Properties

Label 507.2.p
Level $507$
Weight $2$
Character orbit 507.p
Rep. character $\chi_{507}(25,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $360$
Newform subspaces $2$
Sturm bound $121$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.p (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{26})\)
Newform subspaces: \( 2 \)
Sturm bound: \(121\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(507, [\chi])\).

Total New Old
Modular forms 744 360 384
Cusp forms 696 360 336
Eisenstein series 48 0 48

Trace form

\( 360 q + 2 q^{3} + 30 q^{4} - 30 q^{9} + O(q^{10}) \) \( 360 q + 2 q^{3} + 30 q^{4} - 30 q^{9} - 4 q^{10} - 6 q^{12} - 50 q^{13} - 8 q^{14} - 14 q^{16} + 8 q^{17} - 56 q^{22} - 4 q^{23} + 14 q^{25} + 12 q^{26} + 2 q^{27} - 4 q^{29} - 4 q^{30} - 52 q^{31} + 130 q^{32} - 130 q^{34} + 4 q^{35} + 30 q^{36} + 138 q^{38} - 2 q^{39} + 12 q^{40} - 118 q^{42} - 4 q^{43} - 2 q^{48} - 126 q^{49} - 16 q^{51} + 128 q^{52} - 74 q^{53} + 90 q^{55} - 24 q^{56} - 52 q^{58} - 208 q^{59} + 104 q^{60} + 20 q^{61} + 102 q^{62} + 10 q^{64} - 88 q^{66} + 52 q^{67} - 118 q^{68} - 4 q^{69} - 78 q^{71} + 88 q^{74} + 2 q^{75} - 260 q^{76} + 8 q^{77} + 118 q^{78} + 28 q^{79} - 30 q^{81} + 86 q^{82} + 78 q^{85} + 156 q^{86} - 88 q^{87} - 296 q^{88} - 4 q^{90} - 128 q^{91} + 28 q^{92} - 130 q^{93} + 50 q^{94} - 124 q^{95} + 156 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(507, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
507.2.p.a 507.p 169.h $168$ $4.048$ None 507.2.p.a \(0\) \(-14\) \(0\) \(0\) $\mathrm{SU}(2)[C_{26}]$
507.2.p.b 507.p 169.h $192$ $4.048$ None 507.2.p.b \(0\) \(16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{26}]$

Decomposition of \(S_{2}^{\mathrm{old}}(507, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(507, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)