Properties

Label 504.3.l.h.181.14
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.14
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.172794 - 1.99252i) q^{2} +(-3.94028 + 0.688593i) q^{4} +6.16756 q^{5} +(6.35406 - 2.93700i) q^{7} +(2.05289 + 7.73212i) q^{8} +(-1.06572 - 12.2890i) q^{10} +6.45991i q^{11} +5.92263 q^{13} +(-6.94998 - 12.1531i) q^{14} +(15.0517 - 5.42650i) q^{16} +29.7070i q^{17} -7.53626 q^{19} +(-24.3019 + 4.24694i) q^{20} +(12.8715 - 1.11624i) q^{22} +40.1517 q^{23} +13.0388 q^{25} +(-1.02340 - 11.8010i) q^{26} +(-23.0144 + 15.9480i) q^{28} +19.5496i q^{29} +20.7829i q^{31} +(-13.4133 - 29.0531i) q^{32} +(59.1918 - 5.13320i) q^{34} +(39.1890 - 18.1141i) q^{35} -43.3864i q^{37} +(1.30222 + 15.0162i) q^{38} +(12.6614 + 47.6883i) q^{40} +43.0046i q^{41} -27.7017i q^{43} +(-4.44825 - 25.4539i) q^{44} +(-6.93799 - 80.0032i) q^{46} -75.5771i q^{47} +(31.7481 - 37.3237i) q^{49} +(-2.25303 - 25.9801i) q^{50} +(-23.3368 + 4.07828i) q^{52} -36.6740i q^{53} +39.8419i q^{55} +(35.7534 + 43.1010i) q^{56} +(38.9531 - 3.37807i) q^{58} +21.9834 q^{59} -49.7137 q^{61} +(41.4103 - 3.59116i) q^{62} +(-55.5712 + 31.7464i) q^{64} +36.5282 q^{65} -106.648i q^{67} +(-20.4560 - 117.054i) q^{68} +(-42.8644 - 74.9550i) q^{70} +84.5125 q^{71} +67.2164i q^{73} +(-86.4484 + 7.49693i) q^{74} +(29.6950 - 5.18941i) q^{76} +(18.9728 + 41.0467i) q^{77} +19.2213 q^{79} +(92.8321 - 33.4683i) q^{80} +(85.6876 - 7.43095i) q^{82} -122.024 q^{83} +183.220i q^{85} +(-55.1962 + 4.78669i) q^{86} +(-49.9488 + 13.2615i) q^{88} +43.7186i q^{89} +(37.6327 - 17.3948i) q^{91} +(-158.209 + 27.6482i) q^{92} +(-150.589 + 13.0593i) q^{94} -46.4803 q^{95} -151.843i q^{97} +(-79.8542 - 56.8094i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.172794 1.99252i −0.0863972 0.996261i
\(3\) 0 0
\(4\) −3.94028 + 0.688593i −0.985071 + 0.172148i
\(5\) 6.16756 1.23351 0.616756 0.787154i \(-0.288447\pi\)
0.616756 + 0.787154i \(0.288447\pi\)
\(6\) 0 0
\(7\) 6.35406 2.93700i 0.907722 0.419571i
\(8\) 2.05289 + 7.73212i 0.256612 + 0.966515i
\(9\) 0 0
\(10\) −1.06572 12.2890i −0.106572 1.22890i
\(11\) 6.45991i 0.587265i 0.955918 + 0.293632i \(0.0948642\pi\)
−0.955918 + 0.293632i \(0.905136\pi\)
\(12\) 0 0
\(13\) 5.92263 0.455587 0.227793 0.973709i \(-0.426849\pi\)
0.227793 + 0.973709i \(0.426849\pi\)
\(14\) −6.94998 12.1531i −0.496427 0.868078i
\(15\) 0 0
\(16\) 15.0517 5.42650i 0.940730 0.339156i
\(17\) 29.7070i 1.74747i 0.486402 + 0.873735i \(0.338309\pi\)
−0.486402 + 0.873735i \(0.661691\pi\)
\(18\) 0 0
\(19\) −7.53626 −0.396645 −0.198323 0.980137i \(-0.563549\pi\)
−0.198323 + 0.980137i \(0.563549\pi\)
\(20\) −24.3019 + 4.24694i −1.21510 + 0.212347i
\(21\) 0 0
\(22\) 12.8715 1.11624i 0.585069 0.0507380i
\(23\) 40.1517 1.74573 0.872863 0.487965i \(-0.162260\pi\)
0.872863 + 0.487965i \(0.162260\pi\)
\(24\) 0 0
\(25\) 13.0388 0.521552
\(26\) −1.02340 11.8010i −0.0393614 0.453883i
\(27\) 0 0
\(28\) −23.0144 + 15.9480i −0.821943 + 0.569570i
\(29\) 19.5496i 0.674125i 0.941482 + 0.337063i \(0.109433\pi\)
−0.941482 + 0.337063i \(0.890567\pi\)
\(30\) 0 0
\(31\) 20.7829i 0.670416i 0.942144 + 0.335208i \(0.108807\pi\)
−0.942144 + 0.335208i \(0.891193\pi\)
\(32\) −13.4133 29.0531i −0.419165 0.907910i
\(33\) 0 0
\(34\) 59.1918 5.13320i 1.74094 0.150977i
\(35\) 39.1890 18.1141i 1.11969 0.517546i
\(36\) 0 0
\(37\) 43.3864i 1.17261i −0.810092 0.586303i \(-0.800583\pi\)
0.810092 0.586303i \(-0.199417\pi\)
\(38\) 1.30222 + 15.0162i 0.0342690 + 0.395162i
\(39\) 0 0
\(40\) 12.6614 + 47.6883i 0.316534 + 1.19221i
\(41\) 43.0046i 1.04889i 0.851444 + 0.524446i \(0.175728\pi\)
−0.851444 + 0.524446i \(0.824272\pi\)
\(42\) 0 0
\(43\) 27.7017i 0.644225i −0.946701 0.322112i \(-0.895607\pi\)
0.946701 0.322112i \(-0.104393\pi\)
\(44\) −4.44825 25.4539i −0.101097 0.578498i
\(45\) 0 0
\(46\) −6.93799 80.0032i −0.150826 1.73920i
\(47\) 75.5771i 1.60802i −0.594613 0.804012i \(-0.702695\pi\)
0.594613 0.804012i \(-0.297305\pi\)
\(48\) 0 0
\(49\) 31.7481 37.3237i 0.647920 0.761708i
\(50\) −2.25303 25.9801i −0.0450606 0.519602i
\(51\) 0 0
\(52\) −23.3368 + 4.07828i −0.448785 + 0.0784285i
\(53\) 36.6740i 0.691963i −0.938241 0.345981i \(-0.887546\pi\)
0.938241 0.345981i \(-0.112454\pi\)
\(54\) 0 0
\(55\) 39.8419i 0.724398i
\(56\) 35.7534 + 43.1010i 0.638454 + 0.769660i
\(57\) 0 0
\(58\) 38.9531 3.37807i 0.671604 0.0582425i
\(59\) 21.9834 0.372600 0.186300 0.982493i \(-0.440350\pi\)
0.186300 + 0.982493i \(0.440350\pi\)
\(60\) 0 0
\(61\) −49.7137 −0.814978 −0.407489 0.913210i \(-0.633596\pi\)
−0.407489 + 0.913210i \(0.633596\pi\)
\(62\) 41.4103 3.59116i 0.667909 0.0579220i
\(63\) 0 0
\(64\) −55.5712 + 31.7464i −0.868301 + 0.496038i
\(65\) 36.5282 0.561972
\(66\) 0 0
\(67\) 106.648i 1.59176i −0.605457 0.795878i \(-0.707010\pi\)
0.605457 0.795878i \(-0.292990\pi\)
\(68\) −20.4560 117.054i −0.300824 1.72138i
\(69\) 0 0
\(70\) −42.8644 74.9550i −0.612349 1.07079i
\(71\) 84.5125 1.19032 0.595159 0.803608i \(-0.297089\pi\)
0.595159 + 0.803608i \(0.297089\pi\)
\(72\) 0 0
\(73\) 67.2164i 0.920773i 0.887719 + 0.460387i \(0.152289\pi\)
−0.887719 + 0.460387i \(0.847711\pi\)
\(74\) −86.4484 + 7.49693i −1.16822 + 0.101310i
\(75\) 0 0
\(76\) 29.6950 5.18941i 0.390724 0.0682817i
\(77\) 18.9728 + 41.0467i 0.246399 + 0.533074i
\(78\) 0 0
\(79\) 19.2213 0.243307 0.121654 0.992573i \(-0.461180\pi\)
0.121654 + 0.992573i \(0.461180\pi\)
\(80\) 92.8321 33.4683i 1.16040 0.418354i
\(81\) 0 0
\(82\) 85.6876 7.43095i 1.04497 0.0906213i
\(83\) −122.024 −1.47017 −0.735083 0.677977i \(-0.762857\pi\)
−0.735083 + 0.677977i \(0.762857\pi\)
\(84\) 0 0
\(85\) 183.220i 2.15553i
\(86\) −55.1962 + 4.78669i −0.641816 + 0.0556592i
\(87\) 0 0
\(88\) −49.9488 + 13.2615i −0.567600 + 0.150699i
\(89\) 43.7186i 0.491221i 0.969369 + 0.245610i \(0.0789884\pi\)
−0.969369 + 0.245610i \(0.921012\pi\)
\(90\) 0 0
\(91\) 37.6327 17.3948i 0.413546 0.191151i
\(92\) −158.209 + 27.6482i −1.71966 + 0.300524i
\(93\) 0 0
\(94\) −150.589 + 13.0593i −1.60201 + 0.138929i
\(95\) −46.4803 −0.489266
\(96\) 0 0
\(97\) 151.843i 1.56539i −0.622403 0.782697i \(-0.713843\pi\)
0.622403 0.782697i \(-0.286157\pi\)
\(98\) −79.8542 56.8094i −0.814839 0.579688i
\(99\) 0 0
\(100\) −51.3766 + 8.97842i −0.513766 + 0.0897842i
\(101\) −125.953 −1.24706 −0.623530 0.781800i \(-0.714302\pi\)
−0.623530 + 0.781800i \(0.714302\pi\)
\(102\) 0 0
\(103\) 78.0095i 0.757373i 0.925525 + 0.378687i \(0.123624\pi\)
−0.925525 + 0.378687i \(0.876376\pi\)
\(104\) 12.1585 + 45.7945i 0.116909 + 0.440331i
\(105\) 0 0
\(106\) −73.0738 + 6.33707i −0.689376 + 0.0597836i
\(107\) 108.650i 1.01542i −0.861527 0.507712i \(-0.830491\pi\)
0.861527 0.507712i \(-0.169509\pi\)
\(108\) 0 0
\(109\) 120.456i 1.10510i 0.833479 + 0.552552i \(0.186346\pi\)
−0.833479 + 0.552552i \(0.813654\pi\)
\(110\) 79.3859 6.88446i 0.721690 0.0625860i
\(111\) 0 0
\(112\) 79.7016 78.6871i 0.711621 0.702563i
\(113\) 26.1036 0.231005 0.115502 0.993307i \(-0.463152\pi\)
0.115502 + 0.993307i \(0.463152\pi\)
\(114\) 0 0
\(115\) 247.638 2.15338
\(116\) −13.4617 77.0311i −0.116049 0.664061i
\(117\) 0 0
\(118\) −3.79860 43.8023i −0.0321915 0.371206i
\(119\) 87.2494 + 188.760i 0.733188 + 1.58622i
\(120\) 0 0
\(121\) 79.2695 0.655120
\(122\) 8.59024 + 99.0555i 0.0704118 + 0.811931i
\(123\) 0 0
\(124\) −14.3109 81.8905i −0.115411 0.660407i
\(125\) −73.7714 −0.590171
\(126\) 0 0
\(127\) 8.22965 0.0648004 0.0324002 0.999475i \(-0.489685\pi\)
0.0324002 + 0.999475i \(0.489685\pi\)
\(128\) 72.8579 + 105.241i 0.569202 + 0.822198i
\(129\) 0 0
\(130\) −6.31186 72.7832i −0.0485528 0.559871i
\(131\) 124.421 0.949780 0.474890 0.880045i \(-0.342488\pi\)
0.474890 + 0.880045i \(0.342488\pi\)
\(132\) 0 0
\(133\) −47.8858 + 22.1340i −0.360044 + 0.166421i
\(134\) −212.498 + 18.4281i −1.58580 + 0.137523i
\(135\) 0 0
\(136\) −229.698 + 60.9853i −1.68896 + 0.448422i
\(137\) −31.1603 −0.227447 −0.113724 0.993512i \(-0.536278\pi\)
−0.113724 + 0.993512i \(0.536278\pi\)
\(138\) 0 0
\(139\) −91.4021 −0.657569 −0.328784 0.944405i \(-0.606639\pi\)
−0.328784 + 0.944405i \(0.606639\pi\)
\(140\) −141.943 + 98.3600i −1.01388 + 0.702572i
\(141\) 0 0
\(142\) −14.6033 168.393i −0.102840 1.18587i
\(143\) 38.2597i 0.267550i
\(144\) 0 0
\(145\) 120.574i 0.831541i
\(146\) 133.930 11.6146i 0.917330 0.0795522i
\(147\) 0 0
\(148\) 29.8756 + 170.955i 0.201862 + 1.15510i
\(149\) 240.341i 1.61303i 0.591216 + 0.806513i \(0.298648\pi\)
−0.591216 + 0.806513i \(0.701352\pi\)
\(150\) 0 0
\(151\) 2.20156 0.0145799 0.00728994 0.999973i \(-0.497680\pi\)
0.00728994 + 0.999973i \(0.497680\pi\)
\(152\) −15.4711 58.2712i −0.101784 0.383363i
\(153\) 0 0
\(154\) 78.5080 44.8963i 0.509792 0.291534i
\(155\) 128.180i 0.826966i
\(156\) 0 0
\(157\) 177.687 1.13176 0.565882 0.824486i \(-0.308536\pi\)
0.565882 + 0.824486i \(0.308536\pi\)
\(158\) −3.32133 38.2988i −0.0210210 0.242397i
\(159\) 0 0
\(160\) −82.7271 179.187i −0.517045 1.11992i
\(161\) 255.126 117.926i 1.58464 0.732457i
\(162\) 0 0
\(163\) 61.2783i 0.375940i 0.982175 + 0.187970i \(0.0601908\pi\)
−0.982175 + 0.187970i \(0.939809\pi\)
\(164\) −29.6127 169.450i −0.180565 1.03323i
\(165\) 0 0
\(166\) 21.0850 + 243.135i 0.127018 + 1.46467i
\(167\) 99.4758i 0.595664i 0.954618 + 0.297832i \(0.0962635\pi\)
−0.954618 + 0.297832i \(0.903737\pi\)
\(168\) 0 0
\(169\) −133.922 −0.792441
\(170\) 365.069 31.6593i 2.14747 0.186231i
\(171\) 0 0
\(172\) 19.0752 + 109.152i 0.110902 + 0.634607i
\(173\) 95.4661 0.551827 0.275914 0.961182i \(-0.411020\pi\)
0.275914 + 0.961182i \(0.411020\pi\)
\(174\) 0 0
\(175\) 82.8493 38.2949i 0.473424 0.218828i
\(176\) 35.0547 + 97.2326i 0.199175 + 0.552458i
\(177\) 0 0
\(178\) 87.1103 7.55433i 0.489384 0.0424401i
\(179\) 252.000i 1.40782i −0.710289 0.703910i \(-0.751436\pi\)
0.710289 0.703910i \(-0.248564\pi\)
\(180\) 0 0
\(181\) −220.793 −1.21985 −0.609927 0.792458i \(-0.708801\pi\)
−0.609927 + 0.792458i \(0.708801\pi\)
\(182\) −41.1621 71.9783i −0.226166 0.395485i
\(183\) 0 0
\(184\) 82.4273 + 310.458i 0.447974 + 1.68727i
\(185\) 267.588i 1.44642i
\(186\) 0 0
\(187\) −191.905 −1.02623
\(188\) 52.0419 + 297.795i 0.276819 + 1.58402i
\(189\) 0 0
\(190\) 8.03153 + 92.6130i 0.0422712 + 0.487437i
\(191\) −97.0332 −0.508027 −0.254013 0.967201i \(-0.581751\pi\)
−0.254013 + 0.967201i \(0.581751\pi\)
\(192\) 0 0
\(193\) −74.1906 −0.384407 −0.192204 0.981355i \(-0.561563\pi\)
−0.192204 + 0.981355i \(0.561563\pi\)
\(194\) −302.551 + 26.2377i −1.55954 + 0.135246i
\(195\) 0 0
\(196\) −99.3956 + 168.928i −0.507120 + 0.861875i
\(197\) 56.4501i 0.286549i 0.989683 + 0.143274i \(0.0457631\pi\)
−0.989683 + 0.143274i \(0.954237\pi\)
\(198\) 0 0
\(199\) 270.199i 1.35778i −0.734238 0.678892i \(-0.762460\pi\)
0.734238 0.678892i \(-0.237540\pi\)
\(200\) 26.7673 + 100.818i 0.133836 + 0.504088i
\(201\) 0 0
\(202\) 21.7640 + 250.964i 0.107742 + 1.24240i
\(203\) 57.4172 + 124.219i 0.282844 + 0.611919i
\(204\) 0 0
\(205\) 265.233i 1.29382i
\(206\) 155.436 13.4796i 0.754541 0.0654349i
\(207\) 0 0
\(208\) 89.1455 32.1392i 0.428584 0.154515i
\(209\) 48.6836i 0.232936i
\(210\) 0 0
\(211\) 52.1555i 0.247183i 0.992333 + 0.123591i \(0.0394412\pi\)
−0.992333 + 0.123591i \(0.960559\pi\)
\(212\) 25.2535 + 144.506i 0.119120 + 0.681633i
\(213\) 0 0
\(214\) −216.488 + 18.7742i −1.01163 + 0.0877298i
\(215\) 170.852i 0.794659i
\(216\) 0 0
\(217\) 61.0393 + 132.056i 0.281287 + 0.608551i
\(218\) 240.012 20.8142i 1.10097 0.0954778i
\(219\) 0 0
\(220\) −27.4349 156.988i −0.124704 0.713584i
\(221\) 175.944i 0.796125i
\(222\) 0 0
\(223\) 133.353i 0.597998i 0.954253 + 0.298999i \(0.0966527\pi\)
−0.954253 + 0.298999i \(0.903347\pi\)
\(224\) −170.558 145.210i −0.761418 0.648261i
\(225\) 0 0
\(226\) −4.51055 52.0119i −0.0199582 0.230141i
\(227\) −359.544 −1.58389 −0.791946 0.610591i \(-0.790932\pi\)
−0.791946 + 0.610591i \(0.790932\pi\)
\(228\) 0 0
\(229\) −392.327 −1.71322 −0.856610 0.515965i \(-0.827433\pi\)
−0.856610 + 0.515965i \(0.827433\pi\)
\(230\) −42.7905 493.424i −0.186045 2.14532i
\(231\) 0 0
\(232\) −151.160 + 40.1333i −0.651552 + 0.172989i
\(233\) −240.219 −1.03098 −0.515491 0.856895i \(-0.672390\pi\)
−0.515491 + 0.856895i \(0.672390\pi\)
\(234\) 0 0
\(235\) 466.127i 1.98352i
\(236\) −86.6207 + 15.1376i −0.367037 + 0.0641423i
\(237\) 0 0
\(238\) 361.032 206.463i 1.51694 0.867492i
\(239\) −132.847 −0.555847 −0.277923 0.960603i \(-0.589646\pi\)
−0.277923 + 0.960603i \(0.589646\pi\)
\(240\) 0 0
\(241\) 335.329i 1.39140i 0.718330 + 0.695702i \(0.244907\pi\)
−0.718330 + 0.695702i \(0.755093\pi\)
\(242\) −13.6973 157.946i −0.0566005 0.652670i
\(243\) 0 0
\(244\) 195.886 34.2325i 0.802811 0.140297i
\(245\) 195.808 230.196i 0.799217 0.939577i
\(246\) 0 0
\(247\) −44.6344 −0.180706
\(248\) −160.696 + 42.6651i −0.647966 + 0.172037i
\(249\) 0 0
\(250\) 12.7473 + 146.991i 0.0509891 + 0.587965i
\(251\) 382.900 1.52550 0.762749 0.646694i \(-0.223849\pi\)
0.762749 + 0.646694i \(0.223849\pi\)
\(252\) 0 0
\(253\) 259.377i 1.02520i
\(254\) −1.42204 16.3978i −0.00559857 0.0645581i
\(255\) 0 0
\(256\) 197.106 163.356i 0.769946 0.638109i
\(257\) 426.784i 1.66064i 0.557287 + 0.830320i \(0.311842\pi\)
−0.557287 + 0.830320i \(0.688158\pi\)
\(258\) 0 0
\(259\) −127.426 275.680i −0.491992 1.06440i
\(260\) −143.931 + 25.1530i −0.553582 + 0.0967425i
\(261\) 0 0
\(262\) −21.4993 247.912i −0.0820583 0.946228i
\(263\) −211.088 −0.802615 −0.401307 0.915943i \(-0.631444\pi\)
−0.401307 + 0.915943i \(0.631444\pi\)
\(264\) 0 0
\(265\) 226.189i 0.853545i
\(266\) 52.3768 + 91.5889i 0.196905 + 0.344319i
\(267\) 0 0
\(268\) 73.4368 + 420.222i 0.274018 + 1.56799i
\(269\) 32.7632 0.121796 0.0608982 0.998144i \(-0.480604\pi\)
0.0608982 + 0.998144i \(0.480604\pi\)
\(270\) 0 0
\(271\) 429.177i 1.58368i −0.610730 0.791839i \(-0.709124\pi\)
0.610730 0.791839i \(-0.290876\pi\)
\(272\) 161.205 + 447.140i 0.592666 + 1.64390i
\(273\) 0 0
\(274\) 5.38432 + 62.0875i 0.0196508 + 0.226597i
\(275\) 84.2295i 0.306289i
\(276\) 0 0
\(277\) 245.879i 0.887649i −0.896114 0.443824i \(-0.853621\pi\)
0.896114 0.443824i \(-0.146379\pi\)
\(278\) 15.7938 + 182.121i 0.0568121 + 0.655110i
\(279\) 0 0
\(280\) 220.511 + 265.828i 0.787541 + 0.949385i
\(281\) −50.7953 −0.180766 −0.0903831 0.995907i \(-0.528809\pi\)
−0.0903831 + 0.995907i \(0.528809\pi\)
\(282\) 0 0
\(283\) 101.397 0.358293 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(284\) −333.003 + 58.1947i −1.17255 + 0.204911i
\(285\) 0 0
\(286\) 76.2332 6.61106i 0.266550 0.0231156i
\(287\) 126.304 + 273.254i 0.440085 + 0.952103i
\(288\) 0 0
\(289\) −593.506 −2.05365
\(290\) 240.245 20.8344i 0.828432 0.0718428i
\(291\) 0 0
\(292\) −46.2848 264.852i −0.158509 0.907027i
\(293\) −218.851 −0.746932 −0.373466 0.927644i \(-0.621831\pi\)
−0.373466 + 0.927644i \(0.621831\pi\)
\(294\) 0 0
\(295\) 135.584 0.459606
\(296\) 335.469 89.0678i 1.13334 0.300905i
\(297\) 0 0
\(298\) 478.884 41.5295i 1.60699 0.139361i
\(299\) 237.804 0.795330
\(300\) 0 0
\(301\) −81.3598 176.018i −0.270298 0.584777i
\(302\) −0.380417 4.38666i −0.00125966 0.0145254i
\(303\) 0 0
\(304\) −113.433 + 40.8955i −0.373136 + 0.134525i
\(305\) −306.612 −1.00529
\(306\) 0 0
\(307\) 423.419 1.37922 0.689608 0.724183i \(-0.257783\pi\)
0.689608 + 0.724183i \(0.257783\pi\)
\(308\) −103.023 148.671i −0.334489 0.482698i
\(309\) 0 0
\(310\) 255.401 22.1487i 0.823873 0.0714475i
\(311\) 18.7982i 0.0604445i 0.999543 + 0.0302222i \(0.00962150\pi\)
−0.999543 + 0.0302222i \(0.990378\pi\)
\(312\) 0 0
\(313\) 195.908i 0.625905i −0.949769 0.312952i \(-0.898682\pi\)
0.949769 0.312952i \(-0.101318\pi\)
\(314\) −30.7033 354.045i −0.0977812 1.12753i
\(315\) 0 0
\(316\) −75.7372 + 13.2356i −0.239675 + 0.0418849i
\(317\) 343.312i 1.08300i −0.840700 0.541501i \(-0.817856\pi\)
0.840700 0.541501i \(-0.182144\pi\)
\(318\) 0 0
\(319\) −126.289 −0.395890
\(320\) −342.739 + 195.798i −1.07106 + 0.611869i
\(321\) 0 0
\(322\) −279.054 487.968i −0.866626 1.51543i
\(323\) 223.880i 0.693126i
\(324\) 0 0
\(325\) 77.2240 0.237612
\(326\) 122.098 10.5885i 0.374535 0.0324802i
\(327\) 0 0
\(328\) −332.517 + 88.2839i −1.01377 + 0.269158i
\(329\) −221.970 480.221i −0.674681 1.45964i
\(330\) 0 0
\(331\) 81.4921i 0.246200i −0.992394 0.123100i \(-0.960716\pi\)
0.992394 0.123100i \(-0.0392835\pi\)
\(332\) 480.808 84.0247i 1.44822 0.253086i
\(333\) 0 0
\(334\) 198.208 17.1889i 0.593436 0.0514636i
\(335\) 657.756i 1.96345i
\(336\) 0 0
\(337\) 516.227 1.53183 0.765916 0.642941i \(-0.222286\pi\)
0.765916 + 0.642941i \(0.222286\pi\)
\(338\) 23.1410 + 266.843i 0.0684646 + 0.789477i
\(339\) 0 0
\(340\) −126.164 721.938i −0.371070 2.12335i
\(341\) −134.256 −0.393712
\(342\) 0 0
\(343\) 92.1094 330.401i 0.268541 0.963268i
\(344\) 214.192 56.8686i 0.622653 0.165316i
\(345\) 0 0
\(346\) −16.4960 190.218i −0.0476763 0.549764i
\(347\) 458.680i 1.32184i −0.750455 0.660922i \(-0.770165\pi\)
0.750455 0.660922i \(-0.229835\pi\)
\(348\) 0 0
\(349\) 420.639 1.20527 0.602634 0.798017i \(-0.294118\pi\)
0.602634 + 0.798017i \(0.294118\pi\)
\(350\) −90.6194 158.462i −0.258912 0.452748i
\(351\) 0 0
\(352\) 187.681 86.6486i 0.533184 0.246161i
\(353\) 93.5372i 0.264978i −0.991184 0.132489i \(-0.957703\pi\)
0.991184 0.132489i \(-0.0422969\pi\)
\(354\) 0 0
\(355\) 521.236 1.46827
\(356\) −30.1043 172.264i −0.0845628 0.483887i
\(357\) 0 0
\(358\) −502.115 + 43.5441i −1.40256 + 0.121632i
\(359\) −597.696 −1.66489 −0.832446 0.554106i \(-0.813060\pi\)
−0.832446 + 0.554106i \(0.813060\pi\)
\(360\) 0 0
\(361\) −304.205 −0.842673
\(362\) 38.1519 + 439.936i 0.105392 + 1.21529i
\(363\) 0 0
\(364\) −136.306 + 94.4539i −0.374466 + 0.259489i
\(365\) 414.561i 1.13578i
\(366\) 0 0
\(367\) 4.47916i 0.0122048i 0.999981 + 0.00610240i \(0.00194247\pi\)
−0.999981 + 0.00610240i \(0.998058\pi\)
\(368\) 604.351 217.883i 1.64226 0.592074i
\(369\) 0 0
\(370\) −533.176 + 46.2378i −1.44102 + 0.124967i
\(371\) −107.712 233.029i −0.290328 0.628110i
\(372\) 0 0
\(373\) 121.868i 0.326725i −0.986566 0.163363i \(-0.947766\pi\)
0.986566 0.163363i \(-0.0522340\pi\)
\(374\) 33.1600 + 382.374i 0.0886632 + 1.02239i
\(375\) 0 0
\(376\) 584.371 155.152i 1.55418 0.412638i
\(377\) 115.785i 0.307123i
\(378\) 0 0
\(379\) 73.1377i 0.192976i 0.995334 + 0.0964878i \(0.0307609\pi\)
−0.995334 + 0.0964878i \(0.969239\pi\)
\(380\) 183.146 32.0060i 0.481962 0.0842263i
\(381\) 0 0
\(382\) 16.7668 + 193.341i 0.0438921 + 0.506127i
\(383\) 263.145i 0.687062i −0.939141 0.343531i \(-0.888377\pi\)
0.939141 0.343531i \(-0.111623\pi\)
\(384\) 0 0
\(385\) 117.016 + 253.158i 0.303937 + 0.657553i
\(386\) 12.8197 + 147.826i 0.0332117 + 0.382970i
\(387\) 0 0
\(388\) 104.558 + 598.306i 0.269480 + 1.54202i
\(389\) 8.96716i 0.0230518i −0.999934 0.0115259i \(-0.996331\pi\)
0.999934 0.0115259i \(-0.00366889\pi\)
\(390\) 0 0
\(391\) 1192.79i 3.05061i
\(392\) 353.767 + 168.858i 0.902466 + 0.430761i
\(393\) 0 0
\(394\) 112.478 9.75426i 0.285477 0.0247570i
\(395\) 118.548 0.300122
\(396\) 0 0
\(397\) 591.900 1.49093 0.745466 0.666544i \(-0.232227\pi\)
0.745466 + 0.666544i \(0.232227\pi\)
\(398\) −538.378 + 46.6889i −1.35271 + 0.117309i
\(399\) 0 0
\(400\) 196.256 70.7551i 0.490640 0.176888i
\(401\) −433.112 −1.08008 −0.540040 0.841640i \(-0.681591\pi\)
−0.540040 + 0.841640i \(0.681591\pi\)
\(402\) 0 0
\(403\) 123.089i 0.305433i
\(404\) 496.291 86.7303i 1.22844 0.214679i
\(405\) 0 0
\(406\) 237.589 135.869i 0.585194 0.334654i
\(407\) 280.273 0.688630
\(408\) 0 0
\(409\) 200.528i 0.490288i −0.969487 0.245144i \(-0.921165\pi\)
0.969487 0.245144i \(-0.0788353\pi\)
\(410\) 528.483 45.8308i 1.28898 0.111783i
\(411\) 0 0
\(412\) −53.7168 307.379i −0.130380 0.746067i
\(413\) 139.684 64.5651i 0.338217 0.156332i
\(414\) 0 0
\(415\) −752.589 −1.81347
\(416\) −79.4418 172.071i −0.190966 0.413632i
\(417\) 0 0
\(418\) −97.0031 + 8.41224i −0.232065 + 0.0201250i
\(419\) −324.504 −0.774472 −0.387236 0.921981i \(-0.626570\pi\)
−0.387236 + 0.921981i \(0.626570\pi\)
\(420\) 0 0
\(421\) 237.746i 0.564717i 0.959309 + 0.282359i \(0.0911168\pi\)
−0.959309 + 0.282359i \(0.908883\pi\)
\(422\) 103.921 9.01218i 0.246258 0.0213559i
\(423\) 0 0
\(424\) 283.568 75.2879i 0.668792 0.177566i
\(425\) 387.344i 0.911397i
\(426\) 0 0
\(427\) −315.883 + 146.009i −0.739774 + 0.341941i
\(428\) 74.8159 + 428.114i 0.174804 + 1.00027i
\(429\) 0 0
\(430\) −340.426 + 29.5222i −0.791688 + 0.0686563i
\(431\) 285.237 0.661804 0.330902 0.943665i \(-0.392647\pi\)
0.330902 + 0.943665i \(0.392647\pi\)
\(432\) 0 0
\(433\) 524.457i 1.21122i −0.795763 0.605608i \(-0.792930\pi\)
0.795763 0.605608i \(-0.207070\pi\)
\(434\) 252.576 144.441i 0.581973 0.332812i
\(435\) 0 0
\(436\) −82.9453 474.632i −0.190242 1.08861i
\(437\) −302.594 −0.692434
\(438\) 0 0
\(439\) 238.365i 0.542972i 0.962442 + 0.271486i \(0.0875151\pi\)
−0.962442 + 0.271486i \(0.912485\pi\)
\(440\) −308.062 + 81.7913i −0.700142 + 0.185889i
\(441\) 0 0
\(442\) 350.571 30.4020i 0.793148 0.0687829i
\(443\) 644.690i 1.45528i 0.685958 + 0.727641i \(0.259383\pi\)
−0.685958 + 0.727641i \(0.740617\pi\)
\(444\) 0 0
\(445\) 269.637i 0.605927i
\(446\) 265.710 23.0427i 0.595762 0.0516653i
\(447\) 0 0
\(448\) −259.864 + 364.931i −0.580053 + 0.814579i
\(449\) 578.191 1.28773 0.643865 0.765139i \(-0.277330\pi\)
0.643865 + 0.765139i \(0.277330\pi\)
\(450\) 0 0
\(451\) −277.806 −0.615978
\(452\) −102.855 + 17.9747i −0.227556 + 0.0397671i
\(453\) 0 0
\(454\) 62.1271 + 716.399i 0.136844 + 1.57797i
\(455\) 232.102 107.283i 0.510114 0.235787i
\(456\) 0 0
\(457\) 530.814 1.16152 0.580759 0.814075i \(-0.302756\pi\)
0.580759 + 0.814075i \(0.302756\pi\)
\(458\) 67.7919 + 781.720i 0.148017 + 1.70681i
\(459\) 0 0
\(460\) −975.765 + 170.522i −2.12123 + 0.370700i
\(461\) 264.540 0.573839 0.286920 0.957955i \(-0.407369\pi\)
0.286920 + 0.957955i \(0.407369\pi\)
\(462\) 0 0
\(463\) −162.996 −0.352044 −0.176022 0.984386i \(-0.556323\pi\)
−0.176022 + 0.984386i \(0.556323\pi\)
\(464\) 106.086 + 294.255i 0.228634 + 0.634170i
\(465\) 0 0
\(466\) 41.5084 + 478.641i 0.0890739 + 1.02713i
\(467\) −451.747 −0.967339 −0.483670 0.875251i \(-0.660696\pi\)
−0.483670 + 0.875251i \(0.660696\pi\)
\(468\) 0 0
\(469\) −313.224 677.645i −0.667855 1.44487i
\(470\) −928.767 + 80.5440i −1.97610 + 0.171370i
\(471\) 0 0
\(472\) 45.1296 + 169.978i 0.0956135 + 0.360123i
\(473\) 178.950 0.378331
\(474\) 0 0
\(475\) −98.2637 −0.206871
\(476\) −473.766 683.689i −0.995307 1.43632i
\(477\) 0 0
\(478\) 22.9553 + 264.701i 0.0480236 + 0.553768i
\(479\) 678.834i 1.41719i 0.705616 + 0.708595i \(0.250670\pi\)
−0.705616 + 0.708595i \(0.749330\pi\)
\(480\) 0 0
\(481\) 256.962i 0.534224i
\(482\) 668.149 57.9429i 1.38620 0.120213i
\(483\) 0 0
\(484\) −312.344 + 54.5844i −0.645340 + 0.112778i
\(485\) 936.502i 1.93093i
\(486\) 0 0
\(487\) 186.357 0.382664 0.191332 0.981525i \(-0.438719\pi\)
0.191332 + 0.981525i \(0.438719\pi\)
\(488\) −102.057 384.392i −0.209133 0.787688i
\(489\) 0 0
\(490\) −492.506 350.375i −1.00511 0.715052i
\(491\) 196.165i 0.399522i 0.979845 + 0.199761i \(0.0640165\pi\)
−0.979845 + 0.199761i \(0.935983\pi\)
\(492\) 0 0
\(493\) −580.761 −1.17801
\(494\) 7.71258 + 88.9351i 0.0156125 + 0.180031i
\(495\) 0 0
\(496\) 112.778 + 312.817i 0.227376 + 0.630680i
\(497\) 536.998 248.213i 1.08048 0.499423i
\(498\) 0 0
\(499\) 486.955i 0.975863i 0.872882 + 0.487931i \(0.162248\pi\)
−0.872882 + 0.487931i \(0.837752\pi\)
\(500\) 290.680 50.7985i 0.581361 0.101597i
\(501\) 0 0
\(502\) −66.1630 762.937i −0.131799 1.51979i
\(503\) 192.742i 0.383185i −0.981475 0.191593i \(-0.938635\pi\)
0.981475 0.191593i \(-0.0613652\pi\)
\(504\) 0 0
\(505\) −776.823 −1.53826
\(506\) 516.814 44.8188i 1.02137 0.0885747i
\(507\) 0 0
\(508\) −32.4272 + 5.66688i −0.0638330 + 0.0111553i
\(509\) 109.782 0.215683 0.107841 0.994168i \(-0.465606\pi\)
0.107841 + 0.994168i \(0.465606\pi\)
\(510\) 0 0
\(511\) 197.415 + 427.097i 0.386330 + 0.835806i
\(512\) −359.549 364.511i −0.702244 0.711936i
\(513\) 0 0
\(514\) 850.377 73.7459i 1.65443 0.143475i
\(515\) 481.128i 0.934229i
\(516\) 0 0
\(517\) 488.222 0.944336
\(518\) −527.279 + 301.535i −1.01791 + 0.582113i
\(519\) 0 0
\(520\) 74.9885 + 282.440i 0.144209 + 0.543154i
\(521\) 7.72697i 0.0148310i −0.999973 0.00741552i \(-0.997640\pi\)
0.999973 0.00741552i \(-0.00236045\pi\)
\(522\) 0 0
\(523\) −861.576 −1.64737 −0.823686 0.567046i \(-0.808086\pi\)
−0.823686 + 0.567046i \(0.808086\pi\)
\(524\) −490.255 + 85.6755i −0.935600 + 0.163503i
\(525\) 0 0
\(526\) 36.4748 + 420.597i 0.0693436 + 0.799614i
\(527\) −617.397 −1.17153
\(528\) 0 0
\(529\) 1083.16 2.04756
\(530\) −450.687 + 39.0842i −0.850353 + 0.0737438i
\(531\) 0 0
\(532\) 173.442 120.188i 0.326019 0.225917i
\(533\) 254.700i 0.477862i
\(534\) 0 0
\(535\) 670.108i 1.25254i
\(536\) 824.612 218.936i 1.53846 0.408464i
\(537\) 0 0
\(538\) −5.66130 65.2814i −0.0105229 0.121341i
\(539\) 241.108 + 205.090i 0.447325 + 0.380501i
\(540\) 0 0
\(541\) 1072.33i 1.98212i −0.133425 0.991059i \(-0.542598\pi\)
0.133425 0.991059i \(-0.457402\pi\)
\(542\) −855.144 + 74.1593i −1.57776 + 0.136825i
\(543\) 0 0
\(544\) 863.081 398.468i 1.58655 0.732478i
\(545\) 742.921i 1.36316i
\(546\) 0 0
\(547\) 838.104i 1.53218i 0.642732 + 0.766091i \(0.277801\pi\)
−0.642732 + 0.766091i \(0.722199\pi\)
\(548\) 122.780 21.4567i 0.224052 0.0391546i
\(549\) 0 0
\(550\) 167.829 14.5544i 0.305144 0.0264625i
\(551\) 147.331i 0.267388i
\(552\) 0 0
\(553\) 122.133 56.4528i 0.220855 0.102085i
\(554\) −489.919 + 42.4864i −0.884329 + 0.0766903i
\(555\) 0 0
\(556\) 360.150 62.9388i 0.647752 0.113199i
\(557\) 150.830i 0.270789i −0.990792 0.135395i \(-0.956770\pi\)
0.990792 0.135395i \(-0.0432303\pi\)
\(558\) 0 0
\(559\) 164.067i 0.293500i
\(560\) 491.564 485.307i 0.877794 0.866620i
\(561\) 0 0
\(562\) 8.77714 + 101.211i 0.0156177 + 0.180090i
\(563\) 80.5128 0.143007 0.0715034 0.997440i \(-0.477220\pi\)
0.0715034 + 0.997440i \(0.477220\pi\)
\(564\) 0 0
\(565\) 160.995 0.284947
\(566\) −17.5208 202.036i −0.0309555 0.356953i
\(567\) 0 0
\(568\) 173.495 + 653.461i 0.305450 + 1.15046i
\(569\) −970.937 −1.70639 −0.853196 0.521590i \(-0.825339\pi\)
−0.853196 + 0.521590i \(0.825339\pi\)
\(570\) 0 0
\(571\) 822.407i 1.44029i −0.693822 0.720146i \(-0.744075\pi\)
0.693822 0.720146i \(-0.255925\pi\)
\(572\) −26.3453 150.754i −0.0460583 0.263556i
\(573\) 0 0
\(574\) 522.639 298.881i 0.910521 0.520699i
\(575\) 523.530 0.910487
\(576\) 0 0
\(577\) 155.604i 0.269677i 0.990868 + 0.134839i \(0.0430516\pi\)
−0.990868 + 0.134839i \(0.956948\pi\)
\(578\) 102.554 + 1182.57i 0.177430 + 2.04597i
\(579\) 0 0
\(580\) −83.0261 475.094i −0.143148 0.819127i
\(581\) −775.346 + 358.384i −1.33450 + 0.616839i
\(582\) 0 0
\(583\) 236.911 0.406366
\(584\) −519.725 + 137.988i −0.889941 + 0.236281i
\(585\) 0 0
\(586\) 37.8162 + 436.065i 0.0645328 + 0.744139i
\(587\) 45.2760 0.0771313 0.0385656 0.999256i \(-0.487721\pi\)
0.0385656 + 0.999256i \(0.487721\pi\)
\(588\) 0 0
\(589\) 156.625i 0.265917i
\(590\) −23.4281 270.154i −0.0397087 0.457887i
\(591\) 0 0
\(592\) −235.437 653.039i −0.397697 1.10311i
\(593\) 192.741i 0.325026i −0.986706 0.162513i \(-0.948040\pi\)
0.986706 0.162513i \(-0.0519600\pi\)
\(594\) 0 0
\(595\) 538.116 + 1164.19i 0.904397 + 1.95662i
\(596\) −165.497 947.011i −0.277680 1.58895i
\(597\) 0 0
\(598\) −41.0911 473.829i −0.0687143 0.792356i
\(599\) 271.878 0.453886 0.226943 0.973908i \(-0.427127\pi\)
0.226943 + 0.973908i \(0.427127\pi\)
\(600\) 0 0
\(601\) 319.614i 0.531803i −0.964000 0.265902i \(-0.914330\pi\)
0.964000 0.265902i \(-0.0856696\pi\)
\(602\) −336.661 + 192.526i −0.559238 + 0.319811i
\(603\) 0 0
\(604\) −8.67478 + 1.51598i −0.0143622 + 0.00250990i
\(605\) 488.899 0.808098
\(606\) 0 0
\(607\) 305.071i 0.502587i 0.967911 + 0.251294i \(0.0808560\pi\)
−0.967911 + 0.251294i \(0.919144\pi\)
\(608\) 101.086 + 218.952i 0.166260 + 0.360118i
\(609\) 0 0
\(610\) 52.9808 + 610.931i 0.0868538 + 1.00153i
\(611\) 447.615i 0.732595i
\(612\) 0 0
\(613\) 870.460i 1.42000i 0.704202 + 0.710000i \(0.251305\pi\)
−0.704202 + 0.710000i \(0.748695\pi\)
\(614\) −73.1644 843.672i −0.119160 1.37406i
\(615\) 0 0
\(616\) −278.429 + 230.964i −0.451994 + 0.374942i
\(617\) 448.273 0.726537 0.363268 0.931685i \(-0.381661\pi\)
0.363268 + 0.931685i \(0.381661\pi\)
\(618\) 0 0
\(619\) −879.069 −1.42014 −0.710072 0.704129i \(-0.751338\pi\)
−0.710072 + 0.704129i \(0.751338\pi\)
\(620\) −88.2636 505.064i −0.142361 0.814620i
\(621\) 0 0
\(622\) 37.4559 3.24823i 0.0602185 0.00522223i
\(623\) 128.402 + 277.791i 0.206102 + 0.445892i
\(624\) 0 0
\(625\) −780.960 −1.24954
\(626\) −390.351 + 33.8518i −0.623565 + 0.0540764i
\(627\) 0 0
\(628\) −700.137 + 122.354i −1.11487 + 0.194831i
\(629\) 1288.88 2.04909
\(630\) 0 0
\(631\) −464.287 −0.735795 −0.367898 0.929866i \(-0.619922\pi\)
−0.367898 + 0.929866i \(0.619922\pi\)
\(632\) 39.4592 + 148.621i 0.0624355 + 0.235160i
\(633\) 0 0
\(634\) −684.056 + 59.3223i −1.07895 + 0.0935684i
\(635\) 50.7569 0.0799321
\(636\) 0 0
\(637\) 188.032 221.055i 0.295184 0.347024i
\(638\) 21.8220 + 251.633i 0.0342038 + 0.394410i
\(639\) 0 0
\(640\) 449.355 + 649.082i 0.702118 + 1.01419i
\(641\) 83.8113 0.130751 0.0653754 0.997861i \(-0.479176\pi\)
0.0653754 + 0.997861i \(0.479176\pi\)
\(642\) 0 0
\(643\) −965.822 −1.50206 −0.751028 0.660270i \(-0.770442\pi\)
−0.751028 + 0.660270i \(0.770442\pi\)
\(644\) −924.067 + 640.338i −1.43489 + 0.994314i
\(645\) 0 0
\(646\) −446.085 + 38.6851i −0.690534 + 0.0598841i
\(647\) 13.2482i 0.0204763i −0.999948 0.0102381i \(-0.996741\pi\)
0.999948 0.0102381i \(-0.00325896\pi\)
\(648\) 0 0
\(649\) 142.011i 0.218815i
\(650\) −13.3439 153.870i −0.0205290 0.236724i
\(651\) 0 0
\(652\) −42.1958 241.454i −0.0647175 0.370328i
\(653\) 504.030i 0.771869i 0.922526 + 0.385934i \(0.126121\pi\)
−0.922526 + 0.385934i \(0.873879\pi\)
\(654\) 0 0
\(655\) 767.375 1.17156
\(656\) 233.365 + 647.291i 0.355739 + 0.986725i
\(657\) 0 0
\(658\) −918.497 + 525.260i −1.39589 + 0.798267i
\(659\) 686.814i 1.04221i 0.853493 + 0.521104i \(0.174479\pi\)
−0.853493 + 0.521104i \(0.825521\pi\)
\(660\) 0 0
\(661\) −260.765 −0.394500 −0.197250 0.980353i \(-0.563201\pi\)
−0.197250 + 0.980353i \(0.563201\pi\)
\(662\) −162.375 + 14.0814i −0.245279 + 0.0212710i
\(663\) 0 0
\(664\) −250.502 943.502i −0.377262 1.42094i
\(665\) −295.339 + 136.513i −0.444118 + 0.205282i
\(666\) 0 0
\(667\) 784.951i 1.17684i
\(668\) −68.4983 391.963i −0.102542 0.586771i
\(669\) 0 0
\(670\) −1310.59 + 113.657i −1.95611 + 0.169637i
\(671\) 321.146i 0.478608i
\(672\) 0 0
\(673\) 1162.88 1.72791 0.863953 0.503572i \(-0.167981\pi\)
0.863953 + 0.503572i \(0.167981\pi\)
\(674\) −89.2011 1028.59i −0.132346 1.52610i
\(675\) 0 0
\(676\) 527.693 92.2180i 0.780610 0.136417i
\(677\) 69.4988 0.102657 0.0513285 0.998682i \(-0.483654\pi\)
0.0513285 + 0.998682i \(0.483654\pi\)
\(678\) 0 0
\(679\) −445.963 964.821i −0.656794 1.42094i
\(680\) −1416.68 + 376.131i −2.08335 + 0.553134i
\(681\) 0 0
\(682\) 23.1986 + 267.507i 0.0340156 + 0.392239i
\(683\) 576.814i 0.844530i 0.906472 + 0.422265i \(0.138765\pi\)
−0.906472 + 0.422265i \(0.861235\pi\)
\(684\) 0 0
\(685\) −192.183 −0.280559
\(686\) −674.247 126.439i −0.982868 0.184313i
\(687\) 0 0
\(688\) −150.323 416.957i −0.218493 0.606042i
\(689\) 217.207i 0.315249i
\(690\) 0 0
\(691\) 941.087 1.36192 0.680960 0.732321i \(-0.261563\pi\)
0.680960 + 0.732321i \(0.261563\pi\)
\(692\) −376.164 + 65.7373i −0.543589 + 0.0949961i
\(693\) 0 0
\(694\) −913.929 + 79.2573i −1.31690 + 0.114204i
\(695\) −563.728 −0.811119
\(696\) 0 0
\(697\) −1277.54 −1.83291
\(698\) −72.6840 838.132i −0.104132 1.20076i
\(699\) 0 0
\(700\) −300.080 + 207.942i −0.428686 + 0.297060i
\(701\) 533.804i 0.761489i −0.924680 0.380745i \(-0.875668\pi\)
0.924680 0.380745i \(-0.124332\pi\)
\(702\) 0 0
\(703\) 326.971i 0.465108i
\(704\) −205.079 358.986i −0.291306 0.509923i
\(705\) 0 0
\(706\) −186.375 + 16.1627i −0.263987 + 0.0228933i
\(707\) −800.313 + 369.924i −1.13198 + 0.523230i
\(708\) 0 0
\(709\) 536.848i 0.757190i −0.925562 0.378595i \(-0.876407\pi\)
0.925562 0.378595i \(-0.123593\pi\)
\(710\) −90.0667 1038.57i −0.126854 1.46278i
\(711\) 0 0
\(712\) −338.038 + 89.7498i −0.474772 + 0.126053i
\(713\) 834.468i 1.17036i
\(714\) 0 0
\(715\) 235.969i 0.330026i
\(716\) 173.525 + 992.950i 0.242354 + 1.38680i
\(717\) 0 0
\(718\) 103.279 + 1190.92i 0.143842 + 1.65867i
\(719\) 542.913i 0.755095i 0.925990 + 0.377547i \(0.123232\pi\)
−0.925990 + 0.377547i \(0.876768\pi\)
\(720\) 0 0
\(721\) 229.114 + 495.677i 0.317772 + 0.687485i
\(722\) 52.5649 + 606.135i 0.0728045 + 0.839522i
\(723\) 0 0
\(724\) 869.989 152.037i 1.20164 0.209996i
\(725\) 254.904i 0.351591i
\(726\) 0 0
\(727\) 312.117i 0.429322i −0.976689 0.214661i \(-0.931135\pi\)
0.976689 0.214661i \(-0.0688646\pi\)
\(728\) 211.754 + 255.271i 0.290871 + 0.350647i
\(729\) 0 0
\(730\) 826.023 71.6339i 1.13154 0.0981286i
\(731\) 822.933 1.12576
\(732\) 0 0
\(733\) −52.7310 −0.0719386 −0.0359693 0.999353i \(-0.511452\pi\)
−0.0359693 + 0.999353i \(0.511452\pi\)
\(734\) 8.92482 0.773973i 0.0121592 0.00105446i
\(735\) 0 0
\(736\) −538.566 1166.53i −0.731747 1.58496i
\(737\) 688.935 0.934783
\(738\) 0 0
\(739\) 783.978i 1.06086i −0.847727 0.530432i \(-0.822030\pi\)
0.847727 0.530432i \(-0.177970\pi\)
\(740\) 184.259 + 1054.37i 0.248999 + 1.42483i
\(741\) 0 0
\(742\) −445.703 + 254.884i −0.600678 + 0.343509i
\(743\) 1098.23 1.47810 0.739051 0.673649i \(-0.235274\pi\)
0.739051 + 0.673649i \(0.235274\pi\)
\(744\) 0 0
\(745\) 1482.32i 1.98969i
\(746\) −242.826 + 21.0582i −0.325503 + 0.0282281i
\(747\) 0 0
\(748\) 756.159 132.144i 1.01091 0.176663i
\(749\) −319.106 690.371i −0.426043 0.921724i
\(750\) 0 0
\(751\) −93.6183 −0.124658 −0.0623291 0.998056i \(-0.519853\pi\)
−0.0623291 + 0.998056i \(0.519853\pi\)
\(752\) −410.120 1137.56i −0.545372 1.51272i
\(753\) 0 0
\(754\) 230.705 20.0070i 0.305974 0.0265345i
\(755\) 13.5783 0.0179845
\(756\) 0 0
\(757\) 380.562i 0.502724i −0.967893 0.251362i \(-0.919121\pi\)
0.967893 0.251362i \(-0.0808785\pi\)
\(758\) 145.729 12.6378i 0.192254 0.0166725i
\(759\) 0 0
\(760\) −95.4192 359.391i −0.125552 0.472883i
\(761\) 1176.17i 1.54556i −0.634673 0.772781i \(-0.718865\pi\)
0.634673 0.772781i \(-0.281135\pi\)
\(762\) 0 0
\(763\) 353.780 + 765.386i 0.463669 + 1.00313i
\(764\) 382.338 66.8163i 0.500443 0.0874559i
\(765\) 0 0
\(766\) −524.322 + 45.4699i −0.684493 + 0.0593602i
\(767\) 130.199 0.169751
\(768\) 0 0
\(769\) 791.622i 1.02942i 0.857365 + 0.514709i \(0.172100\pi\)
−0.857365 + 0.514709i \(0.827900\pi\)
\(770\) 484.203 276.900i 0.628835 0.359611i
\(771\) 0 0
\(772\) 292.332 51.0871i 0.378668 0.0661750i
\(773\) 391.607 0.506607 0.253303 0.967387i \(-0.418483\pi\)
0.253303 + 0.967387i \(0.418483\pi\)
\(774\) 0 0
\(775\) 270.984i 0.349657i
\(776\) 1174.07 311.718i 1.51298 0.401699i
\(777\) 0 0
\(778\) −17.8673 + 1.54947i −0.0229656 + 0.00199161i
\(779\) 324.094i 0.416038i
\(780\) 0 0
\(781\) 545.944i 0.699032i
\(782\) 2376.65 206.107i 3.03920 0.263564i
\(783\) 0 0
\(784\) 275.325 734.066i 0.351179 0.936308i
\(785\) 1095.89 1.39604
\(786\) 0 0
\(787\) 427.323 0.542977 0.271489 0.962442i \(-0.412484\pi\)
0.271489 + 0.962442i \(0.412484\pi\)
\(788\) −38.8711 222.429i −0.0493289 0.282271i
\(789\) 0 0
\(790\) −20.4845 236.210i −0.0259297 0.299000i
\(791\) 165.863 76.6661i 0.209688 0.0969230i
\(792\) 0 0
\(793\) −294.436 −0.371293
\(794\) −102.277 1179.37i −0.128812 1.48536i
\(795\) 0 0
\(796\) 186.057 + 1064.66i 0.233740 + 1.33751i
\(797\) −1544.99 −1.93851 −0.969255 0.246058i \(-0.920864\pi\)
−0.969255 + 0.246058i \(0.920864\pi\)
\(798\) 0 0
\(799\) 2245.17 2.80998
\(800\) −174.893 378.818i −0.218616 0.473522i
\(801\) 0 0
\(802\) 74.8393 + 862.985i 0.0933158 + 1.07604i
\(803\) −434.212 −0.540738
\(804\) 0 0
\(805\) 1573.51 727.313i 1.95467 0.903494i
\(806\) 245.258 21.2691i 0.304290 0.0263885i
\(807\) 0 0
\(808\) −258.568 973.883i −0.320010 1.20530i
\(809\) 735.475 0.909116 0.454558 0.890717i \(-0.349797\pi\)
0.454558 + 0.890717i \(0.349797\pi\)
\(810\) 0 0
\(811\) 317.366 0.391327 0.195663 0.980671i \(-0.437314\pi\)
0.195663 + 0.980671i \(0.437314\pi\)
\(812\) −311.777 449.923i −0.383962 0.554092i
\(813\) 0 0
\(814\) −48.4295 558.449i −0.0594957 0.686056i
\(815\) 377.938i 0.463727i
\(816\) 0 0
\(817\) 208.767i 0.255529i
\(818\) −399.556 + 34.6501i −0.488455 + 0.0423595i
\(819\) 0 0
\(820\) −182.638 1045.10i −0.222729 1.27451i
\(821\) 404.042i 0.492135i −0.969253 0.246067i \(-0.920862\pi\)
0.969253 0.246067i \(-0.0791384\pi\)
\(822\) 0 0
\(823\) −744.939 −0.905150 −0.452575 0.891726i \(-0.649495\pi\)
−0.452575 + 0.891726i \(0.649495\pi\)
\(824\) −603.178 + 160.145i −0.732012 + 0.194351i
\(825\) 0 0
\(826\) −152.784 267.166i −0.184968 0.323446i
\(827\) 138.826i 0.167867i 0.996471 + 0.0839334i \(0.0267483\pi\)
−0.996471 + 0.0839334i \(0.973252\pi\)
\(828\) 0 0
\(829\) 37.0766 0.0447245 0.0223623 0.999750i \(-0.492881\pi\)
0.0223623 + 0.999750i \(0.492881\pi\)
\(830\) 130.043 + 1499.55i 0.156678 + 1.80669i
\(831\) 0 0
\(832\) −329.128 + 188.022i −0.395586 + 0.225988i
\(833\) 1108.78 + 943.140i 1.33106 + 1.13222i
\(834\) 0 0
\(835\) 613.523i 0.734758i
\(836\) 33.5232 + 191.827i 0.0400995 + 0.229458i
\(837\) 0 0
\(838\) 56.0724 + 646.581i 0.0669122 + 0.771576i
\(839\) 142.786i 0.170186i 0.996373 + 0.0850931i \(0.0271188\pi\)
−0.996373 + 0.0850931i \(0.972881\pi\)
\(840\) 0 0
\(841\) 458.812 0.545555
\(842\) 473.714 41.0812i 0.562606 0.0487900i
\(843\) 0 0
\(844\) −35.9139 205.508i −0.0425521 0.243492i
\(845\) −825.975 −0.977485
\(846\) 0 0
\(847\) 503.683 232.814i 0.594667 0.274869i
\(848\) −199.012 552.006i −0.234684 0.650950i
\(849\) 0 0
\(850\) 771.790 66.9308i 0.907989 0.0787421i
\(851\) 1742.04i 2.04705i
\(852\) 0 0
\(853\) −978.345 −1.14695 −0.573473 0.819224i \(-0.694404\pi\)
−0.573473 + 0.819224i \(0.694404\pi\)
\(854\) 345.509 + 604.175i 0.404577 + 0.707465i
\(855\) 0 0
\(856\) 840.098 223.048i 0.981423 0.260570i
\(857\) 816.095i 0.952269i −0.879372 0.476135i \(-0.842038\pi\)
0.879372 0.476135i \(-0.157962\pi\)
\(858\) 0 0
\(859\) −239.289 −0.278567 −0.139284 0.990253i \(-0.544480\pi\)
−0.139284 + 0.990253i \(0.544480\pi\)
\(860\) 117.647 + 673.204i 0.136799 + 0.782796i
\(861\) 0 0
\(862\) −49.2874 568.342i −0.0571780 0.659329i
\(863\) 694.522 0.804776 0.402388 0.915469i \(-0.368180\pi\)
0.402388 + 0.915469i \(0.368180\pi\)
\(864\) 0 0
\(865\) 588.793 0.680686
\(866\) −1044.99 + 90.6232i −1.20669 + 0.104646i
\(867\) 0 0
\(868\) −331.445 478.305i −0.381849 0.551043i
\(869\) 124.168i 0.142886i
\(870\) 0 0
\(871\) 631.635i 0.725183i
\(872\) −931.382 + 247.284i −1.06810 + 0.283583i
\(873\) 0 0
\(874\) 52.2865 + 602.924i 0.0598243 + 0.689845i
\(875\) −468.748 + 216.667i −0.535712 + 0.247619i
\(876\) 0 0
\(877\) 1245.69i 1.42040i −0.704000 0.710200i \(-0.748604\pi\)
0.704000 0.710200i \(-0.251396\pi\)
\(878\) 474.947 41.1881i 0.540942 0.0469113i
\(879\) 0 0
\(880\) 216.202 + 599.688i 0.245684 + 0.681463i
\(881\) 491.933i 0.558381i 0.960236 + 0.279190i \(0.0900660\pi\)
−0.960236 + 0.279190i \(0.909934\pi\)
\(882\) 0 0
\(883\) 1362.09i 1.54257i −0.636489 0.771286i \(-0.719614\pi\)
0.636489 0.771286i \(-0.280386\pi\)
\(884\) −121.153 693.268i −0.137051 0.784239i
\(885\) 0 0
\(886\) 1284.56 111.399i 1.44984 0.125732i
\(887\) 1008.33i 1.13678i 0.822758 + 0.568392i \(0.192434\pi\)
−0.822758 + 0.568392i \(0.807566\pi\)
\(888\) 0 0
\(889\) 52.2917 24.1705i 0.0588208 0.0271884i
\(890\) 537.258 46.5918i 0.603661 0.0523503i
\(891\) 0 0
\(892\) −91.8263 525.451i −0.102944 0.589070i
\(893\) 569.569i 0.637815i
\(894\) 0 0
\(895\) 1554.22i 1.73656i
\(896\) 772.037 + 454.726i 0.861648 + 0.507506i
\(897\) 0 0
\(898\) −99.9081 1152.06i −0.111256 1.28292i
\(899\) −406.298 −0.451944
\(900\) 0 0
\(901\) 1089.48 1.20919
\(902\) 48.0033 + 553.535i 0.0532187 + 0.613675i
\(903\) 0 0
\(904\) 53.5879 + 201.836i 0.0592786 + 0.223270i
\(905\) −1361.76 −1.50470
\(906\) 0 0
\(907\) 213.079i 0.234928i 0.993077 + 0.117464i \(0.0374764\pi\)
−0.993077 + 0.117464i \(0.962524\pi\)
\(908\) 1416.70 247.579i 1.56025 0.272664i
\(909\) 0 0
\(910\) −253.870 443.930i −0.278978 0.487836i
\(911\) −210.202 −0.230738 −0.115369 0.993323i \(-0.536805\pi\)
−0.115369 + 0.993323i \(0.536805\pi\)
\(912\) 0 0
\(913\) 788.263i 0.863377i
\(914\) −91.7216 1057.66i −0.100352 1.15718i
\(915\) 0 0
\(916\) 1545.88 270.154i 1.68764 0.294928i
\(917\) 790.579 365.425i 0.862136 0.398500i
\(918\) 0 0
\(919\) −743.660 −0.809205 −0.404603 0.914493i \(-0.632590\pi\)
−0.404603 + 0.914493i \(0.632590\pi\)
\(920\) 508.375 + 1914.77i 0.552582 + 2.08127i
\(921\) 0 0
\(922\) −45.7110 527.101i −0.0495781 0.571693i
\(923\) 500.536 0.542293
\(924\) 0 0
\(925\) 565.707i 0.611575i
\(926\) 28.1649 + 324.774i 0.0304156 + 0.350728i
\(927\) 0 0
\(928\) 567.978 262.224i 0.612045 0.282569i
\(929\) 987.475i 1.06294i −0.847076 0.531472i \(-0.821639\pi\)
0.847076 0.531472i \(-0.178361\pi\)
\(930\) 0 0
\(931\) −239.262 + 281.281i −0.256994 + 0.302128i
\(932\) 946.530 165.413i 1.01559 0.177482i
\(933\) 0 0
\(934\) 78.0594 + 900.117i 0.0835754 + 0.963722i
\(935\) −1183.58 −1.26586
\(936\) 0 0
\(937\) 616.607i 0.658065i −0.944319 0.329033i \(-0.893277\pi\)
0.944319 0.329033i \(-0.106723\pi\)
\(938\) −1296.10 + 741.199i −1.38177 + 0.790191i
\(939\) 0 0
\(940\) 320.971 + 1836.67i 0.341459 + 1.95391i
\(941\) 1331.47 1.41495 0.707475 0.706738i \(-0.249834\pi\)
0.707475 + 0.706738i \(0.249834\pi\)
\(942\) 0 0
\(943\) 1726.71i 1.83108i
\(944\) 330.887 119.293i 0.350516 0.126370i
\(945\) 0 0
\(946\) −30.9216 356.563i −0.0326867 0.376916i
\(947\) 1159.31i 1.22419i 0.790785 + 0.612093i \(0.209672\pi\)
−0.790785 + 0.612093i \(0.790328\pi\)
\(948\) 0 0
\(949\) 398.098i 0.419492i
\(950\) 16.9794 + 195.793i 0.0178731 + 0.206097i
\(951\) 0 0
\(952\) −1280.40 + 1062.13i −1.34496 + 1.11568i
\(953\) −1262.64 −1.32491 −0.662456 0.749101i \(-0.730486\pi\)
−0.662456 + 0.749101i \(0.730486\pi\)
\(954\) 0 0
\(955\) −598.458 −0.626657
\(956\) 523.456 91.4778i 0.547549 0.0956880i
\(957\) 0 0
\(958\) 1352.59 117.299i 1.41189 0.122441i
\(959\) −197.994 + 91.5177i −0.206459 + 0.0954303i
\(960\) 0 0
\(961\) 529.072 0.550543
\(962\) −512.002 + 44.4015i −0.532226 + 0.0461554i
\(963\) 0 0
\(964\) −230.905 1321.29i −0.239528 1.37063i
\(965\) −457.575 −0.474171
\(966\) 0 0
\(967\) 384.116 0.397224 0.198612 0.980078i \(-0.436357\pi\)
0.198612 + 0.980078i \(0.436357\pi\)
\(968\) 162.732 + 612.921i 0.168112 + 0.633183i
\(969\) 0 0
\(970\) −1866.00 + 161.822i −1.92371 + 0.166827i
\(971\) −1655.31 −1.70474 −0.852372 0.522937i \(-0.824836\pi\)
−0.852372 + 0.522937i \(0.824836\pi\)
\(972\) 0 0
\(973\) −580.774 + 268.448i −0.596890 + 0.275897i
\(974\) −32.2015 371.321i −0.0330611 0.381233i
\(975\) 0 0
\(976\) −748.274 + 269.771i −0.766674 + 0.276405i
\(977\) −265.698 −0.271953 −0.135976 0.990712i \(-0.543417\pi\)
−0.135976 + 0.990712i \(0.543417\pi\)
\(978\) 0 0
\(979\) −282.419 −0.288477
\(980\) −613.028 + 1041.87i −0.625539 + 1.06313i
\(981\) 0 0
\(982\) 390.863 33.8962i 0.398028 0.0345175i
\(983\) 297.641i 0.302788i −0.988473 0.151394i \(-0.951624\pi\)
0.988473 0.151394i \(-0.0483763\pi\)
\(984\) 0 0
\(985\) 348.159i 0.353461i
\(986\) 100.352 + 1157.18i 0.101777 + 1.17361i
\(987\) 0 0
\(988\) 175.872 30.7350i 0.178009 0.0311083i
\(989\) 1112.27i 1.12464i
\(990\) 0 0
\(991\) −837.488 −0.845093 −0.422547 0.906341i \(-0.638864\pi\)
−0.422547 + 0.906341i \(0.638864\pi\)
\(992\) 603.808 278.766i 0.608677 0.281014i
\(993\) 0 0
\(994\) −587.360 1027.09i −0.590906 1.03329i
\(995\) 1666.47i 1.67484i
\(996\) 0 0
\(997\) 1192.10 1.19569 0.597843 0.801613i \(-0.296024\pi\)
0.597843 + 0.801613i \(0.296024\pi\)
\(998\) 970.269 84.1431i 0.972214 0.0843118i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.14 32
3.2 odd 2 168.3.l.a.13.19 yes 32
4.3 odd 2 2016.3.l.h.433.27 32
7.6 odd 2 inner 504.3.l.h.181.13 32
8.3 odd 2 2016.3.l.h.433.6 32
8.5 even 2 inner 504.3.l.h.181.15 32
12.11 even 2 672.3.l.a.433.22 32
21.20 even 2 168.3.l.a.13.20 yes 32
24.5 odd 2 168.3.l.a.13.18 yes 32
24.11 even 2 672.3.l.a.433.11 32
28.27 even 2 2016.3.l.h.433.5 32
56.13 odd 2 inner 504.3.l.h.181.16 32
56.27 even 2 2016.3.l.h.433.28 32
84.83 odd 2 672.3.l.a.433.6 32
168.83 odd 2 672.3.l.a.433.27 32
168.125 even 2 168.3.l.a.13.17 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.17 32 168.125 even 2
168.3.l.a.13.18 yes 32 24.5 odd 2
168.3.l.a.13.19 yes 32 3.2 odd 2
168.3.l.a.13.20 yes 32 21.20 even 2
504.3.l.h.181.13 32 7.6 odd 2 inner
504.3.l.h.181.14 32 1.1 even 1 trivial
504.3.l.h.181.15 32 8.5 even 2 inner
504.3.l.h.181.16 32 56.13 odd 2 inner
672.3.l.a.433.6 32 84.83 odd 2
672.3.l.a.433.11 32 24.11 even 2
672.3.l.a.433.22 32 12.11 even 2
672.3.l.a.433.27 32 168.83 odd 2
2016.3.l.h.433.5 32 28.27 even 2
2016.3.l.h.433.6 32 8.3 odd 2
2016.3.l.h.433.27 32 4.3 odd 2
2016.3.l.h.433.28 32 56.27 even 2