gp: [N,k,chi] = [507,2,Mod(25,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [192]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{192} - 25 T_{2}^{190} + 373 T_{2}^{188} - 4435 T_{2}^{186} + 130 T_{2}^{185} + \cdots + 2565164201769 \)
T2^192 - 25*T2^190 + 373*T2^188 - 4435*T2^186 + 130*T2^185 + 46719*T2^184 - 3237*T2^183 - 452089*T2^182 + 30342*T2^181 + 4097993*T2^180 - 126126*T2^179 - 35334345*T2^178 + 102921*T2^177 + 293001477*T2^176 + 2370056*T2^175 - 2367435386*T2^174 - 67053701*T2^173 + 18828052116*T2^172 + 1391977275*T2^171 - 147941691182*T2^170 - 20959993301*T2^169 + 1148310338544*T2^168 + 256460285133*T2^167 - 8609238841176*T2^166 - 2753881247884*T2^165 + 61810224768699*T2^164 + 27020153387279*T2^163 - 426713436955249*T2^162 - 243475898575702*T2^161 + 2842029500387214*T2^160 + 2018681268997081*T2^159 - 18271535417426490*T2^158 - 15598752538263492*T2^157 + 113689015051134102*T2^156 + 111770971407940949*T2^155 - 688258295693614920*T2^154 - 741095711034525834*T2^153 + 4078741655299038701*T2^152 + 4630252818250379242*T2^151 - 23839022453406479836*T2^150 - 27710256489420567634*T2^149 + 138006138455427064791*T2^148 + 160186290820815548705*T2^147 - 787338442172778651625*T2^146 - 905488215491493956153*T2^145 + 4396564198485652838809*T2^144 + 5013020794599540258718*T2^143 - 23803533883199671615767*T2^142 - 27191782203337579090302*T2^141 + 125400769395592970318746*T2^140 + 143110578162681891651890*T2^139 - 646945500503222114490826*T2^138 - 727257383718780154956131*T2^137 + 3288655457781500311308917*T2^136 + 3531043733321655612187607*T2^135 - 16447721334534269760210246*T2^134 - 16191984052466419077055708*T2^133 + 80753476252076471092716990*T2^132 + 68618296720709549558596267*T2^131 - 388299929803609905346555821*T2^130 - 261904471481783222185593214*T2^129 + 1821991702123495979631725894*T2^128 + 869578771140672966538780940*T2^127 - 8285510684960913173593571436*T2^126 - 2262163742968979679405783129*T2^125 + 36094150182909969544868687387*T2^124 + 2613636444323895703515354305*T2^123 - 149123488629780449453196901045*T2^122 + 18077924509181198980676774338*T2^121 + 579840429446733774614483661721*T2^120 - 180261855475313540419038741219*T2^119 - 2110113335823466511044227341638*T2^118 + 1048647493691646918525655318041*T2^117 + 7244274136496666938676141662859*T2^116 - 4914006429925968992739464368117*T2^115 - 23732007221233162518352507779516*T2^114 + 19724160702895461757985343941391*T2^113 + 75402685893727875408661864753033*T2^112 - 70017714903552709419574381631425*T2^111 - 235140461811771563752434634523406*T2^110 + 223789498932878388802207618312480*T2^109 + 723838680581087141100868293176022*T2^108 - 646665639112120327990653972874798*T2^107 - 2197373054471484816808296704006051*T2^106 + 1687555472736007331343506133750561*T2^105 + 6507535932673564081826610592750342*T2^104 - 3902764623303605387616062913900138*T2^103 - 18581570985467057208501807191477671*T2^102 + 7527252828283421172927890651238022*T2^101 + 50701763929924742022742557529408656*T2^100 - 10141898315458125919639081849380469*T2^99 - 130513019152440157644418688518874924*T2^98 - 121443093700301651686229116063028*T2^97 + 312379399536533847127426313289205798*T2^96 + 61630059039577419935547252278771677*T2^95 - 686363715263037200123180163603323847*T2^94 - 267762557739696275513416408729409878*T2^93 + 1376896202030230925179959066715156086*T2^92 + 801116506476988430303469484506808164*T2^91 - 2511348860435101381590680864002476966*T2^90 - 2015122914714204944730771727742286868*T2^89 + 4151305604133594826119977197084258267*T2^88 + 4485057304878044410534305841989520241*T2^87 - 6373125605879051121210202912532480216*T2^86 - 8938635800826921532679489334253140146*T2^85 + 9322456247934671424024544760062763379*T2^84 + 16096697387265392802518981035341593193*T2^83 - 12574370066061322668363393067795414793*T2^82 - 26091691902074985505378729356399982984*T2^81 + 15777254282743135501374031450394974064*T2^80 + 40622473760562946802816068172225689808*T2^79 - 17035545294055648536713136785517264727*T2^78 - 56704759463711299423505321362452046749*T2^77 + 26558572969409383479615617292466518752*T2^76 + 82912827774753024727270565196453666956*T2^75 - 32077444549107110451449546705646387120*T2^74 - 89636174115212130366435757160701452773*T2^73 + 72391200705296748580869101126141455206*T2^72 + 147877583107582254482802561278313372789*T2^71 - 31037605986227697713320909493220913569*T2^70 - 133914655269259341193048143845666821786*T2^69 + 109779220781989026509767818976828146432*T2^68 + 289697623353840768700361635019763856660*T2^67 - 222688692273943374195789508962887599*T2^66 - 209909849084450018734953825310702140348*T2^65 + 147674441874375795428279333777650981400*T2^64 + 363750666193603047795155086434220001498*T2^63 + 55663503107187785292394126955573261690*T2^62 - 273056129724523479836450826754730119539*T2^61 - 41451410219597517997604163696623897329*T2^60 + 406231509877224251101034961860203852519*T2^59 + 95657268863624434644019905819978767094*T2^58 - 443017271566143862593790823349485984797*T2^57 + 9687386114841673163704104163918087539*T2^56 + 313850200951052360306354385331628174681*T2^55 - 9430782332272369812756457251227911531*T2^54 - 91222514012552133389787943190903446036*T2^53 - 16341357644296054647984645749634440655*T2^52 + 126049174364019440577858468358109138760*T2^51 + 46787074587924411038673510686607267493*T2^50 - 214122232387579196851368715363035175818*T2^49 - 49542826443192056419826208238173072582*T2^48 + 208322867720896804001342823007191894350*T2^47 - 27221956619895313123741063758231031882*T2^46 - 237348281874562118498801696597446805823*T2^45 + 19503454790531978686542736817501520560*T2^44 + 174777247486597508382966180876410037737*T2^43 + 11842733169401461659882626201642835214*T2^42 - 44585456622968093643780407091120178179*T2^41 + 30949646456960273660282246807975440184*T2^40 + 16445241268550988698977520769032347606*T2^39 - 22401419357714880015625893304246622399*T2^38 + 7016137575816321408045229520655235695*T2^37 + 32592021581029049010847992951444176082*T2^36 + 13208133386463897424547807244355128709*T2^35 - 8266000092855418359829583955431999478*T2^34 - 8367079319056883268566373522920857848*T2^33 - 1338398484091528807690091085931930931*T2^32 + 1356417618069894011325788134792265553*T2^31 + 864776559817024160283075546515435108*T2^30 + 194426717877139094166482542227871406*T2^29 - 21753077060444844924887524995398773*T2^28 - 44301844009256086529115794462734252*T2^27 - 26342631326933377101170790865139540*T2^26 - 8155176246529773046020773443588158*T2^25 + 23837107231934012090602302797334*T2^24 + 1132973164335507988400929675952454*T2^23 + 487222248753333199793628886767901*T2^22 + 112706990438093299128274564177176*T2^21 + 20068277420286779077639373329981*T2^20 + 2283120081977324919744900184973*T2^19 - 1375817883653089140611178803244*T2^18 - 950436477445731177770636184326*T2^17 - 173926828037189852886047647562*T2^16 + 47596165979770334662040426212*T2^15 + 34838387004837238004265757921*T2^14 + 9604959060700136609818412564*T2^13 + 1616515054318541746943539030*T2^12 + 181348327939258432997290155*T2^11 + 12502940035204700904367467*T2^10 - 38821590902236545836082*T2^9 - 150856670991420598820031*T2^8 - 23473142053041500162928*T2^7 - 1837358176247373180960*T2^6 - 33189895631118677724*T2^5 + 8430215296512853116*T2^4 + 927899126851857498*T2^3 + 44169562390260411*T2^2 + 454034063713113*T2 + 2565164201769
acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).