Properties

Label 507.2.p.b
Level $507$
Weight $2$
Character orbit 507.p
Analytic conductor $4.048$
Analytic rank $0$
Dimension $192$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(25,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.p (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{26})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{26}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 192 q + 16 q^{3} + 18 q^{4} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 192 q + 16 q^{3} + 18 q^{4} - 16 q^{9} - 18 q^{12} - 63 q^{13} - 10 q^{14} - 6 q^{16} + 12 q^{17} + 16 q^{22} - 52 q^{23} + 58 q^{25} + 51 q^{26} + 16 q^{27} - 49 q^{29} - 26 q^{31} - 13 q^{33} - 65 q^{34} + 39 q^{35} + 18 q^{36} + 77 q^{38} - 2 q^{39} - 55 q^{42} - 76 q^{43} + 39 q^{44} + 6 q^{48} - 58 q^{49} + 52 q^{50} - 12 q^{51} + 63 q^{52} - 73 q^{53} + 37 q^{55} - 10 q^{56} + 13 q^{57} - 26 q^{58} - 104 q^{59} - 13 q^{60} + 8 q^{61} + 53 q^{62} + 42 q^{64} + 52 q^{65} - 42 q^{66} + 26 q^{67} - 34 q^{68} - 39 q^{71} + 52 q^{73} + 59 q^{74} - 6 q^{75} - 130 q^{76} - 52 q^{77} + 53 q^{78} + 14 q^{79} - 16 q^{81} + 41 q^{82} - 78 q^{83} + 91 q^{85} + 169 q^{86} - 42 q^{87} - 270 q^{88} + 80 q^{91} - 54 q^{92} - 91 q^{93} + 25 q^{94} - 58 q^{95} - 65 q^{96} + 130 q^{97} + 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1 −2.52295 0.956827i −0.568065 0.822984i 3.95272 + 3.50180i 4.16354 + 0.505545i 0.645743 + 2.61988i 0.140914 + 0.268489i −4.11396 7.83849i −0.354605 + 0.935016i −10.0207 5.25925i
25.2 −2.42142 0.918325i −0.568065 0.822984i 3.52295 + 3.12106i −2.78849 0.338584i 0.619759 + 2.51446i 0.357250 + 0.680683i −3.25740 6.20646i −0.354605 + 0.935016i 6.44118 + 3.38059i
25.3 −2.13008 0.807834i −0.568065 0.822984i 2.38764 + 2.11526i −1.00892 0.122506i 0.545191 + 2.21193i 1.86515 + 3.55375i −1.25969 2.40014i −0.354605 + 0.935016i 2.05013 + 1.07599i
25.4 −1.50260 0.569861i −0.568065 0.822984i 0.436045 + 0.386302i 2.17889 + 0.264565i 0.384588 + 1.56033i 0.728343 + 1.38774i 1.05859 + 2.01697i −0.354605 + 0.935016i −3.12324 1.63920i
25.5 −1.31279 0.497877i −0.568065 0.822984i −0.0214779 0.0190278i 1.11474 + 0.135354i 0.336007 + 1.36323i −0.369513 0.704048i 1.32369 + 2.52209i −0.354605 + 0.935016i −1.39603 0.732692i
25.6 −1.13089 0.428890i −0.568065 0.822984i −0.402056 0.356191i −4.00621 0.486442i 0.289449 + 1.17434i −2.12665 4.05199i 1.42607 + 2.71715i −0.354605 + 0.935016i 4.32195 + 2.26833i
25.7 −0.468954 0.177851i −0.568065 0.822984i −1.30873 1.15944i −1.41049 0.171264i 0.120028 + 0.486973i 2.16100 + 4.11744i 0.873690 + 1.66468i −0.354605 + 0.935016i 0.630994 + 0.331171i
25.8 −0.103579 0.0392824i −0.568065 0.822984i −1.48784 1.31811i −1.67597 0.203500i 0.0265109 + 0.107559i 0.366680 + 0.698651i 0.205293 + 0.391152i −0.354605 + 0.935016i 0.165602 + 0.0869145i
25.9 0.283929 + 0.107680i −0.568065 0.822984i −1.42800 1.26510i −0.879635 0.106807i −0.0726712 0.294839i −0.935242 1.78196i −0.551463 1.05073i −0.354605 + 0.935016i −0.238253 0.125045i
25.10 0.494430 + 0.187512i −0.568065 0.822984i −1.28772 1.14082i 3.75871 + 0.456390i −0.126548 0.513427i 1.26721 + 2.41446i −0.914254 1.74197i −0.354605 + 0.935016i 1.77284 + 0.930459i
25.11 0.917259 + 0.347870i −0.568065 0.822984i −0.776671 0.688071i 0.986534 + 0.119787i −0.234771 0.952502i −0.506792 0.965611i −1.38484 2.63860i −0.354605 + 0.935016i 0.863237 + 0.453062i
25.12 1.43480 + 0.544146i −0.568065 0.822984i 0.265521 + 0.235231i −3.88465 0.471682i −0.367233 1.48992i 2.17406 + 4.14233i −1.17328 2.23550i −0.354605 + 0.935016i −5.31702 2.79059i
25.13 1.78796 + 0.678085i −0.568065 0.822984i 1.23999 + 1.09854i −2.39960 0.291364i −0.457626 1.85666i −1.52079 2.89763i −0.305152 0.581418i −0.354605 + 0.935016i −4.09283 2.14808i
25.14 1.98795 + 0.753931i −0.568065 0.822984i 1.88652 + 1.67131i 3.81359 + 0.463053i −0.508813 2.06433i −2.20899 4.20888i 0.514149 + 0.979628i −0.354605 + 0.935016i 7.23212 + 3.79571i
25.15 2.12140 + 0.804542i −0.568065 0.822984i 2.35604 + 2.08727i 2.11775 + 0.257141i −0.542969 2.20291i 1.12326 + 2.14019i 1.21005 + 2.30557i −0.354605 + 0.935016i 4.28571 + 2.24932i
25.16 2.56554 + 0.972980i −0.568065 0.822984i 4.13827 + 3.66618i −1.46104 0.177402i −0.656644 2.66411i 0.543789 + 1.03610i 4.49950 + 8.57307i −0.354605 + 0.935016i −3.57574 1.87669i
64.1 −2.62119 0.318270i 0.748511 0.663123i 4.82745 + 1.18986i −0.880115 1.67692i −2.17304 + 1.49994i −2.02452 0.767800i −7.33724 2.78265i 0.120537 0.992709i 1.77323 + 4.67563i
64.2 −2.60940 0.316839i 0.748511 0.663123i 4.76672 + 1.17489i 1.60429 + 3.05673i −2.16327 + 1.49320i 2.76033 + 1.04686i −7.15054 2.71184i 0.120537 0.992709i −3.21776 8.48454i
64.3 −2.10986 0.256183i 0.748511 0.663123i 2.44400 + 0.602391i 1.00545 + 1.91572i −1.74913 + 1.20734i −2.58799 0.981496i −1.02769 0.389750i 0.120537 0.992709i −1.63057 4.29947i
64.4 −1.61341 0.195904i 0.748511 0.663123i 0.622835 + 0.153515i −1.54944 2.95221i −1.33756 + 0.923254i −1.00058 0.379471i 2.06448 + 0.782953i 0.120537 0.992709i 1.92153 + 5.06666i
See next 80 embeddings (of 192 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
169.h even 26 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.2.p.b 192
169.h even 26 1 inner 507.2.p.b 192
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.2.p.b 192 1.a even 1 1 trivial
507.2.p.b 192 169.h even 26 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{192} - 25 T_{2}^{190} + 373 T_{2}^{188} - 4435 T_{2}^{186} + 130 T_{2}^{185} + \cdots + 2565164201769 \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\). Copy content Toggle raw display