Properties

Label 51.3.f.a.38.1
Level $51$
Weight $3$
Character 51.38
Analytic conductor $1.390$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(38,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.38"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 62 x^{18} + 1545 x^{16} + 20120 x^{14} + 149608 x^{12} + 655792 x^{10} + 1690896 x^{8} + \cdots + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.1
Root \(-4.37647i\) of defining polynomial
Character \(\chi\) \(=\) 51.38
Dual form 51.3.f.a.47.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.37647 q^{2} +(-1.14794 + 2.77168i) q^{3} +7.40053 q^{4} +(-1.81992 - 1.81992i) q^{5} +(3.87599 - 9.35849i) q^{6} +(-8.06294 - 8.06294i) q^{7} -11.4818 q^{8} +(-6.36445 - 6.36347i) q^{9} +(6.14491 + 6.14491i) q^{10} +(5.55928 - 5.55928i) q^{11} +(-8.49539 + 20.5119i) q^{12} -3.00160 q^{13} +(27.2242 + 27.2242i) q^{14} +(7.13342 - 2.95508i) q^{15} +9.16568 q^{16} +(-11.3285 - 12.6754i) q^{17} +(21.4893 + 21.4861i) q^{18} +18.5232i q^{19} +(-13.4684 - 13.4684i) q^{20} +(31.6037 - 13.0921i) q^{21} +(-18.7707 + 18.7707i) q^{22} +(-29.6493 + 29.6493i) q^{23} +(13.1804 - 31.8238i) q^{24} -18.3758i q^{25} +10.1348 q^{26} +(24.9436 - 10.3353i) q^{27} +(-59.6700 - 59.6700i) q^{28} +(-19.6537 - 19.6537i) q^{29} +(-24.0858 + 9.97773i) q^{30} +(-9.81702 + 9.81702i) q^{31} +14.9794 q^{32} +(9.02681 + 21.7903i) q^{33} +(38.2501 + 42.7981i) q^{34} +29.3478i q^{35} +(-47.1003 - 47.0930i) q^{36} +(1.50230 - 1.50230i) q^{37} -62.5430i q^{38} +(3.44567 - 8.31948i) q^{39} +(20.8959 + 20.8959i) q^{40} +(26.4853 - 26.4853i) q^{41} +(-106.709 + 44.2050i) q^{42} -10.3809i q^{43} +(41.1416 - 41.1416i) q^{44} +(0.00177433 + 23.1638i) q^{45} +(100.110 - 100.110i) q^{46} +28.9824i q^{47} +(-10.5217 + 25.4043i) q^{48} +81.0219i q^{49} +62.0451i q^{50} +(48.1367 - 16.8482i) q^{51} -22.2134 q^{52} -7.41735 q^{53} +(-84.2211 + 34.8969i) q^{54} -20.2349 q^{55} +(92.5767 + 92.5767i) q^{56} +(-51.3404 - 21.2636i) q^{57} +(66.3601 + 66.3601i) q^{58} +22.7526 q^{59} +(52.7911 - 21.8691i) q^{60} +(-49.7010 - 49.7010i) q^{61} +(33.1468 - 33.1468i) q^{62} +(0.00786092 + 102.624i) q^{63} -87.2403 q^{64} +(5.46268 + 5.46268i) q^{65} +(-30.4787 - 73.5742i) q^{66} +18.0861 q^{67} +(-83.8365 - 93.8047i) q^{68} +(-48.1426 - 116.214i) q^{69} -99.0920i q^{70} +(-12.6033 - 12.6033i) q^{71} +(73.0751 + 73.0639i) q^{72} +(84.8754 - 84.8754i) q^{73} +(-5.07248 + 5.07248i) q^{74} +(50.9318 + 21.0943i) q^{75} +137.081i q^{76} -89.6482 q^{77} +(-11.6342 + 28.0904i) q^{78} +(-19.0745 - 19.0745i) q^{79} +(-16.6808 - 16.6808i) q^{80} +(0.0124090 + 81.0000i) q^{81} +(-89.4267 + 89.4267i) q^{82} +92.0738 q^{83} +(233.884 - 96.8884i) q^{84} +(-2.45136 + 43.6852i) q^{85} +35.0509i q^{86} +(77.0352 - 31.9125i) q^{87} +(-63.8303 + 63.8303i) q^{88} +12.6276i q^{89} +(-0.00599095 - 78.2119i) q^{90} +(24.2017 + 24.2017i) q^{91} +(-219.420 + 219.420i) q^{92} +(-15.9403 - 38.4790i) q^{93} -97.8583i q^{94} +(33.7108 - 33.7108i) q^{95} +(-17.1956 + 41.5183i) q^{96} +(-8.53997 + 8.53997i) q^{97} -273.568i q^{98} +(-70.7581 + 0.00541999i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 24 q^{4} - 2 q^{6} - 4 q^{7} - 16 q^{10} - 42 q^{12} - 12 q^{13} - 64 q^{16} - 4 q^{18} + 88 q^{21} - 40 q^{22} - 82 q^{24} + 54 q^{27} - 160 q^{28} + 48 q^{31} + 264 q^{33} + 152 q^{34}+ \cdots - 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.37647 −1.68823 −0.844117 0.536160i \(-0.819875\pi\)
−0.844117 + 0.536160i \(0.819875\pi\)
\(3\) −1.14794 + 2.77168i −0.382648 + 0.923894i
\(4\) 7.40053 1.85013
\(5\) −1.81992 1.81992i −0.363985 0.363985i 0.501293 0.865278i \(-0.332858\pi\)
−0.865278 + 0.501293i \(0.832858\pi\)
\(6\) 3.87599 9.35849i 0.645999 1.55975i
\(7\) −8.06294 8.06294i −1.15185 1.15185i −0.986182 0.165666i \(-0.947023\pi\)
−0.165666 0.986182i \(-0.552977\pi\)
\(8\) −11.4818 −1.43522
\(9\) −6.36445 6.36347i −0.707161 0.707053i
\(10\) 6.14491 + 6.14491i 0.614491 + 0.614491i
\(11\) 5.55928 5.55928i 0.505389 0.505389i −0.407719 0.913108i \(-0.633676\pi\)
0.913108 + 0.407719i \(0.133676\pi\)
\(12\) −8.49539 + 20.5119i −0.707949 + 1.70933i
\(13\) −3.00160 −0.230892 −0.115446 0.993314i \(-0.536830\pi\)
−0.115446 + 0.993314i \(0.536830\pi\)
\(14\) 27.2242 + 27.2242i 1.94459 + 1.94459i
\(15\) 7.13342 2.95508i 0.475561 0.197005i
\(16\) 9.16568 0.572855
\(17\) −11.3285 12.6754i −0.666380 0.745613i
\(18\) 21.4893 + 21.4861i 1.19385 + 1.19367i
\(19\) 18.5232i 0.974905i 0.873149 + 0.487453i \(0.162074\pi\)
−0.873149 + 0.487453i \(0.837926\pi\)
\(20\) −13.4684 13.4684i −0.673419 0.673419i
\(21\) 31.6037 13.0921i 1.50494 0.623433i
\(22\) −18.7707 + 18.7707i −0.853214 + 0.853214i
\(23\) −29.6493 + 29.6493i −1.28910 + 1.28910i −0.353763 + 0.935335i \(0.615098\pi\)
−0.935335 + 0.353763i \(0.884902\pi\)
\(24\) 13.1804 31.8238i 0.549184 1.32599i
\(25\) 18.3758i 0.735030i
\(26\) 10.1348 0.389800
\(27\) 24.9436 10.3353i 0.923836 0.382790i
\(28\) −59.6700 59.6700i −2.13107 2.13107i
\(29\) −19.6537 19.6537i −0.677714 0.677714i 0.281769 0.959482i \(-0.409079\pi\)
−0.959482 + 0.281769i \(0.909079\pi\)
\(30\) −24.0858 + 9.97773i −0.802858 + 0.332591i
\(31\) −9.81702 + 9.81702i −0.316678 + 0.316678i −0.847490 0.530812i \(-0.821887\pi\)
0.530812 + 0.847490i \(0.321887\pi\)
\(32\) 14.9794 0.468108
\(33\) 9.02681 + 21.7903i 0.273540 + 0.660312i
\(34\) 38.2501 + 42.7981i 1.12500 + 1.25877i
\(35\) 29.3478i 0.838510i
\(36\) −47.1003 47.0930i −1.30834 1.30814i
\(37\) 1.50230 1.50230i 0.0406028 0.0406028i −0.686514 0.727117i \(-0.740860\pi\)
0.727117 + 0.686514i \(0.240860\pi\)
\(38\) 62.5430i 1.64587i
\(39\) 3.44567 8.31948i 0.0883505 0.213320i
\(40\) 20.8959 + 20.8959i 0.522398 + 0.522398i
\(41\) 26.4853 26.4853i 0.645983 0.645983i −0.306037 0.952020i \(-0.599003\pi\)
0.952020 + 0.306037i \(0.0990031\pi\)
\(42\) −106.709 + 44.2050i −2.54069 + 1.05250i
\(43\) 10.3809i 0.241417i −0.992688 0.120709i \(-0.961483\pi\)
0.992688 0.120709i \(-0.0385167\pi\)
\(44\) 41.1416 41.1416i 0.935036 0.935036i
\(45\) 0.00177433 + 23.1638i 3.94295e−5 + 0.514752i
\(46\) 100.110 100.110i 2.17630 2.17630i
\(47\) 28.9824i 0.616648i 0.951281 + 0.308324i \(0.0997681\pi\)
−0.951281 + 0.308324i \(0.900232\pi\)
\(48\) −10.5217 + 25.4043i −0.219202 + 0.529257i
\(49\) 81.0219i 1.65351i
\(50\) 62.0451i 1.24090i
\(51\) 48.1367 16.8482i 0.943856 0.330357i
\(52\) −22.2134 −0.427181
\(53\) −7.41735 −0.139950 −0.0699750 0.997549i \(-0.522292\pi\)
−0.0699750 + 0.997549i \(0.522292\pi\)
\(54\) −84.2211 + 34.8969i −1.55965 + 0.646238i
\(55\) −20.2349 −0.367908
\(56\) 92.5767 + 92.5767i 1.65316 + 1.65316i
\(57\) −51.3404 21.2636i −0.900709 0.373046i
\(58\) 66.3601 + 66.3601i 1.14414 + 1.14414i
\(59\) 22.7526 0.385637 0.192819 0.981234i \(-0.438237\pi\)
0.192819 + 0.981234i \(0.438237\pi\)
\(60\) 52.7911 21.8691i 0.879851 0.364486i
\(61\) −49.7010 49.7010i −0.814771 0.814771i 0.170574 0.985345i \(-0.445438\pi\)
−0.985345 + 0.170574i \(0.945438\pi\)
\(62\) 33.1468 33.1468i 0.534626 0.534626i
\(63\) 0.00786092 + 102.624i 0.000124777 + 1.62896i
\(64\) −87.2403 −1.36313
\(65\) 5.46268 + 5.46268i 0.0840412 + 0.0840412i
\(66\) −30.4787 73.5742i −0.461799 1.11476i
\(67\) 18.0861 0.269941 0.134971 0.990850i \(-0.456906\pi\)
0.134971 + 0.990850i \(0.456906\pi\)
\(68\) −83.8365 93.8047i −1.23289 1.37948i
\(69\) −48.1426 116.214i −0.697719 1.68426i
\(70\) 99.0920i 1.41560i
\(71\) −12.6033 12.6033i −0.177511 0.177511i 0.612759 0.790270i \(-0.290060\pi\)
−0.790270 + 0.612759i \(0.790060\pi\)
\(72\) 73.0751 + 73.0639i 1.01493 + 1.01478i
\(73\) 84.8754 84.8754i 1.16268 1.16268i 0.178790 0.983887i \(-0.442782\pi\)
0.983887 0.178790i \(-0.0572181\pi\)
\(74\) −5.07248 + 5.07248i −0.0685470 + 0.0685470i
\(75\) 50.9318 + 21.0943i 0.679090 + 0.281258i
\(76\) 137.081i 1.80370i
\(77\) −89.6482 −1.16426
\(78\) −11.6342 + 28.0904i −0.149156 + 0.360134i
\(79\) −19.0745 19.0745i −0.241450 0.241450i 0.576000 0.817450i \(-0.304613\pi\)
−0.817450 + 0.576000i \(0.804613\pi\)
\(80\) −16.6808 16.6808i −0.208510 0.208510i
\(81\) 0.0124090 + 81.0000i 0.000153198 + 1.00000i
\(82\) −89.4267 + 89.4267i −1.09057 + 1.09057i
\(83\) 92.0738 1.10932 0.554662 0.832076i \(-0.312848\pi\)
0.554662 + 0.832076i \(0.312848\pi\)
\(84\) 233.884 96.8884i 2.78433 1.15343i
\(85\) −2.45136 + 43.6852i −0.0288396 + 0.513943i
\(86\) 35.0509i 0.407569i
\(87\) 77.0352 31.9125i 0.885462 0.366810i
\(88\) −63.8303 + 63.8303i −0.725344 + 0.725344i
\(89\) 12.6276i 0.141883i 0.997480 + 0.0709417i \(0.0226004\pi\)
−0.997480 + 0.0709417i \(0.977400\pi\)
\(90\) −0.00599095 78.2119i −6.65661e−5 0.869021i
\(91\) 24.2017 + 24.2017i 0.265953 + 0.265953i
\(92\) −219.420 + 219.420i −2.38500 + 2.38500i
\(93\) −15.9403 38.4790i −0.171401 0.413753i
\(94\) 97.8583i 1.04105i
\(95\) 33.7108 33.7108i 0.354851 0.354851i
\(96\) −17.1956 + 41.5183i −0.179120 + 0.432482i
\(97\) −8.53997 + 8.53997i −0.0880409 + 0.0880409i −0.749756 0.661715i \(-0.769829\pi\)
0.661715 + 0.749756i \(0.269829\pi\)
\(98\) 273.568i 2.79151i
\(99\) −70.7581 + 0.00541999i −0.714728 + 5.47474e-5i
\(100\) 135.990i 1.35990i
\(101\) 94.3793i 0.934448i 0.884139 + 0.467224i \(0.154746\pi\)
−0.884139 + 0.467224i \(0.845254\pi\)
\(102\) −162.532 + 56.8874i −1.59345 + 0.557720i
\(103\) 14.4497 0.140289 0.0701443 0.997537i \(-0.477654\pi\)
0.0701443 + 0.997537i \(0.477654\pi\)
\(104\) 34.4636 0.331381
\(105\) −81.3429 33.6897i −0.774694 0.320854i
\(106\) 25.0444 0.236268
\(107\) −98.7663 98.7663i −0.923050 0.923050i 0.0741939 0.997244i \(-0.476362\pi\)
−0.997244 + 0.0741939i \(0.976362\pi\)
\(108\) 184.595 76.4868i 1.70922 0.708211i
\(109\) −19.9590 19.9590i −0.183110 0.183110i 0.609600 0.792709i \(-0.291330\pi\)
−0.792709 + 0.609600i \(0.791330\pi\)
\(110\) 68.3225 0.621114
\(111\) 2.43935 + 5.88847i 0.0219761 + 0.0530493i
\(112\) −73.9023 73.9023i −0.659842 0.659842i
\(113\) 32.3133 32.3133i 0.285958 0.285958i −0.549522 0.835480i \(-0.685190\pi\)
0.835480 + 0.549522i \(0.185190\pi\)
\(114\) 173.349 + 71.7958i 1.52061 + 0.629788i
\(115\) 107.919 0.938424
\(116\) −145.448 145.448i −1.25386 1.25386i
\(117\) 19.1035 + 19.1006i 0.163278 + 0.163253i
\(118\) −76.8234 −0.651046
\(119\) −10.8605 + 193.542i −0.0912643 + 1.62640i
\(120\) −81.9042 + 33.9295i −0.682535 + 0.282746i
\(121\) 59.1888i 0.489164i
\(122\) 167.814 + 167.814i 1.37552 + 1.37552i
\(123\) 43.0052 + 103.812i 0.349636 + 0.844004i
\(124\) −72.6511 + 72.6511i −0.585896 + 0.585896i
\(125\) −78.9405 + 78.9405i −0.631524 + 0.631524i
\(126\) −0.0265421 346.508i −0.000210652 2.75006i
\(127\) 165.909i 1.30637i 0.757199 + 0.653185i \(0.226568\pi\)
−0.757199 + 0.653185i \(0.773432\pi\)
\(128\) 234.646 1.83317
\(129\) 28.7727 + 11.9167i 0.223044 + 0.0923779i
\(130\) −18.4446 18.4446i −0.141881 0.141881i
\(131\) −122.294 122.294i −0.933546 0.933546i 0.0643798 0.997925i \(-0.479493\pi\)
−0.997925 + 0.0643798i \(0.979493\pi\)
\(132\) 66.8032 + 161.260i 0.506085 + 1.22166i
\(133\) 149.351 149.351i 1.12294 1.12294i
\(134\) −61.0670 −0.455724
\(135\) −64.2048 26.5859i −0.475591 0.196932i
\(136\) 130.071 + 145.536i 0.956401 + 1.07012i
\(137\) 46.0773i 0.336331i −0.985759 0.168165i \(-0.946216\pi\)
0.985759 0.168165i \(-0.0537842\pi\)
\(138\) 162.552 + 392.393i 1.17791 + 2.84343i
\(139\) 85.9526 85.9526i 0.618364 0.618364i −0.326748 0.945112i \(-0.605953\pi\)
0.945112 + 0.326748i \(0.105953\pi\)
\(140\) 217.190i 1.55135i
\(141\) −80.3301 33.2702i −0.569717 0.235959i
\(142\) 42.5545 + 42.5545i 0.299679 + 0.299679i
\(143\) −16.6867 + 16.6867i −0.116690 + 0.116690i
\(144\) −58.3345 58.3255i −0.405100 0.405038i
\(145\) 71.5364i 0.493355i
\(146\) −286.579 + 286.579i −1.96287 + 1.96287i
\(147\) −224.567 93.0086i −1.52767 0.632712i
\(148\) 11.1178 11.1178i 0.0751205 0.0751205i
\(149\) 204.162i 1.37021i −0.728444 0.685106i \(-0.759756\pi\)
0.728444 0.685106i \(-0.240244\pi\)
\(150\) −171.969 71.2243i −1.14646 0.474829i
\(151\) 66.9943i 0.443671i −0.975084 0.221835i \(-0.928795\pi\)
0.975084 0.221835i \(-0.0712048\pi\)
\(152\) 212.679i 1.39920i
\(153\) −8.56030 + 152.760i −0.0559497 + 0.998434i
\(154\) 302.694 1.96555
\(155\) 35.7324 0.230532
\(156\) 25.4998 61.5685i 0.163460 0.394670i
\(157\) 94.9528 0.604795 0.302397 0.953182i \(-0.402213\pi\)
0.302397 + 0.953182i \(0.402213\pi\)
\(158\) 64.4045 + 64.4045i 0.407623 + 0.407623i
\(159\) 8.51470 20.5585i 0.0535516 0.129299i
\(160\) −27.2614 27.2614i −0.170384 0.170384i
\(161\) 478.120 2.96969
\(162\) −0.0418987 273.494i −0.000258634 1.68823i
\(163\) −165.935 165.935i −1.01800 1.01800i −0.999835 0.0181684i \(-0.994217\pi\)
−0.0181684 0.999835i \(-0.505783\pi\)
\(164\) 196.005 196.005i 1.19515 1.19515i
\(165\) 23.2286 56.0848i 0.140779 0.339908i
\(166\) −310.884 −1.87280
\(167\) 35.4176 + 35.4176i 0.212082 + 0.212082i 0.805151 0.593070i \(-0.202084\pi\)
−0.593070 + 0.805151i \(0.702084\pi\)
\(168\) −362.866 + 150.320i −2.15992 + 0.894764i
\(169\) −159.990 −0.946689
\(170\) 8.27695 147.502i 0.0486879 0.867656i
\(171\) 117.872 117.890i 0.689309 0.689415i
\(172\) 76.8245i 0.446654i
\(173\) −101.804 101.804i −0.588463 0.588463i 0.348752 0.937215i \(-0.386606\pi\)
−0.937215 + 0.348752i \(0.886606\pi\)
\(174\) −260.107 + 107.751i −1.49487 + 0.619261i
\(175\) −148.163 + 148.163i −0.846643 + 0.846643i
\(176\) 50.9545 50.9545i 0.289514 0.289514i
\(177\) −26.1187 + 63.0630i −0.147563 + 0.356288i
\(178\) 42.6367i 0.239532i
\(179\) −148.271 −0.828330 −0.414165 0.910202i \(-0.635926\pi\)
−0.414165 + 0.910202i \(0.635926\pi\)
\(180\) 0.0131309 + 171.425i 7.29497e−5 + 0.952359i
\(181\) 24.0702 + 24.0702i 0.132984 + 0.132984i 0.770466 0.637481i \(-0.220024\pi\)
−0.637481 + 0.770466i \(0.720024\pi\)
\(182\) −81.7162 81.7162i −0.448990 0.448990i
\(183\) 194.809 80.7014i 1.06453 0.440991i
\(184\) 340.426 340.426i 1.85014 1.85014i
\(185\) −5.46815 −0.0295576
\(186\) 53.8218 + 129.923i 0.289364 + 0.698512i
\(187\) −133.444 7.48813i −0.713605 0.0400435i
\(188\) 214.485i 1.14088i
\(189\) −284.451 117.785i −1.50503 0.623203i
\(190\) −113.823 + 113.823i −0.599070 + 0.599070i
\(191\) 219.220i 1.14775i −0.818943 0.573875i \(-0.805439\pi\)
0.818943 0.573875i \(-0.194561\pi\)
\(192\) 100.147 241.802i 0.521599 1.25939i
\(193\) −176.196 176.196i −0.912935 0.912935i 0.0835674 0.996502i \(-0.473369\pi\)
−0.996502 + 0.0835674i \(0.973369\pi\)
\(194\) 28.8349 28.8349i 0.148634 0.148634i
\(195\) −21.4117 + 8.86996i −0.109803 + 0.0454870i
\(196\) 599.605i 3.05921i
\(197\) 49.8216 49.8216i 0.252902 0.252902i −0.569258 0.822159i \(-0.692769\pi\)
0.822159 + 0.569258i \(0.192769\pi\)
\(198\) 238.912 0.0183004i 1.20663 9.24264e-5i
\(199\) −179.790 + 179.790i −0.903469 + 0.903469i −0.995734 0.0922656i \(-0.970589\pi\)
0.0922656 + 0.995734i \(0.470589\pi\)
\(200\) 210.986i 1.05493i
\(201\) −20.7618 + 50.1289i −0.103293 + 0.249397i
\(202\) 318.668i 1.57757i
\(203\) 316.933i 1.56125i
\(204\) 356.237 124.686i 1.74626 0.611204i
\(205\) −96.4024 −0.470256
\(206\) −48.7890 −0.236840
\(207\) 377.373 0.0289064i 1.82306 0.000139644i
\(208\) −27.5117 −0.132268
\(209\) 102.976 + 102.976i 0.492706 + 0.492706i
\(210\) 274.652 + 113.752i 1.30786 + 0.541677i
\(211\) 171.893 + 171.893i 0.814660 + 0.814660i 0.985328 0.170669i \(-0.0545928\pi\)
−0.170669 + 0.985328i \(0.554593\pi\)
\(212\) −54.8923 −0.258926
\(213\) 49.4000 20.4644i 0.231925 0.0960769i
\(214\) 333.481 + 333.481i 1.55832 + 1.55832i
\(215\) −18.8925 + 18.8925i −0.0878722 + 0.0878722i
\(216\) −286.396 + 118.668i −1.32591 + 0.549387i
\(217\) 158.308 0.729530
\(218\) 67.3907 + 67.3907i 0.309132 + 0.309132i
\(219\) 137.815 + 332.680i 0.629294 + 1.51909i
\(220\) −149.749 −0.680677
\(221\) 34.0035 + 38.0465i 0.153862 + 0.172156i
\(222\) −8.23638 19.8822i −0.0371008 0.0895596i
\(223\) 297.453i 1.33387i −0.745117 0.666934i \(-0.767606\pi\)
0.745117 0.666934i \(-0.232394\pi\)
\(224\) −120.778 120.778i −0.539189 0.539189i
\(225\) −116.934 + 116.952i −0.519705 + 0.519785i
\(226\) −109.105 + 109.105i −0.482764 + 0.482764i
\(227\) 14.9743 14.9743i 0.0659660 0.0659660i −0.673354 0.739320i \(-0.735147\pi\)
0.739320 + 0.673354i \(0.235147\pi\)
\(228\) −379.946 157.362i −1.66643 0.690183i
\(229\) 2.04325i 0.00892250i 0.999990 + 0.00446125i \(0.00142007\pi\)
−0.999990 + 0.00446125i \(0.998580\pi\)
\(230\) −364.384 −1.58428
\(231\) 102.911 248.476i 0.445503 1.07566i
\(232\) 225.659 + 225.659i 0.972668 + 0.972668i
\(233\) 220.897 + 220.897i 0.948057 + 0.948057i 0.998716 0.0506589i \(-0.0161321\pi\)
−0.0506589 + 0.998716i \(0.516132\pi\)
\(234\) −64.5024 64.4925i −0.275651 0.275609i
\(235\) 52.7458 52.7458i 0.224450 0.224450i
\(236\) 168.381 0.713480
\(237\) 74.7650 30.9720i 0.315464 0.130684i
\(238\) 36.6700 653.487i 0.154075 2.74574i
\(239\) 15.3708i 0.0643129i −0.999483 0.0321565i \(-0.989763\pi\)
0.999483 0.0321565i \(-0.0102375\pi\)
\(240\) 65.3826 27.0853i 0.272428 0.112855i
\(241\) −222.478 + 222.478i −0.923147 + 0.923147i −0.997251 0.0741038i \(-0.976390\pi\)
0.0741038 + 0.997251i \(0.476390\pi\)
\(242\) 199.849i 0.825823i
\(243\) −224.521 92.9491i −0.923953 0.382507i
\(244\) −367.814 367.814i −1.50743 1.50743i
\(245\) 147.454 147.454i 0.601851 0.601851i
\(246\) −145.206 350.519i −0.590267 1.42488i
\(247\) 55.5992i 0.225098i
\(248\) 112.717 112.717i 0.454503 0.454503i
\(249\) −105.696 + 255.199i −0.424480 + 1.02490i
\(250\) 266.540 266.540i 1.06616 1.06616i
\(251\) 143.527i 0.571822i 0.958256 + 0.285911i \(0.0922962\pi\)
−0.958256 + 0.285911i \(0.907704\pi\)
\(252\) 0.0581750 + 759.475i 0.000230853 + 3.01379i
\(253\) 329.657i 1.30299i
\(254\) 560.186i 2.20546i
\(255\) −118.267 56.9426i −0.463794 0.223304i
\(256\) −443.314 −1.73169
\(257\) 400.725 1.55924 0.779621 0.626252i \(-0.215412\pi\)
0.779621 + 0.626252i \(0.215412\pi\)
\(258\) −97.1500 40.2365i −0.376550 0.155955i
\(259\) −24.2260 −0.0935365
\(260\) 40.4267 + 40.4267i 0.155487 + 0.155487i
\(261\) 0.0191613 + 250.151i 7.34149e−5 + 0.958432i
\(262\) 412.923 + 412.923i 1.57604 + 1.57604i
\(263\) −449.598 −1.70950 −0.854749 0.519041i \(-0.826289\pi\)
−0.854749 + 0.519041i \(0.826289\pi\)
\(264\) −103.644 250.191i −0.392590 0.947693i
\(265\) 13.4990 + 13.4990i 0.0509396 + 0.0509396i
\(266\) −504.280 + 504.280i −1.89579 + 1.89579i
\(267\) −34.9997 14.4958i −0.131085 0.0542914i
\(268\) 133.846 0.499427
\(269\) 227.689 + 227.689i 0.846428 + 0.846428i 0.989685 0.143258i \(-0.0457577\pi\)
−0.143258 + 0.989685i \(0.545758\pi\)
\(270\) 216.786 + 89.7663i 0.802909 + 0.332468i
\(271\) 475.631 1.75510 0.877549 0.479488i \(-0.159177\pi\)
0.877549 + 0.479488i \(0.159177\pi\)
\(272\) −103.833 116.179i −0.381739 0.427128i
\(273\) −94.8617 + 39.2972i −0.347479 + 0.143946i
\(274\) 155.578i 0.567805i
\(275\) −102.156 102.156i −0.371476 0.371476i
\(276\) −356.281 860.045i −1.29087 3.11610i
\(277\) 242.909 242.909i 0.876926 0.876926i −0.116289 0.993215i \(-0.537100\pi\)
0.993215 + 0.116289i \(0.0370999\pi\)
\(278\) −290.216 + 290.216i −1.04394 + 1.04394i
\(279\) 124.950 0.00957105i 0.447850 3.43049e-5i
\(280\) 336.965i 1.20345i
\(281\) −45.4334 −0.161685 −0.0808424 0.996727i \(-0.525761\pi\)
−0.0808424 + 0.996727i \(0.525761\pi\)
\(282\) 271.232 + 112.336i 0.961816 + 0.398354i
\(283\) 56.9618 + 56.9618i 0.201278 + 0.201278i 0.800548 0.599269i \(-0.204542\pi\)
−0.599269 + 0.800548i \(0.704542\pi\)
\(284\) −93.2707 93.2707i −0.328418 0.328418i
\(285\) 54.7375 + 132.134i 0.192061 + 0.463627i
\(286\) 56.3422 56.3422i 0.197001 0.197001i
\(287\) −427.098 −1.48815
\(288\) −95.3359 95.3213i −0.331027 0.330977i
\(289\) −32.3323 + 287.186i −0.111876 + 0.993722i
\(290\) 241.540i 0.832898i
\(291\) −13.8667 33.4735i −0.0476518 0.115029i
\(292\) 628.123 628.123i 2.15110 2.15110i
\(293\) 227.538i 0.776581i −0.921537 0.388290i \(-0.873066\pi\)
0.921537 0.388290i \(-0.126934\pi\)
\(294\) 758.243 + 314.040i 2.57906 + 1.06816i
\(295\) −41.4080 41.4080i −0.140366 0.140366i
\(296\) −17.2491 + 17.2491i −0.0582740 + 0.0582740i
\(297\) 81.2113 196.125i 0.273439 0.660354i
\(298\) 689.345i 2.31324i
\(299\) 88.9952 88.9952i 0.297643 0.297643i
\(300\) 376.922 + 156.109i 1.25641 + 0.520364i
\(301\) −83.7009 + 83.7009i −0.278076 + 0.278076i
\(302\) 226.204i 0.749020i
\(303\) −261.589 108.342i −0.863331 0.357565i
\(304\) 169.778i 0.558479i
\(305\) 180.904i 0.593128i
\(306\) 28.9036 515.790i 0.0944561 1.68559i
\(307\) −128.053 −0.417110 −0.208555 0.978011i \(-0.566876\pi\)
−0.208555 + 0.978011i \(0.566876\pi\)
\(308\) −663.444 −2.15404
\(309\) −16.5875 + 40.0501i −0.0536812 + 0.129612i
\(310\) −120.649 −0.389191
\(311\) −214.390 214.390i −0.689357 0.689357i 0.272733 0.962090i \(-0.412072\pi\)
−0.962090 + 0.272733i \(0.912072\pi\)
\(312\) −39.5623 + 95.5223i −0.126802 + 0.306161i
\(313\) −99.6696 99.6696i −0.318433 0.318433i 0.529732 0.848165i \(-0.322293\pi\)
−0.848165 + 0.529732i \(0.822293\pi\)
\(314\) −320.605 −1.02103
\(315\) 186.754 186.783i 0.592871 0.592962i
\(316\) −141.161 141.161i −0.446714 0.446714i
\(317\) 30.0511 30.0511i 0.0947985 0.0947985i −0.658117 0.752916i \(-0.728647\pi\)
0.752916 + 0.658117i \(0.228647\pi\)
\(318\) −28.7496 + 69.4152i −0.0904075 + 0.218287i
\(319\) −218.521 −0.685018
\(320\) 158.771 + 158.771i 0.496158 + 0.496158i
\(321\) 387.127 160.371i 1.20600 0.499597i
\(322\) −1614.36 −5.01353
\(323\) 234.789 209.839i 0.726902 0.649657i
\(324\) 0.0918333 + 599.443i 0.000283436 + 1.85013i
\(325\) 55.1567i 0.169713i
\(326\) 560.272 + 560.272i 1.71863 + 1.71863i
\(327\) 78.2317 32.4081i 0.239241 0.0991074i
\(328\) −304.098 + 304.098i −0.927127 + 0.927127i
\(329\) 233.684 233.684i 0.710285 0.710285i
\(330\) −78.4304 + 189.368i −0.237668 + 0.573843i
\(331\) 476.109i 1.43840i −0.694805 0.719198i \(-0.744509\pi\)
0.694805 0.719198i \(-0.255491\pi\)
\(332\) 681.395 2.05239
\(333\) −19.1212 + 0.00146466i −0.0574210 + 4.39839e-6i
\(334\) −119.586 119.586i −0.358043 0.358043i
\(335\) −32.9153 32.9153i −0.0982546 0.0982546i
\(336\) 289.669 119.998i 0.862111 0.357137i
\(337\) −46.5612 + 46.5612i −0.138164 + 0.138164i −0.772806 0.634642i \(-0.781147\pi\)
0.634642 + 0.772806i \(0.281147\pi\)
\(338\) 540.202 1.59823
\(339\) 52.4683 + 126.656i 0.154774 + 0.373616i
\(340\) −18.1414 + 323.293i −0.0533570 + 0.950863i
\(341\) 109.151i 0.320091i
\(342\) −397.990 + 398.051i −1.16371 + 1.16389i
\(343\) 258.190 258.190i 0.752742 0.752742i
\(344\) 119.192i 0.346487i
\(345\) −123.885 + 299.116i −0.359086 + 0.867004i
\(346\) 343.738 + 343.738i 0.993463 + 0.993463i
\(347\) 111.677 111.677i 0.321837 0.321837i −0.527635 0.849471i \(-0.676921\pi\)
0.849471 + 0.527635i \(0.176921\pi\)
\(348\) 570.101 236.169i 1.63822 0.678647i
\(349\) 411.484i 1.17904i −0.807755 0.589518i \(-0.799318\pi\)
0.807755 0.589518i \(-0.200682\pi\)
\(350\) 500.266 500.266i 1.42933 1.42933i
\(351\) −74.8706 + 31.0225i −0.213306 + 0.0883832i
\(352\) 83.2749 83.2749i 0.236576 0.236576i
\(353\) 297.073i 0.841567i 0.907161 + 0.420783i \(0.138245\pi\)
−0.907161 + 0.420783i \(0.861755\pi\)
\(354\) 88.1890 212.930i 0.249121 0.601497i
\(355\) 45.8739i 0.129222i
\(356\) 93.4510i 0.262503i
\(357\) −523.969 252.277i −1.46770 0.706658i
\(358\) 500.632 1.39841
\(359\) −653.255 −1.81965 −0.909826 0.414990i \(-0.863785\pi\)
−0.909826 + 0.414990i \(0.863785\pi\)
\(360\) −0.0203724 265.962i −5.65899e−5 0.738782i
\(361\) 17.8911 0.0495598
\(362\) −81.2722 81.2722i −0.224509 0.224509i
\(363\) −164.053 67.9455i −0.451936 0.187178i
\(364\) 179.105 + 179.105i 0.492048 + 0.492048i
\(365\) −308.933 −0.846393
\(366\) −657.767 + 272.486i −1.79718 + 0.744496i
\(367\) 156.207 + 156.207i 0.425631 + 0.425631i 0.887137 0.461506i \(-0.152691\pi\)
−0.461506 + 0.887137i \(0.652691\pi\)
\(368\) −271.755 + 271.755i −0.738466 + 0.738466i
\(369\) −337.103 + 0.0258217i −0.913558 + 6.99775e-5i
\(370\) 18.4630 0.0499001
\(371\) 59.8056 + 59.8056i 0.161201 + 0.161201i
\(372\) −117.966 284.765i −0.317114 0.765498i
\(373\) −96.0702 −0.257561 −0.128780 0.991673i \(-0.541106\pi\)
−0.128780 + 0.991673i \(0.541106\pi\)
\(374\) 450.570 + 25.2834i 1.20473 + 0.0676027i
\(375\) −128.179 309.417i −0.341810 0.825113i
\(376\) 332.770i 0.885025i
\(377\) 58.9925 + 58.9925i 0.156479 + 0.156479i
\(378\) 960.440 + 397.698i 2.54085 + 1.05211i
\(379\) −285.142 + 285.142i −0.752353 + 0.752353i −0.974918 0.222565i \(-0.928557\pi\)
0.222565 + 0.974918i \(0.428557\pi\)
\(380\) 249.478 249.478i 0.656520 0.656520i
\(381\) −459.847 190.454i −1.20695 0.499880i
\(382\) 740.190i 1.93767i
\(383\) 186.717 0.487511 0.243755 0.969837i \(-0.421621\pi\)
0.243755 + 0.969837i \(0.421621\pi\)
\(384\) −269.361 + 650.365i −0.701460 + 1.69366i
\(385\) 163.153 + 163.153i 0.423774 + 0.423774i
\(386\) 594.921 + 594.921i 1.54125 + 1.54125i
\(387\) −66.0589 + 66.0690i −0.170695 + 0.170721i
\(388\) −63.2002 + 63.2002i −0.162887 + 0.162887i
\(389\) −418.620 −1.07614 −0.538072 0.842899i \(-0.680847\pi\)
−0.538072 + 0.842899i \(0.680847\pi\)
\(390\) 72.2958 29.9491i 0.185374 0.0767927i
\(391\) 711.697 + 39.9364i 1.82020 + 0.102139i
\(392\) 930.274i 2.37315i
\(393\) 479.349 198.574i 1.21972 0.505278i
\(394\) −168.221 + 168.221i −0.426957 + 0.426957i
\(395\) 69.4283i 0.175768i
\(396\) −523.647 + 0.0401108i −1.32234 + 0.000101290i
\(397\) −265.965 265.965i −0.669936 0.669936i 0.287765 0.957701i \(-0.407088\pi\)
−0.957701 + 0.287765i \(0.907088\pi\)
\(398\) 607.056 607.056i 1.52527 1.52527i
\(399\) 242.508 + 585.402i 0.607788 + 1.46717i
\(400\) 168.426i 0.421066i
\(401\) −411.502 + 411.502i −1.02619 + 1.02619i −0.0265424 + 0.999648i \(0.508450\pi\)
−0.999648 + 0.0265424i \(0.991550\pi\)
\(402\) 70.1016 169.258i 0.174382 0.421041i
\(403\) 29.4668 29.4668i 0.0731185 0.0731185i
\(404\) 698.456i 1.72885i
\(405\) 147.391 147.436i 0.363929 0.364040i
\(406\) 1070.11i 2.63575i
\(407\) 16.7034i 0.0410404i
\(408\) −552.694 + 193.447i −1.35464 + 0.474135i
\(409\) 183.553 0.448785 0.224392 0.974499i \(-0.427960\pi\)
0.224392 + 0.974499i \(0.427960\pi\)
\(410\) 325.499 0.793901
\(411\) 127.712 + 52.8942i 0.310734 + 0.128696i
\(412\) 106.936 0.259552
\(413\) −183.453 183.453i −0.444196 0.444196i
\(414\) −1274.19 + 0.0976015i −3.07775 + 0.000235752i
\(415\) −167.567 167.567i −0.403777 0.403777i
\(416\) −44.9623 −0.108082
\(417\) 139.565 + 336.902i 0.334687 + 0.807919i
\(418\) −347.694 347.694i −0.831803 0.831803i
\(419\) 278.304 278.304i 0.664211 0.664211i −0.292159 0.956370i \(-0.594374\pi\)
0.956370 + 0.292159i \(0.0943736\pi\)
\(420\) −601.980 249.321i −1.43329 0.593622i
\(421\) 432.375 1.02702 0.513509 0.858084i \(-0.328345\pi\)
0.513509 + 0.858084i \(0.328345\pi\)
\(422\) −580.392 580.392i −1.37534 1.37534i
\(423\) 184.429 184.457i 0.436002 0.436069i
\(424\) 85.1642 0.200859
\(425\) −232.920 + 208.169i −0.548048 + 0.489809i
\(426\) −166.798 + 69.0973i −0.391544 + 0.162200i
\(427\) 801.472i 1.87698i
\(428\) −730.923 730.923i −1.70776 1.70776i
\(429\) −27.0949 65.4057i −0.0631582 0.152461i
\(430\) 63.7900 63.7900i 0.148349 0.148349i
\(431\) 233.712 233.712i 0.542255 0.542255i −0.381934 0.924189i \(-0.624742\pi\)
0.924189 + 0.381934i \(0.124742\pi\)
\(432\) 228.625 94.7302i 0.529224 0.219283i
\(433\) 420.607i 0.971380i −0.874131 0.485690i \(-0.838568\pi\)
0.874131 0.485690i \(-0.161432\pi\)
\(434\) −534.522 −1.23162
\(435\) −198.276 82.1198i −0.455808 0.188781i
\(436\) −147.707 147.707i −0.338777 0.338777i
\(437\) −549.199 549.199i −1.25675 1.25675i
\(438\) −465.329 1123.28i −1.06240 2.56457i
\(439\) 309.319 309.319i 0.704600 0.704600i −0.260794 0.965394i \(-0.583984\pi\)
0.965394 + 0.260794i \(0.0839845\pi\)
\(440\) 232.332 0.528028
\(441\) 515.581 515.660i 1.16912 1.16930i
\(442\) −114.812 128.463i −0.259755 0.290640i
\(443\) 719.460i 1.62406i 0.583613 + 0.812032i \(0.301638\pi\)
−0.583613 + 0.812032i \(0.698362\pi\)
\(444\) 18.0525 + 43.5778i 0.0406587 + 0.0981481i
\(445\) 22.9813 22.9813i 0.0516434 0.0516434i
\(446\) 1004.34i 2.25188i
\(447\) 565.871 + 234.366i 1.26593 + 0.524309i
\(448\) 703.413 + 703.413i 1.57012 + 1.57012i
\(449\) −74.6267 + 74.6267i −0.166206 + 0.166206i −0.785310 0.619103i \(-0.787496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(450\) 394.823 394.883i 0.877384 0.877518i
\(451\) 294.478i 0.652945i
\(452\) 239.135 239.135i 0.529060 0.529060i
\(453\) 185.687 + 76.9057i 0.409905 + 0.169770i
\(454\) −50.5602 + 50.5602i −0.111366 + 0.111366i
\(455\) 88.0905i 0.193605i
\(456\) 589.478 + 244.144i 1.29272 + 0.535402i
\(457\) 743.882i 1.62775i 0.581039 + 0.813876i \(0.302646\pi\)
−0.581039 + 0.813876i \(0.697354\pi\)
\(458\) 6.89898i 0.0150633i
\(459\) −413.576 199.087i −0.901038 0.433740i
\(460\) 798.655 1.73621
\(461\) 744.275 1.61448 0.807239 0.590224i \(-0.200961\pi\)
0.807239 + 0.590224i \(0.200961\pi\)
\(462\) −347.476 + 838.972i −0.752113 + 1.81596i
\(463\) −256.153 −0.553247 −0.276624 0.960978i \(-0.589215\pi\)
−0.276624 + 0.960978i \(0.589215\pi\)
\(464\) −180.139 180.139i −0.388231 0.388231i
\(465\) −41.0188 + 99.0390i −0.0882125 + 0.212987i
\(466\) −745.852 745.852i −1.60054 1.60054i
\(467\) 178.129 0.381432 0.190716 0.981645i \(-0.438919\pi\)
0.190716 + 0.981645i \(0.438919\pi\)
\(468\) 141.376 + 141.354i 0.302086 + 0.302039i
\(469\) −145.827 145.827i −0.310932 0.310932i
\(470\) −178.095 + 178.095i −0.378925 + 0.378925i
\(471\) −109.000 + 263.179i −0.231424 + 0.558766i
\(472\) −261.240 −0.553474
\(473\) −57.7106 57.7106i −0.122010 0.122010i
\(474\) −252.442 + 104.576i −0.532577 + 0.220625i
\(475\) 340.378 0.716585
\(476\) −80.3731 + 1432.31i −0.168851 + 3.00905i
\(477\) 47.2073 + 47.2001i 0.0989671 + 0.0989520i
\(478\) 51.8989i 0.108575i
\(479\) 231.301 + 231.301i 0.482882 + 0.482882i 0.906051 0.423169i \(-0.139082\pi\)
−0.423169 + 0.906051i \(0.639082\pi\)
\(480\) 106.855 44.2654i 0.222614 0.0922197i
\(481\) −4.50931 + 4.50931i −0.00937487 + 0.00937487i
\(482\) 751.191 751.191i 1.55849 1.55849i
\(483\) −548.855 + 1325.20i −1.13635 + 2.74368i
\(484\) 438.029i 0.905018i
\(485\) 31.0842 0.0640911
\(486\) 758.086 + 313.839i 1.55985 + 0.645760i
\(487\) 133.787 + 133.787i 0.274718 + 0.274718i 0.830996 0.556278i \(-0.187771\pi\)
−0.556278 + 0.830996i \(0.687771\pi\)
\(488\) 570.655 + 570.655i 1.16937 + 1.16937i
\(489\) 650.401 269.434i 1.33006 0.550990i
\(490\) −497.872 + 497.872i −1.01607 + 1.01607i
\(491\) −263.750 −0.537168 −0.268584 0.963256i \(-0.586556\pi\)
−0.268584 + 0.963256i \(0.586556\pi\)
\(492\) 318.261 + 768.267i 0.646872 + 1.56152i
\(493\) −26.4727 + 471.765i −0.0536973 + 0.956927i
\(494\) 187.729i 0.380018i
\(495\) 128.784 + 128.764i 0.260170 + 0.260130i
\(496\) −89.9796 + 89.9796i −0.181410 + 0.181410i
\(497\) 203.238i 0.408930i
\(498\) 356.878 861.672i 0.716622 1.73027i
\(499\) 132.044 + 132.044i 0.264618 + 0.264618i 0.826927 0.562309i \(-0.190087\pi\)
−0.562309 + 0.826927i \(0.690087\pi\)
\(500\) −584.202 + 584.202i −1.16840 + 1.16840i
\(501\) −138.824 + 57.5090i −0.277094 + 0.114788i
\(502\) 484.615i 0.965369i
\(503\) −447.931 + 447.931i −0.890518 + 0.890518i −0.994572 0.104054i \(-0.966819\pi\)
0.104054 + 0.994572i \(0.466819\pi\)
\(504\) −0.0902572 1178.31i −0.000179082 2.33791i
\(505\) 171.763 171.763i 0.340125 0.340125i
\(506\) 1113.08i 2.19975i
\(507\) 183.660 443.443i 0.362249 0.874640i
\(508\) 1227.81i 2.41696i
\(509\) 682.119i 1.34011i −0.742309 0.670057i \(-0.766269\pi\)
0.742309 0.670057i \(-0.233731\pi\)
\(510\) 399.326 + 192.265i 0.782992 + 0.376990i
\(511\) −1368.69 −2.67845
\(512\) 558.249 1.09033
\(513\) 191.443 + 462.035i 0.373184 + 0.900652i
\(514\) −1353.04 −2.63236
\(515\) −26.2974 26.2974i −0.0510629 0.0510629i
\(516\) 212.933 + 88.1902i 0.412661 + 0.170911i
\(517\) 161.122 + 161.122i 0.311647 + 0.311647i
\(518\) 81.7981 0.157911
\(519\) 399.034 165.303i 0.768852 0.318503i
\(520\) −62.7212 62.7212i −0.120618 0.120618i
\(521\) 457.174 457.174i 0.877493 0.877493i −0.115782 0.993275i \(-0.536937\pi\)
0.993275 + 0.115782i \(0.0369372\pi\)
\(522\) −0.0646974 844.626i −0.000123941 1.61806i
\(523\) −982.417 −1.87843 −0.939214 0.343334i \(-0.888444\pi\)
−0.939214 + 0.343334i \(0.888444\pi\)
\(524\) −905.043 905.043i −1.72718 1.72718i
\(525\) −240.577 580.742i −0.458242 1.10618i
\(526\) 1518.05 2.88603
\(527\) 235.646 + 13.2231i 0.447147 + 0.0250913i
\(528\) 82.7368 + 199.723i 0.156699 + 0.378263i
\(529\) 1229.16i 2.32355i
\(530\) −45.5789 45.5789i −0.0859980 0.0859980i
\(531\) −144.808 144.786i −0.272708 0.272666i
\(532\) 1105.28 1105.28i 2.07759 2.07759i
\(533\) −79.4982 + 79.4982i −0.149152 + 0.149152i
\(534\) 118.175 + 48.9446i 0.221302 + 0.0916565i
\(535\) 359.494i 0.671952i
\(536\) −207.660 −0.387425
\(537\) 170.207 410.960i 0.316959 0.765289i
\(538\) −768.785 768.785i −1.42897 1.42897i
\(539\) 450.423 + 450.423i 0.835665 + 0.835665i
\(540\) −475.150 196.749i −0.879907 0.364351i
\(541\) −302.196 + 302.196i −0.558588 + 0.558588i −0.928905 0.370317i \(-0.879249\pi\)
0.370317 + 0.928905i \(0.379249\pi\)
\(542\) −1605.95 −2.96301
\(543\) −94.3461 + 39.0837i −0.173750 + 0.0719773i
\(544\) −169.694 189.871i −0.311937 0.349027i
\(545\) 72.6475i 0.133298i
\(546\) 320.297 132.686i 0.586625 0.243014i
\(547\) −496.002 + 496.002i −0.906768 + 0.906768i −0.996010 0.0892419i \(-0.971556\pi\)
0.0892419 + 0.996010i \(0.471556\pi\)
\(548\) 340.996i 0.622256i
\(549\) 0.0484558 + 632.590i 8.82619e−5 + 1.15226i
\(550\) 344.926 + 344.926i 0.627139 + 0.627139i
\(551\) 364.049 364.049i 0.660707 0.660707i
\(552\) 552.762 + 1334.34i 1.00138 + 2.41729i
\(553\) 307.593i 0.556227i
\(554\) −820.173 + 820.173i −1.48046 + 1.48046i
\(555\) 6.27714 15.1560i 0.0113102 0.0273081i
\(556\) 636.094 636.094i 1.14405 1.14405i
\(557\) 535.144i 0.960762i 0.877060 + 0.480381i \(0.159502\pi\)
−0.877060 + 0.480381i \(0.840498\pi\)
\(558\) −421.890 + 0.0323163i −0.756076 + 5.79146e-5i
\(559\) 31.1594i 0.0557414i
\(560\) 268.993i 0.480344i
\(561\) 173.941 361.269i 0.310056 0.643973i
\(562\) 153.404 0.272962
\(563\) 42.5493 0.0755760 0.0377880 0.999286i \(-0.487969\pi\)
0.0377880 + 0.999286i \(0.487969\pi\)
\(564\) −594.485 246.217i −1.05405 0.436555i
\(565\) −117.615 −0.208169
\(566\) −192.330 192.330i −0.339805 0.339805i
\(567\) 652.998 653.198i 1.15167 1.15202i
\(568\) 144.708 + 144.708i 0.254767 + 0.254767i
\(569\) −270.203 −0.474873 −0.237436 0.971403i \(-0.576307\pi\)
−0.237436 + 0.971403i \(0.576307\pi\)
\(570\) −184.819 446.145i −0.324245 0.782711i
\(571\) −632.245 632.245i −1.10726 1.10726i −0.993509 0.113750i \(-0.963714\pi\)
−0.113750 0.993509i \(-0.536286\pi\)
\(572\) −123.491 + 123.491i −0.215893 + 0.215893i
\(573\) 607.609 + 251.653i 1.06040 + 0.439185i
\(574\) 1442.08 2.51234
\(575\) 544.828 + 544.828i 0.947526 + 0.947526i
\(576\) 555.236 + 555.151i 0.963952 + 0.963804i
\(577\) −300.072 −0.520056 −0.260028 0.965601i \(-0.583732\pi\)
−0.260028 + 0.965601i \(0.583732\pi\)
\(578\) 109.169 969.673i 0.188873 1.67763i
\(579\) 690.624 286.097i 1.19279 0.494122i
\(580\) 529.407i 0.912771i
\(581\) −742.385 742.385i −1.27777 1.27777i
\(582\) 46.8203 + 113.022i 0.0804473 + 0.194196i
\(583\) −41.2351 + 41.2351i −0.0707292 + 0.0707292i
\(584\) −974.519 + 974.519i −1.66870 + 1.66870i
\(585\) −0.00532581 69.5286i −9.10396e−6 0.118852i
\(586\) 768.275i 1.31105i
\(587\) 415.532 0.707891 0.353946 0.935266i \(-0.384840\pi\)
0.353946 + 0.935266i \(0.384840\pi\)
\(588\) −1661.91 688.313i −2.82638 1.17060i
\(589\) −181.843 181.843i −0.308731 0.308731i
\(590\) 139.813 + 139.813i 0.236971 + 0.236971i
\(591\) 80.8973 + 195.282i 0.136882 + 0.330427i
\(592\) 13.7696 13.7696i 0.0232595 0.0232595i
\(593\) −1066.87 −1.79910 −0.899549 0.436819i \(-0.856105\pi\)
−0.899549 + 0.436819i \(0.856105\pi\)
\(594\) −274.207 + 662.210i −0.461628 + 1.11483i
\(595\) 371.996 332.466i 0.625204 0.558766i
\(596\) 1510.90i 2.53507i
\(597\) −291.932 704.711i −0.488999 1.18042i
\(598\) −300.489 + 300.489i −0.502490 + 0.502490i
\(599\) 902.903i 1.50735i 0.657247 + 0.753676i \(0.271721\pi\)
−0.657247 + 0.753676i \(0.728279\pi\)
\(600\) −584.786 242.200i −0.974644 0.403667i
\(601\) 181.754 + 181.754i 0.302419 + 0.302419i 0.841960 0.539540i \(-0.181402\pi\)
−0.539540 + 0.841960i \(0.681402\pi\)
\(602\) 282.613 282.613i 0.469457 0.469457i
\(603\) −115.108 115.090i −0.190892 0.190863i
\(604\) 495.793i 0.820849i
\(605\) 107.719 107.719i 0.178048 0.178048i
\(606\) 883.248 + 365.814i 1.45750 + 0.603653i
\(607\) 107.393 107.393i 0.176924 0.176924i −0.613090 0.790013i \(-0.710074\pi\)
0.790013 + 0.613090i \(0.210074\pi\)
\(608\) 277.467i 0.456361i
\(609\) −878.438 363.821i −1.44243 0.597408i
\(610\) 610.816i 1.00134i
\(611\) 86.9937i 0.142379i
\(612\) −63.3507 + 1130.51i −0.103514 + 1.84723i
\(613\) 879.570 1.43486 0.717431 0.696630i \(-0.245318\pi\)
0.717431 + 0.696630i \(0.245318\pi\)
\(614\) 432.366 0.704179
\(615\) 110.665 267.197i 0.179942 0.434466i
\(616\) 1029.32 1.67097
\(617\) 190.283 + 190.283i 0.308400 + 0.308400i 0.844288 0.535889i \(-0.180023\pi\)
−0.535889 + 0.844288i \(0.680023\pi\)
\(618\) 56.0071 135.228i 0.0906264 0.218815i
\(619\) 283.669 + 283.669i 0.458270 + 0.458270i 0.898087 0.439817i \(-0.144957\pi\)
−0.439817 + 0.898087i \(0.644957\pi\)
\(620\) 264.439 0.426514
\(621\) −433.124 + 1045.99i −0.697461 + 1.68437i
\(622\) 723.880 + 723.880i 1.16379 + 1.16379i
\(623\) 101.816 101.816i 0.163428 0.163428i
\(624\) 31.5819 76.2537i 0.0506120 0.122201i
\(625\) −172.063 −0.275300
\(626\) 336.531 + 336.531i 0.537590 + 0.537590i
\(627\) −403.626 + 167.205i −0.643742 + 0.266675i
\(628\) 702.701 1.11895
\(629\) −36.0611 2.02354i −0.0573308 0.00321708i
\(630\) −630.569 + 630.666i −1.00090 + 1.00106i
\(631\) 547.479i 0.867637i 0.901000 + 0.433818i \(0.142834\pi\)
−0.901000 + 0.433818i \(0.857166\pi\)
\(632\) 219.009 + 219.009i 0.346533 + 0.346533i
\(633\) −673.757 + 279.110i −1.06439 + 0.440931i
\(634\) −101.467 + 101.467i −0.160042 + 0.160042i
\(635\) 301.942 301.942i 0.475498 0.475498i
\(636\) 63.0132 152.144i 0.0990774 0.239220i
\(637\) 243.195i 0.381782i
\(638\) 737.828 1.15647
\(639\) 0.0122875 + 160.413i 1.92292e−5 + 0.251038i
\(640\) −427.038 427.038i −0.667247 0.667247i
\(641\) 66.0342 + 66.0342i 0.103017 + 0.103017i 0.756737 0.653719i \(-0.226792\pi\)
−0.653719 + 0.756737i \(0.726792\pi\)
\(642\) −1307.12 + 541.486i −2.03602 + 0.843437i
\(643\) 346.384 346.384i 0.538700 0.538700i −0.384447 0.923147i \(-0.625608\pi\)
0.923147 + 0.384447i \(0.125608\pi\)
\(644\) 3538.34 5.49432
\(645\) −30.6765 74.0517i −0.0475605 0.114809i
\(646\) −792.758 + 708.515i −1.22718 + 1.09677i
\(647\) 467.269i 0.722209i −0.932525 0.361104i \(-0.882400\pi\)
0.932525 0.361104i \(-0.117600\pi\)
\(648\) −0.142477 930.023i −0.000219873 1.43522i
\(649\) 126.488 126.488i 0.194897 0.194897i
\(650\) 186.235i 0.286515i
\(651\) −181.729 + 438.779i −0.279153 + 0.674008i
\(652\) −1228.00 1228.00i −1.88344 1.88344i
\(653\) 205.842 205.842i 0.315225 0.315225i −0.531705 0.846930i \(-0.678448\pi\)
0.846930 + 0.531705i \(0.178448\pi\)
\(654\) −264.147 + 109.425i −0.403894 + 0.167316i
\(655\) 445.133i 0.679593i
\(656\) 242.756 242.756i 0.370054 0.370054i
\(657\) −1080.29 + 0.0827489i −1.64427 + 0.000125950i
\(658\) −789.025 + 789.025i −1.19913 + 1.19913i
\(659\) 1130.65i 1.71570i −0.513898 0.857851i \(-0.671799\pi\)
0.513898 0.857851i \(-0.328201\pi\)
\(660\) 171.904 415.057i 0.260460 0.628874i
\(661\) 1249.51i 1.89034i −0.326586 0.945168i \(-0.605898\pi\)
0.326586 0.945168i \(-0.394102\pi\)
\(662\) 1607.57i 2.42835i
\(663\) −144.487 + 50.5716i −0.217929 + 0.0762769i
\(664\) −1057.17 −1.59212
\(665\) −543.616 −0.817468
\(666\) 64.5621 0.00494539i 0.0969401 7.42551e-6i
\(667\) 1165.44 1.74728
\(668\) 262.109 + 262.109i 0.392379 + 0.392379i
\(669\) 824.444 + 341.459i 1.23235 + 0.510402i
\(670\) 111.137 + 111.137i 0.165877 + 0.165877i
\(671\) −552.603 −0.823552
\(672\) 473.406 196.112i 0.704473 0.291834i
\(673\) 375.660 + 375.660i 0.558187 + 0.558187i 0.928791 0.370604i \(-0.120849\pi\)
−0.370604 + 0.928791i \(0.620849\pi\)
\(674\) 157.212 157.212i 0.233253 0.233253i
\(675\) −189.919 458.357i −0.281362 0.679047i
\(676\) −1184.01 −1.75150
\(677\) 149.866 + 149.866i 0.221368 + 0.221368i 0.809074 0.587706i \(-0.199969\pi\)
−0.587706 + 0.809074i \(0.699969\pi\)
\(678\) −177.157 427.649i −0.261294 0.630751i
\(679\) 137.714 0.202819
\(680\) 28.1460 501.583i 0.0413911 0.737622i
\(681\) 24.3143 + 58.6936i 0.0357038 + 0.0861874i
\(682\) 368.545i 0.540388i
\(683\) 782.854 + 782.854i 1.14620 + 1.14620i 0.987294 + 0.158905i \(0.0507965\pi\)
0.158905 + 0.987294i \(0.449204\pi\)
\(684\) 872.314 872.448i 1.27531 1.27551i
\(685\) −83.8571 + 83.8571i −0.122419 + 0.122419i
\(686\) −871.771 + 871.771i −1.27080 + 1.27080i
\(687\) −5.66325 2.34554i −0.00824345 0.00341418i
\(688\) 95.1484i 0.138297i
\(689\) 22.2639 0.0323134
\(690\) 418.292 1009.96i 0.606221 1.46371i
\(691\) 450.324 + 450.324i 0.651699 + 0.651699i 0.953402 0.301703i \(-0.0975551\pi\)
−0.301703 + 0.953402i \(0.597555\pi\)
\(692\) −753.404 753.404i −1.08873 1.08873i
\(693\) 570.561 + 570.474i 0.823321 + 0.823195i
\(694\) −377.075 + 377.075i −0.543335 + 0.543335i
\(695\) −312.854 −0.450150
\(696\) −884.499 + 366.411i −1.27083 + 0.526453i
\(697\) −635.750 35.6746i −0.912123 0.0511831i
\(698\) 1389.36i 1.99049i
\(699\) −865.835 + 358.679i −1.23868 + 0.513132i
\(700\) −1096.48 + 1096.48i −1.56640 + 1.56640i
\(701\) 647.604i 0.923829i −0.886924 0.461914i \(-0.847163\pi\)
0.886924 0.461914i \(-0.152837\pi\)
\(702\) 252.798 104.746i 0.360111 0.149211i
\(703\) 27.8275 + 27.8275i 0.0395839 + 0.0395839i
\(704\) −484.993 + 484.993i −0.688911 + 0.688911i
\(705\) 85.6454 + 206.744i 0.121483 + 0.293254i
\(706\) 1003.06i 1.42076i
\(707\) 760.974 760.974i 1.07634 1.07634i
\(708\) −193.292 + 466.699i −0.273012 + 0.659180i
\(709\) −15.4814 + 15.4814i −0.0218355 + 0.0218355i −0.717940 0.696105i \(-0.754915\pi\)
0.696105 + 0.717940i \(0.254915\pi\)
\(710\) 154.892i 0.218157i
\(711\) 0.0185966 + 242.779i 2.61556e−5 + 0.341461i
\(712\) 144.987i 0.203634i
\(713\) 582.135i 0.816458i
\(714\) 1769.16 + 851.804i 2.47782 + 1.19300i
\(715\) 60.7371 0.0849470
\(716\) −1097.28 −1.53252
\(717\) 42.6029 + 17.6448i 0.0594183 + 0.0246092i
\(718\) 2205.69 3.07200
\(719\) 731.607 + 731.607i 1.01753 + 1.01753i 0.999844 + 0.0176899i \(0.00563118\pi\)
0.0176899 + 0.999844i \(0.494369\pi\)
\(720\) 0.0162629 + 212.312i 2.25873e−5 + 0.294878i
\(721\) −116.507 116.507i −0.161591 0.161591i
\(722\) −60.4086 −0.0836685
\(723\) −361.247 872.032i −0.499650 1.20613i
\(724\) 178.132 + 178.132i 0.246039 + 0.246039i
\(725\) −361.152 + 361.152i −0.498140 + 0.498140i
\(726\) 553.918 + 229.416i 0.762973 + 0.316000i
\(727\) −354.772 −0.487995 −0.243997 0.969776i \(-0.578459\pi\)
−0.243997 + 0.969776i \(0.578459\pi\)
\(728\) −277.878 277.878i −0.381701 0.381701i
\(729\) 515.362 515.599i 0.706944 0.707269i
\(730\) 1043.10 1.42891
\(731\) −131.583 + 117.600i −0.180004 + 0.160876i
\(732\) 1441.69 597.233i 1.96952 0.815892i
\(733\) 585.834i 0.799227i 0.916684 + 0.399614i \(0.130856\pi\)
−0.916684 + 0.399614i \(0.869144\pi\)
\(734\) −527.427 527.427i −0.718565 0.718565i
\(735\) 239.426 + 577.963i 0.325750 + 0.786344i
\(736\) −444.129 + 444.129i −0.603437 + 0.603437i
\(737\) 100.546 100.546i 0.136425 0.136425i
\(738\) 1138.22 0.0871861i 1.54230 0.000118138i
\(739\) 722.220i 0.977293i −0.872482 0.488647i \(-0.837491\pi\)
0.872482 0.488647i \(-0.162509\pi\)
\(740\) −40.4672 −0.0546854
\(741\) 154.103 + 63.8248i 0.207967 + 0.0861333i
\(742\) −201.932 201.932i −0.272145 0.272145i
\(743\) −932.973 932.973i −1.25568 1.25568i −0.953134 0.302549i \(-0.902162\pi\)
−0.302549 0.953134i \(-0.597838\pi\)
\(744\) 183.022 + 441.807i 0.245998 + 0.593827i
\(745\) −371.558 + 371.558i −0.498736 + 0.498736i
\(746\) 324.378 0.434823
\(747\) −585.999 585.909i −0.784470 0.784350i
\(748\) −987.557 55.4161i −1.32026 0.0740857i
\(749\) 1592.69i 2.12643i
\(750\) 432.791 + 1044.74i 0.577055 + 1.39298i
\(751\) 565.689 565.689i 0.753248 0.753248i −0.221836 0.975084i \(-0.571205\pi\)
0.975084 + 0.221836i \(0.0712050\pi\)
\(752\) 265.644i 0.353250i
\(753\) −397.812 164.761i −0.528303 0.218807i
\(754\) −199.186 199.186i −0.264173 0.264173i
\(755\) −121.924 + 121.924i −0.161489 + 0.161489i
\(756\) −2105.09 871.673i −2.78451 1.15301i
\(757\) 521.038i 0.688294i 0.938916 + 0.344147i \(0.111832\pi\)
−0.938916 + 0.344147i \(0.888168\pi\)
\(758\) 962.771 962.771i 1.27015 1.27015i
\(759\) −913.704 378.428i −1.20383 0.498587i
\(760\) −387.059 + 387.059i −0.509289 + 0.509289i
\(761\) 203.340i 0.267201i −0.991035 0.133600i \(-0.957346\pi\)
0.991035 0.133600i \(-0.0426539\pi\)
\(762\) 1552.66 + 643.062i 2.03761 + 0.843914i
\(763\) 321.856i 0.421829i
\(764\) 1622.35i 2.12349i
\(765\) 293.591 262.433i 0.383779 0.343050i
\(766\) −630.442 −0.823032
\(767\) −68.2942 −0.0890407
\(768\) 508.899 1228.72i 0.662629 1.59990i
\(769\) 502.038 0.652845 0.326423 0.945224i \(-0.394157\pi\)
0.326423 + 0.945224i \(0.394157\pi\)
\(770\) −550.880 550.880i −0.715429 0.715429i
\(771\) −460.010 + 1110.68i −0.596641 + 1.44057i
\(772\) −1303.95 1303.95i −1.68905 1.68905i
\(773\) −164.983 −0.213432 −0.106716 0.994290i \(-0.534034\pi\)
−0.106716 + 0.994290i \(0.534034\pi\)
\(774\) 223.046 223.080i 0.288173 0.288217i
\(775\) 180.395 + 180.395i 0.232768 + 0.232768i
\(776\) 98.0538 98.0538i 0.126358 0.126358i
\(777\) 27.8100 67.1467i 0.0357916 0.0864178i
\(778\) 1413.46 1.81678
\(779\) 490.592 + 490.592i 0.629772 + 0.629772i
\(780\) −158.458 + 65.6424i −0.203151 + 0.0841569i
\(781\) −140.130 −0.179424
\(782\) −2403.02 134.844i −3.07292 0.172435i
\(783\) −693.360 287.106i −0.885518 0.366674i
\(784\) 742.620i 0.947220i
\(785\) −172.807 172.807i −0.220136 0.220136i
\(786\) −1618.50 + 670.479i −2.05917 + 0.853027i
\(787\) 362.354 362.354i 0.460424 0.460424i −0.438370 0.898794i \(-0.644444\pi\)
0.898794 + 0.438370i \(0.144444\pi\)
\(788\) 368.706 368.706i 0.467901 0.467901i
\(789\) 516.114 1246.14i 0.654136 1.57940i
\(790\) 234.422i 0.296737i
\(791\) −521.080 −0.658760
\(792\) 812.427 0.0622311i 1.02579 7.85746e-5i
\(793\) 149.183 + 149.183i 0.188124 + 0.188124i
\(794\) 898.021 + 898.021i 1.13101 + 1.13101i
\(795\) −52.9110 + 21.9188i −0.0665548 + 0.0275709i
\(796\) −1330.54 + 1330.54i −1.67154 + 1.67154i
\(797\) 774.302 0.971521 0.485760 0.874092i \(-0.338543\pi\)
0.485760 + 0.874092i \(0.338543\pi\)
\(798\) −818.819 1976.59i −1.02609 2.47693i
\(799\) 367.365 328.326i 0.459780 0.410922i
\(800\) 275.259i 0.344073i
\(801\) 80.3555 80.3678i 0.100319 0.100334i
\(802\) 1389.42 1389.42i 1.73245 1.73245i
\(803\) 943.692i 1.17521i
\(804\) −153.648 + 370.980i −0.191105 + 0.461418i
\(805\) −870.142 870.142i −1.08092 1.08092i
\(806\) −99.4935 + 99.4935i −0.123441 + 0.123441i
\(807\) −892.456 + 369.708i −1.10589 + 0.458126i
\(808\) 1083.64i 1.34114i
\(809\) −188.208 + 188.208i −0.232643 + 0.232643i −0.813795 0.581152i \(-0.802602\pi\)
0.581152 + 0.813795i \(0.302602\pi\)
\(810\) −497.661 + 497.814i −0.614397 + 0.614585i
\(811\) −743.378 + 743.378i −0.916619 + 0.916619i −0.996782 0.0801630i \(-0.974456\pi\)
0.0801630 + 0.996782i \(0.474456\pi\)
\(812\) 2345.47i 2.88851i
\(813\) −545.998 + 1318.30i −0.671585 + 1.62152i
\(814\) 56.3986i 0.0692858i
\(815\) 603.976i 0.741075i
\(816\) 441.205 154.425i 0.540692 0.189247i
\(817\) 192.288 0.235359
\(818\) −619.761 −0.757654
\(819\) −0.0235953 308.037i −2.88099e−5 0.376114i
\(820\) −713.428 −0.870035
\(821\) 796.926 + 796.926i 0.970678 + 0.970678i 0.999582 0.0289045i \(-0.00920187\pi\)
−0.0289045 + 0.999582i \(0.509202\pi\)
\(822\) −431.214 178.595i −0.524591 0.217269i
\(823\) −1085.50 1085.50i −1.31895 1.31895i −0.914605 0.404348i \(-0.867498\pi\)
−0.404348 0.914605i \(-0.632502\pi\)
\(824\) −165.908 −0.201345
\(825\) 400.413 165.875i 0.485349 0.201060i
\(826\) 619.422 + 619.422i 0.749906 + 0.749906i
\(827\) 922.606 922.606i 1.11561 1.11561i 0.123228 0.992378i \(-0.460675\pi\)
0.992378 0.123228i \(-0.0393246\pi\)
\(828\) 2792.76 0.213923i 3.37290 0.000258361i
\(829\) 862.319 1.04019 0.520096 0.854108i \(-0.325896\pi\)
0.520096 + 0.854108i \(0.325896\pi\)
\(830\) 565.785 + 565.785i 0.681669 + 0.681669i
\(831\) 394.420 + 952.111i 0.474633 + 1.14574i
\(832\) 261.860 0.314736
\(833\) 1026.99 917.853i 1.23288 1.10186i
\(834\) −471.235 1137.54i −0.565030 1.36395i
\(835\) 128.915i 0.154389i
\(836\) 762.074 + 762.074i 0.911571 + 0.911571i
\(837\) −143.409 + 346.333i −0.171337 + 0.413779i
\(838\) −939.685 + 939.685i −1.12134 + 1.12134i
\(839\) −327.969 + 327.969i −0.390904 + 0.390904i −0.875010 0.484105i \(-0.839145\pi\)
0.484105 + 0.875010i \(0.339145\pi\)
\(840\) 933.960 + 386.817i 1.11186 + 0.460496i
\(841\) 68.4643i 0.0814082i
\(842\) −1459.90 −1.73385
\(843\) 52.1551 125.927i 0.0618684 0.149380i
\(844\) 1272.10 + 1272.10i 1.50723 + 1.50723i
\(845\) 291.170 + 291.170i 0.344580 + 0.344580i
\(846\) −622.718 + 622.814i −0.736074 + 0.736187i
\(847\) 477.236 477.236i 0.563443 0.563443i
\(848\) −67.9850 −0.0801710
\(849\) −223.269 + 92.4911i −0.262979 + 0.108941i
\(850\) 786.448 702.875i 0.925233 0.826912i
\(851\) 89.0844i 0.104682i
\(852\) 365.586 151.447i 0.429092 0.177755i
\(853\) −1128.63 + 1128.63i −1.32313 + 1.32313i −0.411895 + 0.911231i \(0.635133\pi\)
−0.911231 + 0.411895i \(0.864867\pi\)
\(854\) 2706.14i 3.16879i
\(855\) −429.068 + 0.0328662i −0.501834 + 3.84400e-5i
\(856\) 1134.01 + 1134.01i 1.32478 + 1.32478i
\(857\) −1100.11 + 1100.11i −1.28368 + 1.28368i −0.345116 + 0.938560i \(0.612160\pi\)
−0.938560 + 0.345116i \(0.887840\pi\)
\(858\) 91.4850 + 220.840i 0.106626 + 0.257390i
\(859\) 617.021i 0.718302i −0.933279 0.359151i \(-0.883066\pi\)
0.933279 0.359151i \(-0.116934\pi\)
\(860\) −139.815 + 139.815i −0.162575 + 0.162575i
\(861\) 490.285 1183.78i 0.569437 1.37489i
\(862\) −789.121 + 789.121i −0.915453 + 0.915453i
\(863\) 451.967i 0.523717i −0.965106 0.261858i \(-0.915665\pi\)
0.965106 0.261858i \(-0.0843353\pi\)
\(864\) 373.641 154.817i 0.432455 0.179187i
\(865\) 370.551i 0.428383i
\(866\) 1420.17i 1.63992i
\(867\) −758.872 419.288i −0.875285 0.483608i
\(868\) 1171.56 1.34973
\(869\) −212.081 −0.244052
\(870\) 669.473 + 277.275i 0.769510 + 0.318707i
\(871\) −54.2872 −0.0623274
\(872\) 229.164 + 229.164i 0.262803 + 0.262803i
\(873\) 108.696 0.00832600i 0.124509 9.53723e-6i
\(874\) 1854.35 + 1854.35i 2.12168 + 2.12168i
\(875\) 1272.99 1.45484
\(876\) 1019.91 + 2462.01i 1.16428 + 2.81051i
\(877\) 330.904 + 330.904i 0.377314 + 0.377314i 0.870132 0.492818i \(-0.164033\pi\)
−0.492818 + 0.870132i \(0.664033\pi\)
\(878\) −1044.41 + 1044.41i −1.18953 + 1.18953i
\(879\) 630.664 + 261.201i 0.717478 + 0.297157i
\(880\) −185.467 −0.210758
\(881\) −774.708 774.708i −0.879351 0.879351i 0.114117 0.993467i \(-0.463596\pi\)
−0.993467 + 0.114117i \(0.963596\pi\)
\(882\) −1740.84 + 1741.11i −1.97374 + 1.97404i
\(883\) 491.496 0.556621 0.278310 0.960491i \(-0.410226\pi\)
0.278310 + 0.960491i \(0.410226\pi\)
\(884\) 251.644 + 281.564i 0.284665 + 0.318512i
\(885\) 162.304 67.2357i 0.183394 0.0759726i
\(886\) 2429.23i 2.74180i
\(887\) −179.018 179.018i −0.201825 0.201825i 0.598957 0.800781i \(-0.295582\pi\)
−0.800781 + 0.598957i \(0.795582\pi\)
\(888\) −28.0080 67.6100i −0.0315406 0.0761374i
\(889\) 1337.71 1337.71i 1.50474 1.50474i
\(890\) −77.5956 + 77.5956i −0.0871860 + 0.0871860i
\(891\) 450.371 + 450.233i 0.505466 + 0.505312i
\(892\) 2201.31i 2.46783i
\(893\) −536.848 −0.601173
\(894\) −1910.64 791.329i −2.13719 0.885156i
\(895\) 269.842 + 269.842i 0.301499 + 0.301499i
\(896\) −1891.94 1891.94i −2.11154 2.11154i
\(897\) 144.505 + 348.828i 0.161098 + 0.388883i
\(898\) 251.974 251.974i 0.280595 0.280595i
\(899\) 385.881 0.429234
\(900\) −865.371 + 865.503i −0.961523 + 0.961670i
\(901\) 84.0271 + 94.0179i 0.0932598 + 0.104348i
\(902\) 994.296i 1.10232i
\(903\) −135.908 328.076i −0.150508 0.363318i
\(904\) −371.013 + 371.013i −0.410413 + 0.410413i
\(905\) 87.6118i 0.0968086i
\(906\) −626.966 259.670i −0.692015 0.286611i
\(907\) 1138.68 + 1138.68i 1.25544 + 1.25544i 0.953248 + 0.302191i \(0.0977179\pi\)
0.302191 + 0.953248i \(0.402282\pi\)
\(908\) 110.818 110.818i 0.122046 0.122046i
\(909\) 600.580 600.672i 0.660704 0.660805i
\(910\) 297.435i 0.326851i
\(911\) −64.7092 + 64.7092i −0.0710310 + 0.0710310i −0.741730 0.670699i \(-0.765994\pi\)
0.670699 + 0.741730i \(0.265994\pi\)
\(912\) −470.570 194.895i −0.515976 0.213701i
\(913\) 511.864 511.864i 0.560640 0.560640i
\(914\) 2511.69i 2.74802i
\(915\) −501.408 207.668i −0.547987 0.226959i
\(916\) 15.1211i 0.0165078i
\(917\) 1972.11i 2.15061i
\(918\) 1396.43 + 672.210i 1.52116 + 0.732255i
\(919\) −1647.87 −1.79311 −0.896557 0.442929i \(-0.853940\pi\)
−0.896557 + 0.442929i \(0.853940\pi\)
\(920\) −1239.10 −1.34684
\(921\) 146.997 354.922i 0.159606 0.385365i
\(922\) −2513.02 −2.72562
\(923\) 37.8299 + 37.8299i 0.0409858 + 0.0409858i
\(924\) 761.597 1838.86i 0.824239 1.99010i
\(925\) −27.6060 27.6060i −0.0298443 0.0298443i
\(926\) 864.893 0.934010
\(927\) −91.9646 91.9505i −0.0992067 0.0991915i
\(928\) −294.402 294.402i −0.317243 0.317243i
\(929\) 8.12768 8.12768i 0.00874885 0.00874885i −0.702719 0.711468i \(-0.748031\pi\)
0.711468 + 0.702719i \(0.248031\pi\)
\(930\) 138.499 334.402i 0.148923 0.359572i
\(931\) −1500.78 −1.61201
\(932\) 1634.76 + 1634.76i 1.75403 + 1.75403i
\(933\) 840.329 348.113i 0.900674 0.373112i
\(934\) −601.445 −0.643946
\(935\) 229.230 + 256.486i 0.245166 + 0.274317i
\(936\) −219.342 219.308i −0.234340 0.234304i
\(937\) 697.727i 0.744640i 0.928105 + 0.372320i \(0.121438\pi\)
−0.928105 + 0.372320i \(0.878562\pi\)
\(938\) 492.380 + 492.380i 0.524925 + 0.524925i
\(939\) 390.668 161.837i 0.416047 0.172351i
\(940\) 390.347 390.347i 0.415263 0.415263i
\(941\) −138.918 + 138.918i −0.147628 + 0.147628i −0.777057 0.629430i \(-0.783289\pi\)
0.629430 + 0.777057i \(0.283289\pi\)
\(942\) 368.037 888.615i 0.390697 0.943328i
\(943\) 1570.54i 1.66547i
\(944\) 208.543 0.220914
\(945\) 303.319 + 732.040i 0.320973 + 0.774645i
\(946\) 194.858 + 194.858i 0.205981 + 0.205981i
\(947\) −460.270 460.270i −0.486029 0.486029i 0.421021 0.907051i \(-0.361672\pi\)
−0.907051 + 0.421021i \(0.861672\pi\)
\(948\) 553.300 229.209i 0.583650 0.241782i
\(949\) −254.762 + 254.762i −0.268453 + 0.268453i
\(950\) −1149.27 −1.20976
\(951\) 48.7952 + 117.789i 0.0513093 + 0.123858i
\(952\) 124.697 2222.20i 0.130984 2.33424i
\(953\) 1670.57i 1.75296i −0.481441 0.876478i \(-0.659887\pi\)
0.481441 0.876478i \(-0.340113\pi\)
\(954\) −159.394 159.370i −0.167080 0.167054i
\(955\) −398.964 + 398.964i −0.417764 + 0.417764i
\(956\) 113.752i 0.118987i
\(957\) 250.850 605.670i 0.262121 0.632884i
\(958\) −780.978 780.978i −0.815218 0.815218i
\(959\) −371.518 + 371.518i −0.387402 + 0.387402i
\(960\) −622.322 + 257.802i −0.648252 + 0.268544i
\(961\) 768.252i 0.799430i
\(962\) 15.2255 15.2255i 0.0158270 0.0158270i
\(963\) 0.0962918 + 1257.09i 9.99915e−5 + 1.30539i
\(964\) −1646.46 + 1646.46i −1.70794 + 1.70794i
\(965\) 641.328i 0.664588i
\(966\) 1853.19 4474.48i 1.91842 4.63197i
\(967\) 741.765i 0.767079i −0.923524 0.383540i \(-0.874705\pi\)
0.923524 0.383540i \(-0.125295\pi\)
\(968\) 679.592i 0.702058i
\(969\) 312.083 + 891.645i 0.322067 + 0.920170i
\(970\) −104.955 −0.108201
\(971\) 618.276 0.636742 0.318371 0.947966i \(-0.396864\pi\)
0.318371 + 0.947966i \(0.396864\pi\)
\(972\) −1661.57 687.872i −1.70943 0.707687i
\(973\) −1386.06 −1.42452
\(974\) −451.729 451.729i −0.463787 0.463787i
\(975\) −152.877 63.3168i −0.156797 0.0649403i
\(976\) −455.543 455.543i −0.466745 0.466745i
\(977\) 207.836 0.212729 0.106364 0.994327i \(-0.466079\pi\)
0.106364 + 0.994327i \(0.466079\pi\)
\(978\) −2196.06 + 909.736i −2.24546 + 0.930200i
\(979\) 70.2004 + 70.2004i 0.0717063 + 0.0717063i
\(980\) 1091.23 1091.23i 1.11350 1.11350i
\(981\) 0.0194589 + 254.036i 1.98358e−5 + 0.258956i
\(982\) 890.542 0.906866
\(983\) −383.143 383.143i −0.389769 0.389769i 0.484836 0.874605i \(-0.338879\pi\)
−0.874605 + 0.484836i \(0.838879\pi\)
\(984\) −493.775 1191.95i −0.501804 1.21133i
\(985\) −181.343 −0.184105
\(986\) 89.3843 1592.90i 0.0906535 1.61552i
\(987\) 379.441 + 915.953i 0.384439 + 0.928017i
\(988\) 411.463i 0.416461i
\(989\) 307.787 + 307.787i 0.311211 + 0.311211i
\(990\) −434.835 434.769i −0.439227 0.439160i
\(991\) 853.883 853.883i 0.861638 0.861638i −0.129890 0.991528i \(-0.541463\pi\)
0.991528 + 0.129890i \(0.0414626\pi\)
\(992\) −147.053 + 147.053i −0.148239 + 0.148239i
\(993\) 1319.62 + 546.547i 1.32893 + 0.550400i
\(994\) 686.228i 0.690370i
\(995\) 654.409 0.657698
\(996\) −782.203 + 1888.61i −0.785344 + 1.89619i
\(997\) 508.838 + 508.838i 0.510369 + 0.510369i 0.914639 0.404271i \(-0.132475\pi\)
−0.404271 + 0.914639i \(0.632475\pi\)
\(998\) −445.843 445.843i −0.446737 0.446737i
\(999\) 21.9460 52.9996i 0.0219680 0.0530526i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.f.a.38.1 20
3.2 odd 2 inner 51.3.f.a.38.10 yes 20
17.13 even 4 inner 51.3.f.a.47.10 yes 20
51.47 odd 4 inner 51.3.f.a.47.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.f.a.38.1 20 1.1 even 1 trivial
51.3.f.a.38.10 yes 20 3.2 odd 2 inner
51.3.f.a.47.1 yes 20 51.47 odd 4 inner
51.3.f.a.47.10 yes 20 17.13 even 4 inner