Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(25,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.p (of order \(26\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{26})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{26}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −2.52295 | − | 0.956827i | −0.568065 | − | 0.822984i | 3.95272 | + | 3.50180i | 4.16354 | + | 0.505545i | 0.645743 | + | 2.61988i | 0.140914 | + | 0.268489i | −4.11396 | − | 7.83849i | −0.354605 | + | 0.935016i | −10.0207 | − | 5.25925i |
25.2 | −2.42142 | − | 0.918325i | −0.568065 | − | 0.822984i | 3.52295 | + | 3.12106i | −2.78849 | − | 0.338584i | 0.619759 | + | 2.51446i | 0.357250 | + | 0.680683i | −3.25740 | − | 6.20646i | −0.354605 | + | 0.935016i | 6.44118 | + | 3.38059i |
25.3 | −2.13008 | − | 0.807834i | −0.568065 | − | 0.822984i | 2.38764 | + | 2.11526i | −1.00892 | − | 0.122506i | 0.545191 | + | 2.21193i | 1.86515 | + | 3.55375i | −1.25969 | − | 2.40014i | −0.354605 | + | 0.935016i | 2.05013 | + | 1.07599i |
25.4 | −1.50260 | − | 0.569861i | −0.568065 | − | 0.822984i | 0.436045 | + | 0.386302i | 2.17889 | + | 0.264565i | 0.384588 | + | 1.56033i | 0.728343 | + | 1.38774i | 1.05859 | + | 2.01697i | −0.354605 | + | 0.935016i | −3.12324 | − | 1.63920i |
25.5 | −1.31279 | − | 0.497877i | −0.568065 | − | 0.822984i | −0.0214779 | − | 0.0190278i | 1.11474 | + | 0.135354i | 0.336007 | + | 1.36323i | −0.369513 | − | 0.704048i | 1.32369 | + | 2.52209i | −0.354605 | + | 0.935016i | −1.39603 | − | 0.732692i |
25.6 | −1.13089 | − | 0.428890i | −0.568065 | − | 0.822984i | −0.402056 | − | 0.356191i | −4.00621 | − | 0.486442i | 0.289449 | + | 1.17434i | −2.12665 | − | 4.05199i | 1.42607 | + | 2.71715i | −0.354605 | + | 0.935016i | 4.32195 | + | 2.26833i |
25.7 | −0.468954 | − | 0.177851i | −0.568065 | − | 0.822984i | −1.30873 | − | 1.15944i | −1.41049 | − | 0.171264i | 0.120028 | + | 0.486973i | 2.16100 | + | 4.11744i | 0.873690 | + | 1.66468i | −0.354605 | + | 0.935016i | 0.630994 | + | 0.331171i |
25.8 | −0.103579 | − | 0.0392824i | −0.568065 | − | 0.822984i | −1.48784 | − | 1.31811i | −1.67597 | − | 0.203500i | 0.0265109 | + | 0.107559i | 0.366680 | + | 0.698651i | 0.205293 | + | 0.391152i | −0.354605 | + | 0.935016i | 0.165602 | + | 0.0869145i |
25.9 | 0.283929 | + | 0.107680i | −0.568065 | − | 0.822984i | −1.42800 | − | 1.26510i | −0.879635 | − | 0.106807i | −0.0726712 | − | 0.294839i | −0.935242 | − | 1.78196i | −0.551463 | − | 1.05073i | −0.354605 | + | 0.935016i | −0.238253 | − | 0.125045i |
25.10 | 0.494430 | + | 0.187512i | −0.568065 | − | 0.822984i | −1.28772 | − | 1.14082i | 3.75871 | + | 0.456390i | −0.126548 | − | 0.513427i | 1.26721 | + | 2.41446i | −0.914254 | − | 1.74197i | −0.354605 | + | 0.935016i | 1.77284 | + | 0.930459i |
25.11 | 0.917259 | + | 0.347870i | −0.568065 | − | 0.822984i | −0.776671 | − | 0.688071i | 0.986534 | + | 0.119787i | −0.234771 | − | 0.952502i | −0.506792 | − | 0.965611i | −1.38484 | − | 2.63860i | −0.354605 | + | 0.935016i | 0.863237 | + | 0.453062i |
25.12 | 1.43480 | + | 0.544146i | −0.568065 | − | 0.822984i | 0.265521 | + | 0.235231i | −3.88465 | − | 0.471682i | −0.367233 | − | 1.48992i | 2.17406 | + | 4.14233i | −1.17328 | − | 2.23550i | −0.354605 | + | 0.935016i | −5.31702 | − | 2.79059i |
25.13 | 1.78796 | + | 0.678085i | −0.568065 | − | 0.822984i | 1.23999 | + | 1.09854i | −2.39960 | − | 0.291364i | −0.457626 | − | 1.85666i | −1.52079 | − | 2.89763i | −0.305152 | − | 0.581418i | −0.354605 | + | 0.935016i | −4.09283 | − | 2.14808i |
25.14 | 1.98795 | + | 0.753931i | −0.568065 | − | 0.822984i | 1.88652 | + | 1.67131i | 3.81359 | + | 0.463053i | −0.508813 | − | 2.06433i | −2.20899 | − | 4.20888i | 0.514149 | + | 0.979628i | −0.354605 | + | 0.935016i | 7.23212 | + | 3.79571i |
25.15 | 2.12140 | + | 0.804542i | −0.568065 | − | 0.822984i | 2.35604 | + | 2.08727i | 2.11775 | + | 0.257141i | −0.542969 | − | 2.20291i | 1.12326 | + | 2.14019i | 1.21005 | + | 2.30557i | −0.354605 | + | 0.935016i | 4.28571 | + | 2.24932i |
25.16 | 2.56554 | + | 0.972980i | −0.568065 | − | 0.822984i | 4.13827 | + | 3.66618i | −1.46104 | − | 0.177402i | −0.656644 | − | 2.66411i | 0.543789 | + | 1.03610i | 4.49950 | + | 8.57307i | −0.354605 | + | 0.935016i | −3.57574 | − | 1.87669i |
64.1 | −2.62119 | − | 0.318270i | 0.748511 | − | 0.663123i | 4.82745 | + | 1.18986i | −0.880115 | − | 1.67692i | −2.17304 | + | 1.49994i | −2.02452 | − | 0.767800i | −7.33724 | − | 2.78265i | 0.120537 | − | 0.992709i | 1.77323 | + | 4.67563i |
64.2 | −2.60940 | − | 0.316839i | 0.748511 | − | 0.663123i | 4.76672 | + | 1.17489i | 1.60429 | + | 3.05673i | −2.16327 | + | 1.49320i | 2.76033 | + | 1.04686i | −7.15054 | − | 2.71184i | 0.120537 | − | 0.992709i | −3.21776 | − | 8.48454i |
64.3 | −2.10986 | − | 0.256183i | 0.748511 | − | 0.663123i | 2.44400 | + | 0.602391i | 1.00545 | + | 1.91572i | −1.74913 | + | 1.20734i | −2.58799 | − | 0.981496i | −1.02769 | − | 0.389750i | 0.120537 | − | 0.992709i | −1.63057 | − | 4.29947i |
64.4 | −1.61341 | − | 0.195904i | 0.748511 | − | 0.663123i | 0.622835 | + | 0.153515i | −1.54944 | − | 2.95221i | −1.33756 | + | 0.923254i | −1.00058 | − | 0.379471i | 2.06448 | + | 0.782953i | 0.120537 | − | 0.992709i | 1.92153 | + | 5.06666i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.h | even | 26 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.p.b | ✓ | 192 |
169.h | even | 26 | 1 | inner | 507.2.p.b | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.p.b | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
507.2.p.b | ✓ | 192 | 169.h | even | 26 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{192} - 25 T_{2}^{190} + 373 T_{2}^{188} - 4435 T_{2}^{186} + 130 T_{2}^{185} + \cdots + 2565164201769 \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).