0.157529 0.157529i
\(701\) 62.9959i 0.0898657i −0.998990 0.0449329i \(-0.985693\pi\)
0.998990 0.0449329i \(-0.0143074\pi\)
\(702\) 85.5483 67.5462i 0.121864 0.0962197i
\(703\) 119.759 + 119.759i 0.170354 + 0.170354i
\(704\) −369.230 + 369.230i −0.524475 + 0.524475i
\(705\) −26.2705 + 41.6595i −0.0372631 + 0.0590915i
\(706\) 263.579i 0.373341i
\(707\) 653.595 653.595i 0.924463 0.924463i
\(708\) 623.750 141.306i 0.881002 0.199585i
\(709\) 106.504 106.504i 0.150217 0.150217i −0.627998 0.778215i \(-0.716125\pi\)
0.778215 + 0.627998i \(0.216125\pi\)
\(710\) 417.599i 0.588168i
\(711\) 1086.56 + 384.153i 1.52822 + 0.540300i
\(712\) 295.624i 0.415202i
\(713\) 974.786i 1.36716i
\(714\) 17.6933 + 349.197i 0.0247806 + 0.489071i
\(715\) −131.097 −0.183353
\(716\) −270.695 −0.378066
\(717\) −141.651 625.273i −0.197561 0.872068i
\(718\) 138.727 0.193213
\(719\) 369.667 + 369.667i 0.514141 + 0.514141i 0.915792 0.401652i \(-0.131564\pi\)
−0.401652 + 0.915792i \(0.631564\pi\)
\(720\) −32.1663 11.3724i −0.0446754 0.0157949i
\(721\) −2.94551 2.94551i −0.00408531 0.00408531i
\(722\) 263.353 0.364755
\(723\) −314.202 + 498.259i −0.434580 + 0.689155i
\(724\) 348.547 + 348.547i 0.481419 + 0.481419i
\(725\) 344.947 344.947i 0.475789 0.475789i
\(726\) −14.7099 64.9319i −0.0202615 0.0894379i
\(727\) 1237.79 1.70260 0.851299 0.524681i \(-0.175815\pi\)
0.851299 + 0.524681i \(0.175815\pi\)
\(728\) 96.7903 + 96.7903i 0.132954 + 0.132954i
\(729\) 169.105 709.115i 0.231969 0.972723i
\(730\) −3.46032 −0.00474016
\(731\) 1061.06 746.726i 1.45152 1.02151i
\(732\) −5.08436 3.20619i −0.00694585 0.00438005i
\(733\) 1157.96i 1.57975i 0.613265 + 0.789877i \(0.289856\pi\)
−0.613265 + 0.789877i \(0.710144\pi\)
\(734\) −47.9020 47.9020i −0.0652616 0.0652616i
\(735\) 116.314 184.450i 0.158250 0.250952i
\(736\) −396.969 + 396.969i −0.539360 + 0.539360i
\(737\) 1016.33 1016.33i 1.37900 1.37900i
\(738\) 105.762 299.145i 0.143309 0.405345i
\(739\) 1133.08i 1.53326i −0.642090 0.766629i \(-0.721933\pi\)
0.642090 0.766629i \(-0.278067\pi\)
\(740\) −113.079 −0.152810
\(741\) 26.0197 + 114.856i 0.0351143 + 0.155001i
\(742\) 53.6717 + 53.6717i 0.0723338 + 0.0723338i
\(743\) 648.289 + 648.289i 0.872529 + 0.872529i 0.992748 0.120218i \(-0.0383594\pi\)
−0.120218 + 0.992748i \(0.538359\pi\)
\(744\) −708.124 + 1122.94i −0.951780 + 1.50933i
\(745\) −68.4619 + 68.4619i −0.0918952 + 0.0918952i
\(746\) −767.744 −1.02915
\(747\) −199.168 + 95.1218i −0.266623 + 0.127338i
\(748\) −463.033 80.5115i −0.619029 0.107636i
\(749\) 963.072i 1.28581i
\(750\) 272.713 432.467i 0.363618 0.576622i
\(751\) −281.063 + 281.063i −0.374251 + 0.374251i −0.869023 0.494772i \(-0.835252\pi\)
0.494772 + 0.869023i \(0.335252\pi\)
\(752\) 4.94883i 0.00658090i
\(753\) 193.609 + 854.626i 0.257117 + 1.13496i
\(754\) 112.082 + 112.082i 0.148649 + 0.148649i
\(755\) 331.652 331.652i 0.439274 0.439274i
\(756\) 336.569 + 39.5766i 0.445197 + 0.0523499i
\(757\) 925.770i 1.22295i −0.791265 0.611473i \(-0.790577\pi\)
0.791265 0.611473i \(-0.209423\pi\)
\(758\) 219.571 219.571i 0.289671 0.289671i
\(759\) −140.028 618.108i −0.184490 0.814371i
\(760\) 255.358 255.358i 0.335998 0.335998i
\(761\) 635.394i 0.834946i 0.908689 + 0.417473i \(0.137084\pi\)
−0.908689 + 0.417473i \(0.862916\pi\)
\(762\) −17.6690 77.9939i −0.0231876 0.102354i
\(763\) 282.863i 0.370725i
\(764\) 276.771i 0.362266i
\(765\) −146.501 522.414i −0.191504 0.682894i
\(766\) −187.156 −0.244329
\(767\) −285.074 −0.371674
\(768\) −775.089 + 175.591i −1.00923 + 0.228634i
\(769\) 896.298 1.16554 0.582768 0.812638i \(-0.301969\pi\)
0.582768 + 0.812638i \(0.301969\pi\)
\(770\) 202.156 + 202.156i 0.262540 + 0.262540i
\(771\) −845.406 + 191.521i −1.09651 + 0.248405i
\(772\) −351.587 351.587i −0.455424 0.455424i
\(773\) −1439.24 −1.86189 −0.930946 0.365158i \(-0.881015\pi\)
−0.930946 + 0.365158i \(0.881015\pi\)
\(774\) 380.147 + 795.958i 0.491146 + 1.02837i
\(775\) −476.701 476.701i −0.615098 0.615098i
\(776\) −67.8198 + 67.8198i −0.0873966 + 0.0873966i
\(777\) −211.870 + 47.9976i −0.272677 + 0.0617730i
\(778\) 553.631 0.711608
\(779\) 242.402 + 242.402i 0.311170 + 0.311170i
\(780\) −66.5092 41.9406i −0.0852682 0.0537700i
\(781\) 1078.37 1.38075
\(782\) 386.387 + 67.1843i 0.494101 + 0.0859134i
\(783\) 1052.86 + 123.803i 1.34464 + 0.158114i
\(784\) 21.9112i 0.0279480i
\(785\) 103.923 + 103.923i 0.132386 + 0.132386i
\(786\) 366.479 + 231.101i 0.466258 + 0.294022i
\(787\) 612.451 612.451i 0.778210 0.778210i −0.201316 0.979526i \(-0.564522\pi\)
0.979526 + 0.201316i \(0.0645219\pi\)
\(788\) −532.422 + 532.422i −0.675662 + 0.675662i
\(789\) 305.792 69.2749i 0.387569 0.0878009i
\(790\) 583.127i 0.738135i
\(791\) −129.912 −0.164237
\(792\) 287.709 813.773i 0.363269 1.02749i
\(793\) 1.89453 + 1.89453i 0.00238906 + 0.00238906i
\(794\) 43.3294 + 43.3294i 0.0545711 + 0.0545711i
\(795\) −99.6292 62.8261i −0.125320 0.0790266i
\(796\) −622.778 + 622.778i −0.782385 + 0.782385i
\(797\) −1078.44 −1.35313 −0.676565 0.736383i \(-0.736532\pi\)
−0.676565 + 0.736383i \(0.736532\pi\)
\(798\) 136.987 217.234i 0.171663 0.272223i
\(799\) 64.3606 45.2940i 0.0805514 0.0566884i
\(800\) 388.261i 0.485326i
\(801\) 140.596 + 294.382i 0.175525 + 0.367518i
\(802\) 373.296 373.296i 0.465457 0.465457i
\(803\) 8.93560i 0.0111278i
\(804\) 840.751 190.466i 1.04571 0.236898i
\(805\) 240.502 + 240.502i 0.298760 + 0.298760i
\(806\) 154.892 154.892i 0.192174 0.192174i
\(807\) 652.064 + 411.191i 0.808010 + 0.509531i
\(808\) 1412.00i 1.74752i
\(809\) −729.425 + 729.425i −0.901638 + 0.901638i −0.995578 0.0939397i \(-0.970054\pi\)
0.0939397 + 0.995578i \(0.470054\pi\)
\(810\) 366.799 38.9275i 0.452838 0.0480586i
\(811\) −1047.79 + 1047.79i −1.29198 + 1.29198i −0.358414 + 0.933563i \(0.616682\pi\)
−0.933563 + 0.358414i \(0.883318\pi\)
\(812\) 492.810i 0.606909i
\(813\) 406.266 92.0367i 0.499712 0.113206i
\(814\) 204.818i 0.251619i
\(815\) 191.131i 0.234516i
\(816\) 40.4516 + 36.5501i 0.0495731 + 0.0447917i
\(817\) −953.017 −1.16648
\(818\) −186.127 −0.227539
\(819\) −142.416 50.3512i −0.173891 0.0614789i
\(820\) −228.882 −0.279125
\(821\) −519.199 519.199i −0.632398 0.632398i 0.316271 0.948669i \(-0.397569\pi\)
−0.948669 + 0.316271i \(0.897569\pi\)
\(822\) −144.301 636.971i −0.175549 0.774903i
\(823\) −604.984 604.984i −0.735096 0.735096i 0.236528 0.971625i \(-0.423990\pi\)
−0.971625 + 0.236528i \(0.923990\pi\)
\(824\) −6.36334 −0.00772251
\(825\) 370.753 + 233.796i 0.449397 + 0.283389i
\(826\) 439.592 + 439.592i 0.532194 + 0.532194i
\(827\) −561.485 + 561.485i −0.678942 + 0.678942i −0.959761 0.280819i \(-0.909394\pi\)
0.280819 + 0.959761i \(0.409394\pi\)
\(828\) 126.705 358.380i 0.153025 0.432826i
\(829\) −1296.79 −1.56428 −0.782142 0.623100i \(-0.785873\pi\)
−0.782142 + 0.623100i \(0.785873\pi\)
\(830\) −78.9683 78.9683i −0.0951426 0.0951426i
\(831\) 203.127 322.117i 0.244436 0.387626i
\(832\) 139.598 0.167786
\(833\) −284.960 + 200.542i −0.342089 + 0.240747i
\(834\) 59.1058 93.7296i 0.0708703 0.112386i
\(835\) 191.004i 0.228748i
\(836\) 244.099 + 244.099i 0.291984 + 0.291984i
\(837\) 171.091 1455.00i 0.204410 1.73835i
\(838\) 308.877 308.877i 0.368588 0.368588i
\(839\) −190.252 + 190.252i −0.226760 + 0.226760i −0.811338 0.584578i \(-0.801260\pi\)
0.584578 + 0.811338i \(0.301260\pi\)
\(840\) 102.344 + 451.765i 0.121838 + 0.537816i
\(841\) 700.608i 0.833065i
\(842\) −495.592 −0.588589
\(843\) −467.194 + 105.840i −0.554204 + 0.125551i
\(844\) −72.8493 72.8493i −0.0863144 0.0863144i
\(845\) −398.991 398.991i −0.472178 0.472178i
\(846\) 23.0585 + 48.2803i 0.0272559 + 0.0570689i
\(847\) −65.2409 + 65.2409i −0.0770259 + 0.0770259i
\(848\) 11.8352 0.0139566
\(849\) −322.599 203.431i −0.379975 0.239612i
\(850\) −221.811 + 156.100i −0.260954 + 0.183647i
\(851\) 243.669i 0.286333i
\(852\) 547.085 + 344.991i 0.642118 + 0.404919i
\(853\) −917.286 + 917.286i −1.07537 + 1.07537i −0.0784467 + 0.996918i \(0.524996\pi\)
−0.996918 + 0.0784467i \(0.975004\pi\)
\(854\) 5.84283i 0.00684172i
\(855\) −132.840 + 375.732i −0.155368 + 0.439453i
\(856\) 1040.29 + 1040.29i 1.21529 + 1.21529i
\(857\) 441.619 441.619i 0.515308 0.515308i −0.400840 0.916148i \(-0.631282\pi\)
0.916148 + 0.400840i \(0.131282\pi\)
\(858\) −75.9662 + 120.467i −0.0885386 + 0.140404i
\(859\) 862.976i 1.00463i 0.864685 + 0.502314i \(0.167518\pi\)
−0.864685 + 0.502314i \(0.832482\pi\)
\(860\) 449.932 449.932i 0.523177 0.523177i
\(861\) −428.843 + 97.1513i −0.498076 + 0.112835i
\(862\) −213.548 + 213.548i −0.247735 + 0.247735i
\(863\) 1097.07i 1.27122i −0.772009 0.635612i \(-0.780748\pi\)
0.772009 0.635612i \(-0.219252\pi\)
\(864\) 662.204 522.855i 0.766440 0.605156i
\(865\) 756.176i 0.874192i
\(866\) 611.845i 0.706519i
\(867\) −105.109 + 860.605i −0.121233 + 0.992624i
\(868\) 681.041 0.784609
\(869\) −1505.81 −1.73281
\(870\) 118.513 + 523.137i 0.136222 + 0.601307i
\(871\) −384.251 −0.441161
\(872\) −305.542 305.542i −0.350393 0.350393i
\(873\) 35.2805 99.7894i 0.0404129 0.114306i
\(874\) −203.693 203.693i −0.233058 0.233058i
\(875\) −708.536 −0.809756
\(876\) 2.85867 4.53326i 0.00326333 0.00517496i
\(877\) −718.746 718.746i −0.819551 0.819551i 0.166492 0.986043i \(-0.446756\pi\)
−0.986043 + 0.166492i \(0.946756\pi\)
\(878\) −328.858 + 328.858i −0.374553 + 0.374553i
\(879\) −296.441 1308.54i −0.337248 1.48867i
\(880\) 44.5776 0.0506564
\(881\) −776.835 776.835i −0.881765 0.881765i 0.111949 0.993714i \(-0.464291\pi\)
−0.993714 + 0.111949i \(0.964291\pi\)
\(882\) −102.093 213.764i −0.115752 0.242362i
\(883\) 1248.37 1.41379 0.706894 0.707320i \(-0.250096\pi\)
0.706894 + 0.707320i \(0.250096\pi\)
\(884\) 72.3117 + 102.751i 0.0818005 + 0.116235i
\(885\) −816.002 514.571i −0.922037 0.581436i
\(886\) 1077.37i 1.21599i
\(887\) 618.774 + 618.774i 0.697603 + 0.697603i 0.963893 0.266290i \(-0.0857980\pi\)
−0.266290 + 0.963893i \(0.585798\pi\)
\(888\) −177.011 + 280.703i −0.199337 + 0.316107i
\(889\) −78.3651 + 78.3651i −0.0881497 + 0.0881497i
\(890\) −116.720 + 116.720i −0.131146 + 0.131146i
\(891\) 100.523 + 947.187i 0.112820 + 1.06306i
\(892\) 340.452i 0.381673i
\(893\) −57.8070 −0.0647335
\(894\) 23.2391 + 102.581i 0.0259945 + 0.114744i
\(895\) 288.721 + 288.721i 0.322594 + 0.322594i
\(896\) 256.616 + 256.616i 0.286402 + 0.286402i
\(897\) −90.3759 + 143.317i −0.100753 + 0.159774i
\(898\) −631.284 + 631.284i −0.702989 + 0.702989i
\(899\) 2130.43 2.36978
\(900\) 113.296 + 237.222i 0.125885 + 0.263580i
\(901\) 108.321 + 153.919i 0.120223 + 0.170831i
\(902\) 414.569i 0.459611i
\(903\) 652.033 1033.99i 0.722074 1.14506i
\(904\) −140.328 + 140.328i −0.155230 + 0.155230i
\(905\) 743.515i 0.821564i
\(906\) −112.578 496.938i −0.124258 0.548497i
\(907\) −590.082 590.082i −0.650586 0.650586i 0.302548 0.953134i \(-0.402163\pi\)
−0.953134 + 0.302548i \(0.902163\pi\)
\(908\) 328.243 328.243i 0.361501 0.361501i
\(909\) 671.533 + 1406.07i 0.738760 + 1.54683i
\(910\) 76.4308i 0.0839899i
\(911\) −144.447 + 144.447i −0.158559 + 0.158559i −0.781928 0.623369i \(-0.785764\pi\)
0.623369 + 0.781928i \(0.285764\pi\)
\(912\) −8.84759 39.0548i −0.00970131 0.0428233i
\(913\) 203.920 203.920i 0.223352 0.223352i
\(914\) 607.782i 0.664970i
\(915\) 2.00324 + 8.84264i 0.00218933 + 0.00966409i
\(916\) 770.607i 0.841274i
\(917\) 600.424i 0.654770i
\(918\) −564.943 168.099i −0.615406 0.183114i
\(919\) 1027.79 1.11838 0.559192 0.829038i \(-0.311112\pi\)
0.559192 + 0.829038i \(0.311112\pi\)
\(920\) 519.570 0.564750
\(921\) 685.008 155.184i 0.743765 0.168495i
\(922\) −183.549 −0.199077
\(923\) −203.854 203.854i −0.220860 0.220860i
\(924\) −431.845 + 97.8315i −0.467365 + 0.105878i
\(925\) −119.162 119.162i −0.128824 0.128824i
\(926\) 46.8257 0.0505677
\(927\) 6.33662 3.02635i 0.00683562 0.00326467i
\(928\) 867.591 + 867.591i 0.934904 + 0.934904i
\(929\) −1155.88 + 1155.88i −1.24422 + 1.24422i −0.285986 + 0.958234i \(0.592321\pi\)
−0.958234 + 0.285986i \(0.907679\pi\)
\(930\) 722.952 163.780i 0.777368 0.176107i
\(931\) 255.944 0.274913
\(932\) 398.529 + 398.529i 0.427606 + 0.427606i
\(933\) 586.849 + 370.066i 0.628991 + 0.396641i
\(934\) 440.434 0.471556
\(935\) 407.995 + 579.741i 0.436358 + 0.620043i
\(936\) −208.223 + 99.4468i −0.222461 + 0.106247i
\(937\) 31.1301i 0.0332231i −0.999862 0.0166116i \(-0.994712\pi\)
0.999862 0.0166116i \(-0.00528787\pi\)
\(938\) 592.525 + 592.525i 0.631690 + 0.631690i
\(939\) 690.114 + 435.185i 0.734945 + 0.463456i
\(940\) 27.2914 27.2914i 0.0290335 0.0290335i
\(941\) 39.4081 39.4081i 0.0418790 0.0418790i −0.685857 0.727736i \(-0.740573\pi\)
0.727736 + 0.685857i \(0.240573\pi\)
\(942\) 155.716 35.2763i 0.165303 0.0374483i
\(943\) 493.207i 0.523019i
\(944\) 96.9349 0.102685
\(945\) −316.770 401.194i −0.335206 0.424544i
\(946\) −814.952 814.952i −0.861471 0.861471i
\(947\) 320.688 + 320.688i 0.338636 + 0.338636i 0.855854 0.517218i \(-0.173032\pi\)
−0.517218 + 0.855854i \(0.673032\pi\)
\(948\) −763.937 481.738i −0.805841 0.508163i
\(949\) −1.68918 + 1.68918i −0.00177996 + 0.00177996i
\(950\) 199.225 0.209710
\(951\) −103.978 + 164.888i −0.109336 + 0.173384i
\(952\) 126.801 729.253i 0.133195 0.766022i
\(953\) 1053.19i 1.10513i −0.833471 0.552563i \(-0.813650\pi\)
0.833471 0.552563i \(-0.186350\pi\)
\(954\) −115.463 + 55.1447i −0.121030 + 0.0578037i
\(955\) −295.202 + 295.202i −0.309112 + 0.309112i
\(956\) 502.417i 0.525541i
\(957\) −1350.90 + 306.037i −1.41160 + 0.319788i
\(958\) −328.295 328.295i −0.342688 0.342688i
\(959\) −640.002 + 640.002i −0.667364 + 0.667364i
\(960\) 399.588 + 251.980i 0.416238 + 0.262479i
\(961\) 1983.16i 2.06365i
\(962\) 38.7186 38.7186i 0.0402480 0.0402480i
\(963\) −1530.67 541.168i −1.58948 0.561960i
\(964\) 326.413 326.413i 0.338603 0.338603i
\(965\) 750.000i 0.777202i
\(966\) 360.362 81.6373i 0.373045 0.0845107i
\(967\) 244.702i 0.253053i 0.991963 + 0.126527i \(0.0403829\pi\)
−0.991963 + 0.126527i \(0.959617\pi\)
\(968\) 140.944i 0.145603i
\(969\) 426.939 472.513i 0.440597 0.487629i
\(970\) 53.5541 0.0552104
\(971\) 260.440 0.268218 0.134109 0.990967i \(-0.457183\pi\)
0.134109 + 0.990967i \(0.457183\pi\)
\(972\) −252.026 + 512.692i −0.259286 + 0.527461i
\(973\) −153.563 −0.157824
\(974\) 329.247 + 329.247i 0.338036 + 0.338036i
\(975\) −25.8901 114.283i −0.0265539 0.117214i
\(976\) −0.644204 0.644204i −0.000660045 0.000660045i
\(977\) 1661.77 1.70089 0.850447 0.526060i \(-0.176331\pi\)
0.850447 + 0.526060i \(0.176331\pi\)
\(978\) −175.632 110.753i −0.179583 0.113245i
\(979\) −301.407 301.407i −0.307872 0.307872i
\(980\) −120.834 + 120.834i −0.123300 + 0.123300i
\(981\) 449.572 + 158.946i 0.458279 + 0.162024i
\(982\) −952.276 −0.969731
\(983\) 62.7039 + 62.7039i 0.0637883 + 0.0637883i 0.738281 0.674493i \(-0.235638\pi\)
−0.674493 + 0.738281i \(0.735638\pi\)
\(984\) −358.286 + 568.167i −0.364112 + 0.577406i
\(985\) 1135.75 1.15305
\(986\) 146.834 844.464i 0.148919 0.856454i
\(987\) 39.5503 62.7185i 0.0400712 0.0635446i
\(988\) 92.2885i 0.0934094i
\(989\) −969.537 969.537i −0.980320 0.980320i
\(990\) −434.894 + 207.704i −0.439287 + 0.209802i
\(991\) 703.801 703.801i 0.710193 0.710193i −0.256383 0.966575i \(-0.582531\pi\)
0.966575 + 0.256383i \(0.0825308\pi\)
\(992\) 1198.97 1198.97i 1.20864 1.20864i
\(993\) 255.870 + 1129.46i 0.257674 + 1.13742i
\(994\) 628.697i 0.632492i
\(995\) 1328.50 1.33518
\(996\) 168.692 38.2160i 0.169370 0.0383695i
\(997\) −251.502 251.502i −0.252259 0.252259i 0.569637 0.821896i \(-0.307084\pi\)
−0.821896 + 0.569637i \(0.807084\pi\)
\(998\) −234.637 234.637i −0.235108 0.235108i
\(999\) 42.7679 363.709i 0.0428107 0.364073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.f.a.38.7 yes 20
3.2 odd 2 inner 51.3.f.a.38.4 20
17.13 even 4 inner 51.3.f.a.47.4 yes 20
51.47 odd 4 inner 51.3.f.a.47.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.f.a.38.4 20 3.2 odd 2 inner
51.3.f.a.38.7 yes 20 1.1 even 1 trivial
51.3.f.a.47.4 yes 20 17.13 even 4 inner
51.3.f.a.47.7 yes 20 51.47 odd 4 inner