Properties

Label 504.3.g.d.379.6
Level $504$
Weight $3$
Character 504.379
Analytic conductor $13.733$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(379,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.6
Character \(\chi\) \(=\) 504.379
Dual form 504.3.g.d.379.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.81394 + 0.842398i) q^{2} +(2.58073 - 3.05611i) q^{4} -5.94177i q^{5} +2.64575i q^{7} +(-2.10682 + 7.71760i) q^{8} +(5.00533 + 10.7780i) q^{10} -15.0849 q^{11} -11.2148i q^{13} +(-2.22877 - 4.79923i) q^{14} +(-2.67964 - 15.7740i) q^{16} +22.8244 q^{17} -33.0704 q^{19} +(-18.1587 - 15.3341i) q^{20} +(27.3631 - 12.7075i) q^{22} -1.69029i q^{23} -10.3046 q^{25} +(9.44732 + 20.3429i) q^{26} +(8.08571 + 6.82798i) q^{28} +28.9719i q^{29} +24.7233i q^{31} +(18.1487 + 26.3557i) q^{32} +(-41.4021 + 19.2272i) q^{34} +15.7204 q^{35} +53.7870i q^{37} +(59.9877 - 27.8584i) q^{38} +(45.8562 + 12.5183i) q^{40} -30.8925 q^{41} -44.2731 q^{43} +(-38.9301 + 46.1012i) q^{44} +(1.42389 + 3.06608i) q^{46} -37.2829i q^{47} -7.00000 q^{49} +(18.6919 - 8.68058i) q^{50} +(-34.2737 - 28.9424i) q^{52} +72.2354i q^{53} +89.6310i q^{55} +(-20.4188 - 5.57413i) q^{56} +(-24.4058 - 52.5532i) q^{58} -33.2212 q^{59} -96.8692i q^{61} +(-20.8269 - 44.8466i) q^{62} +(-55.1226 - 32.5192i) q^{64} -66.6357 q^{65} -86.0604 q^{67} +(58.9038 - 69.7540i) q^{68} +(-28.5159 + 13.2429i) q^{70} -40.4798i q^{71} +28.5905 q^{73} +(-45.3100 - 97.5662i) q^{74} +(-85.3459 + 101.067i) q^{76} -39.9109i q^{77} +80.5457i q^{79} +(-93.7255 + 15.9218i) q^{80} +(56.0370 - 26.0238i) q^{82} -36.2653 q^{83} -135.618i q^{85} +(80.3086 - 37.2955i) q^{86} +(31.7813 - 116.419i) q^{88} -13.9430 q^{89} +29.6716 q^{91} +(-5.16571 - 4.36218i) q^{92} +(31.4070 + 67.6288i) q^{94} +196.497i q^{95} -66.0297 q^{97} +(12.6976 - 5.89678i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 10 q^{4} - 10 q^{8} + 12 q^{10} - 32 q^{11} + 14 q^{14} + 66 q^{16} - 16 q^{17} - 64 q^{19} - 20 q^{20} + 12 q^{22} - 72 q^{25} - 100 q^{26} - 14 q^{28} - 98 q^{32} - 108 q^{34} + 72 q^{38}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.81394 + 0.842398i −0.906968 + 0.421199i
\(3\) 0 0
\(4\) 2.58073 3.05611i 0.645183 0.764028i
\(5\) 5.94177i 1.18835i −0.804334 0.594177i \(-0.797478\pi\)
0.804334 0.594177i \(-0.202522\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) −2.10682 + 7.71760i −0.263353 + 0.964700i
\(9\) 0 0
\(10\) 5.00533 + 10.7780i 0.500533 + 1.07780i
\(11\) −15.0849 −1.37136 −0.685678 0.727905i \(-0.740494\pi\)
−0.685678 + 0.727905i \(0.740494\pi\)
\(12\) 0 0
\(13\) 11.2148i 0.862677i −0.902190 0.431338i \(-0.858042\pi\)
0.902190 0.431338i \(-0.141958\pi\)
\(14\) −2.22877 4.79923i −0.159198 0.342802i
\(15\) 0 0
\(16\) −2.67964 15.7740i −0.167477 0.985876i
\(17\) 22.8244 1.34261 0.671307 0.741180i \(-0.265733\pi\)
0.671307 + 0.741180i \(0.265733\pi\)
\(18\) 0 0
\(19\) −33.0704 −1.74055 −0.870274 0.492567i \(-0.836059\pi\)
−0.870274 + 0.492567i \(0.836059\pi\)
\(20\) −18.1587 15.3341i −0.907935 0.766706i
\(21\) 0 0
\(22\) 27.3631 12.7075i 1.24378 0.577613i
\(23\) 1.69029i 0.0734908i −0.999325 0.0367454i \(-0.988301\pi\)
0.999325 0.0367454i \(-0.0116991\pi\)
\(24\) 0 0
\(25\) −10.3046 −0.412185
\(26\) 9.44732 + 20.3429i 0.363358 + 0.782420i
\(27\) 0 0
\(28\) 8.08571 + 6.82798i 0.288775 + 0.243856i
\(29\) 28.9719i 0.999030i 0.866305 + 0.499515i \(0.166488\pi\)
−0.866305 + 0.499515i \(0.833512\pi\)
\(30\) 0 0
\(31\) 24.7233i 0.797527i 0.917054 + 0.398764i \(0.130561\pi\)
−0.917054 + 0.398764i \(0.869439\pi\)
\(32\) 18.1487 + 26.3557i 0.567146 + 0.823617i
\(33\) 0 0
\(34\) −41.4021 + 19.2272i −1.21771 + 0.565507i
\(35\) 15.7204 0.449156
\(36\) 0 0
\(37\) 53.7870i 1.45370i 0.686795 + 0.726851i \(0.259017\pi\)
−0.686795 + 0.726851i \(0.740983\pi\)
\(38\) 59.9877 27.8584i 1.57862 0.733117i
\(39\) 0 0
\(40\) 45.8562 + 12.5183i 1.14640 + 0.312957i
\(41\) −30.8925 −0.753476 −0.376738 0.926320i \(-0.622954\pi\)
−0.376738 + 0.926320i \(0.622954\pi\)
\(42\) 0 0
\(43\) −44.2731 −1.02961 −0.514803 0.857308i \(-0.672135\pi\)
−0.514803 + 0.857308i \(0.672135\pi\)
\(44\) −38.9301 + 46.1012i −0.884775 + 1.04775i
\(45\) 0 0
\(46\) 1.42389 + 3.06608i 0.0309542 + 0.0666538i
\(47\) 37.2829i 0.793253i −0.917980 0.396627i \(-0.870181\pi\)
0.917980 0.396627i \(-0.129819\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 18.6919 8.68058i 0.373838 0.173612i
\(51\) 0 0
\(52\) −34.2737 28.9424i −0.659109 0.556584i
\(53\) 72.2354i 1.36293i 0.731850 + 0.681466i \(0.238657\pi\)
−0.731850 + 0.681466i \(0.761343\pi\)
\(54\) 0 0
\(55\) 89.6310i 1.62966i
\(56\) −20.4188 5.57413i −0.364622 0.0995381i
\(57\) 0 0
\(58\) −24.4058 52.5532i −0.420790 0.906089i
\(59\) −33.2212 −0.563072 −0.281536 0.959551i \(-0.590844\pi\)
−0.281536 + 0.959551i \(0.590844\pi\)
\(60\) 0 0
\(61\) 96.8692i 1.58802i −0.607905 0.794010i \(-0.707990\pi\)
0.607905 0.794010i \(-0.292010\pi\)
\(62\) −20.8269 44.8466i −0.335917 0.723332i
\(63\) 0 0
\(64\) −55.1226 32.5192i −0.861290 0.508113i
\(65\) −66.6357 −1.02517
\(66\) 0 0
\(67\) −86.0604 −1.28448 −0.642242 0.766502i \(-0.721995\pi\)
−0.642242 + 0.766502i \(0.721995\pi\)
\(68\) 58.9038 69.7540i 0.866232 1.02579i
\(69\) 0 0
\(70\) −28.5159 + 13.2429i −0.407370 + 0.189184i
\(71\) 40.4798i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(72\) 0 0
\(73\) 28.5905 0.391651 0.195826 0.980639i \(-0.437261\pi\)
0.195826 + 0.980639i \(0.437261\pi\)
\(74\) −45.3100 97.5662i −0.612297 1.31846i
\(75\) 0 0
\(76\) −85.3459 + 101.067i −1.12297 + 1.32983i
\(77\) 39.9109i 0.518324i
\(78\) 0 0
\(79\) 80.5457i 1.01957i 0.860303 + 0.509783i \(0.170274\pi\)
−0.860303 + 0.509783i \(0.829726\pi\)
\(80\) −93.7255 + 15.9218i −1.17157 + 0.199022i
\(81\) 0 0
\(82\) 56.0370 26.0238i 0.683378 0.317363i
\(83\) −36.2653 −0.436931 −0.218466 0.975845i \(-0.570105\pi\)
−0.218466 + 0.975845i \(0.570105\pi\)
\(84\) 0 0
\(85\) 135.618i 1.59550i
\(86\) 80.3086 37.2955i 0.933821 0.433669i
\(87\) 0 0
\(88\) 31.7813 116.419i 0.361151 1.32295i
\(89\) −13.9430 −0.156663 −0.0783313 0.996927i \(-0.524959\pi\)
−0.0783313 + 0.996927i \(0.524959\pi\)
\(90\) 0 0
\(91\) 29.6716 0.326061
\(92\) −5.16571 4.36218i −0.0561490 0.0474150i
\(93\) 0 0
\(94\) 31.4070 + 67.6288i 0.334117 + 0.719456i
\(95\) 196.497i 2.06839i
\(96\) 0 0
\(97\) −66.0297 −0.680718 −0.340359 0.940295i \(-0.610549\pi\)
−0.340359 + 0.940295i \(0.610549\pi\)
\(98\) 12.6976 5.89678i 0.129567 0.0601713i
\(99\) 0 0
\(100\) −26.5935 + 31.4921i −0.265935 + 0.314921i
\(101\) 158.436i 1.56867i 0.620336 + 0.784336i \(0.286996\pi\)
−0.620336 + 0.784336i \(0.713004\pi\)
\(102\) 0 0
\(103\) 136.221i 1.32253i 0.750151 + 0.661266i \(0.229981\pi\)
−0.750151 + 0.661266i \(0.770019\pi\)
\(104\) 86.5513 + 23.6276i 0.832224 + 0.227189i
\(105\) 0 0
\(106\) −60.8509 131.030i −0.574065 1.23614i
\(107\) −164.556 −1.53790 −0.768951 0.639307i \(-0.779221\pi\)
−0.768951 + 0.639307i \(0.779221\pi\)
\(108\) 0 0
\(109\) 18.6167i 0.170796i 0.996347 + 0.0853978i \(0.0272161\pi\)
−0.996347 + 0.0853978i \(0.972784\pi\)
\(110\) −75.5050 162.585i −0.686409 1.47805i
\(111\) 0 0
\(112\) 41.7341 7.08965i 0.372626 0.0633005i
\(113\) −140.406 −1.24253 −0.621267 0.783599i \(-0.713382\pi\)
−0.621267 + 0.783599i \(0.713382\pi\)
\(114\) 0 0
\(115\) −10.0433 −0.0873331
\(116\) 88.5413 + 74.7687i 0.763287 + 0.644558i
\(117\) 0 0
\(118\) 60.2612 27.9855i 0.510688 0.237165i
\(119\) 60.3878i 0.507460i
\(120\) 0 0
\(121\) 106.554 0.880615
\(122\) 81.6024 + 175.715i 0.668872 + 1.44028i
\(123\) 0 0
\(124\) 75.5573 + 63.8043i 0.609333 + 0.514551i
\(125\) 87.3166i 0.698533i
\(126\) 0 0
\(127\) 191.983i 1.51168i −0.654756 0.755840i \(-0.727229\pi\)
0.654756 0.755840i \(-0.272771\pi\)
\(128\) 127.383 + 12.5527i 0.995180 + 0.0980682i
\(129\) 0 0
\(130\) 120.873 56.1338i 0.929792 0.431798i
\(131\) −13.5685 −0.103576 −0.0517881 0.998658i \(-0.516492\pi\)
−0.0517881 + 0.998658i \(0.516492\pi\)
\(132\) 0 0
\(133\) 87.4961i 0.657866i
\(134\) 156.108 72.4971i 1.16499 0.541023i
\(135\) 0 0
\(136\) −48.0871 + 176.150i −0.353581 + 1.29522i
\(137\) −75.2780 −0.549475 −0.274737 0.961519i \(-0.588591\pi\)
−0.274737 + 0.961519i \(0.588591\pi\)
\(138\) 0 0
\(139\) 222.721 1.60231 0.801153 0.598460i \(-0.204220\pi\)
0.801153 + 0.598460i \(0.204220\pi\)
\(140\) 40.5703 48.0434i 0.289788 0.343167i
\(141\) 0 0
\(142\) 34.1000 + 73.4277i 0.240141 + 0.517097i
\(143\) 169.174i 1.18304i
\(144\) 0 0
\(145\) 172.144 1.18720
\(146\) −51.8614 + 24.0846i −0.355215 + 0.164963i
\(147\) 0 0
\(148\) 164.379 + 138.810i 1.11067 + 0.937904i
\(149\) 173.387i 1.16367i −0.813307 0.581835i \(-0.802335\pi\)
0.813307 0.581835i \(-0.197665\pi\)
\(150\) 0 0
\(151\) 84.9375i 0.562500i 0.959635 + 0.281250i \(0.0907490\pi\)
−0.959635 + 0.281250i \(0.909251\pi\)
\(152\) 69.6736 255.224i 0.458379 1.67911i
\(153\) 0 0
\(154\) 33.6209 + 72.3959i 0.218317 + 0.470103i
\(155\) 146.900 0.947744
\(156\) 0 0
\(157\) 57.6685i 0.367316i −0.982990 0.183658i \(-0.941206\pi\)
0.982990 0.183658i \(-0.0587938\pi\)
\(158\) −67.8515 146.105i −0.429440 0.924714i
\(159\) 0 0
\(160\) 156.600 107.835i 0.978748 0.673971i
\(161\) 4.47208 0.0277769
\(162\) 0 0
\(163\) 10.8347 0.0664708 0.0332354 0.999448i \(-0.489419\pi\)
0.0332354 + 0.999448i \(0.489419\pi\)
\(164\) −79.7253 + 94.4109i −0.486130 + 0.575676i
\(165\) 0 0
\(166\) 65.7829 30.5498i 0.396283 0.184035i
\(167\) 57.5843i 0.344816i −0.985026 0.172408i \(-0.944845\pi\)
0.985026 0.172408i \(-0.0551548\pi\)
\(168\) 0 0
\(169\) 43.2283 0.255789
\(170\) 114.244 + 246.002i 0.672023 + 1.44707i
\(171\) 0 0
\(172\) −114.257 + 135.304i −0.664285 + 0.786648i
\(173\) 209.285i 1.20974i −0.796323 0.604871i \(-0.793225\pi\)
0.796323 0.604871i \(-0.206775\pi\)
\(174\) 0 0
\(175\) 27.2635i 0.155791i
\(176\) 40.4221 + 237.950i 0.229671 + 1.35199i
\(177\) 0 0
\(178\) 25.2917 11.7455i 0.142088 0.0659861i
\(179\) 228.951 1.27905 0.639527 0.768768i \(-0.279130\pi\)
0.639527 + 0.768768i \(0.279130\pi\)
\(180\) 0 0
\(181\) 130.515i 0.721076i −0.932744 0.360538i \(-0.882593\pi\)
0.932744 0.360538i \(-0.117407\pi\)
\(182\) −53.8223 + 24.9953i −0.295727 + 0.137337i
\(183\) 0 0
\(184\) 13.0450 + 3.56114i 0.0708965 + 0.0193540i
\(185\) 319.590 1.72751
\(186\) 0 0
\(187\) −344.304 −1.84120
\(188\) −113.941 96.2172i −0.606068 0.511794i
\(189\) 0 0
\(190\) −165.528 356.433i −0.871202 1.87596i
\(191\) 91.3000i 0.478010i 0.971018 + 0.239005i \(0.0768213\pi\)
−0.971018 + 0.239005i \(0.923179\pi\)
\(192\) 0 0
\(193\) −125.665 −0.651115 −0.325557 0.945522i \(-0.605552\pi\)
−0.325557 + 0.945522i \(0.605552\pi\)
\(194\) 119.774 55.6232i 0.617390 0.286718i
\(195\) 0 0
\(196\) −18.0651 + 21.3928i −0.0921690 + 0.109147i
\(197\) 74.5133i 0.378240i −0.981954 0.189120i \(-0.939436\pi\)
0.981954 0.189120i \(-0.0605635\pi\)
\(198\) 0 0
\(199\) 77.2741i 0.388312i 0.980971 + 0.194156i \(0.0621968\pi\)
−0.980971 + 0.194156i \(0.937803\pi\)
\(200\) 21.7100 79.5269i 0.108550 0.397634i
\(201\) 0 0
\(202\) −133.466 287.393i −0.660723 1.42274i
\(203\) −76.6524 −0.377598
\(204\) 0 0
\(205\) 183.556i 0.895395i
\(206\) −114.752 247.096i −0.557049 1.19950i
\(207\) 0 0
\(208\) −176.902 + 30.0516i −0.850492 + 0.144479i
\(209\) 498.864 2.38691
\(210\) 0 0
\(211\) 283.994 1.34594 0.672971 0.739669i \(-0.265018\pi\)
0.672971 + 0.739669i \(0.265018\pi\)
\(212\) 220.759 + 186.420i 1.04132 + 0.879341i
\(213\) 0 0
\(214\) 298.493 138.621i 1.39483 0.647763i
\(215\) 263.060i 1.22354i
\(216\) 0 0
\(217\) −65.4118 −0.301437
\(218\) −15.6827 33.7696i −0.0719389 0.154906i
\(219\) 0 0
\(220\) 273.922 + 231.314i 1.24510 + 1.05143i
\(221\) 255.971i 1.15824i
\(222\) 0 0
\(223\) 115.772i 0.519155i 0.965722 + 0.259577i \(0.0835833\pi\)
−0.965722 + 0.259577i \(0.916417\pi\)
\(224\) −69.7307 + 48.0169i −0.311298 + 0.214361i
\(225\) 0 0
\(226\) 254.688 118.278i 1.12694 0.523354i
\(227\) −6.83029 −0.0300894 −0.0150447 0.999887i \(-0.504789\pi\)
−0.0150447 + 0.999887i \(0.504789\pi\)
\(228\) 0 0
\(229\) 217.138i 0.948203i 0.880470 + 0.474101i \(0.157227\pi\)
−0.880470 + 0.474101i \(0.842773\pi\)
\(230\) 18.2179 8.46045i 0.0792083 0.0367846i
\(231\) 0 0
\(232\) −223.593 61.0387i −0.963764 0.263098i
\(233\) −134.382 −0.576746 −0.288373 0.957518i \(-0.593114\pi\)
−0.288373 + 0.957518i \(0.593114\pi\)
\(234\) 0 0
\(235\) −221.526 −0.942665
\(236\) −85.7352 + 101.528i −0.363285 + 0.430203i
\(237\) 0 0
\(238\) −50.8705 109.540i −0.213742 0.460250i
\(239\) 408.424i 1.70889i −0.519545 0.854443i \(-0.673899\pi\)
0.519545 0.854443i \(-0.326101\pi\)
\(240\) 0 0
\(241\) −237.295 −0.984629 −0.492314 0.870418i \(-0.663849\pi\)
−0.492314 + 0.870418i \(0.663849\pi\)
\(242\) −193.283 + 89.7612i −0.798690 + 0.370914i
\(243\) 0 0
\(244\) −296.043 249.993i −1.21329 1.02456i
\(245\) 41.5924i 0.169765i
\(246\) 0 0
\(247\) 370.878i 1.50153i
\(248\) −190.805 52.0877i −0.769374 0.210031i
\(249\) 0 0
\(250\) 73.5553 + 158.387i 0.294221 + 0.633547i
\(251\) −305.519 −1.21721 −0.608604 0.793474i \(-0.708270\pi\)
−0.608604 + 0.793474i \(0.708270\pi\)
\(252\) 0 0
\(253\) 25.4978i 0.100782i
\(254\) 161.726 + 348.246i 0.636718 + 1.37105i
\(255\) 0 0
\(256\) −241.639 + 84.5373i −0.943903 + 0.330224i
\(257\) 212.323 0.826158 0.413079 0.910695i \(-0.364453\pi\)
0.413079 + 0.910695i \(0.364453\pi\)
\(258\) 0 0
\(259\) −142.307 −0.549448
\(260\) −171.969 + 203.646i −0.661419 + 0.783255i
\(261\) 0 0
\(262\) 24.6124 11.4301i 0.0939403 0.0436262i
\(263\) 55.8138i 0.212220i −0.994354 0.106110i \(-0.966160\pi\)
0.994354 0.106110i \(-0.0338396\pi\)
\(264\) 0 0
\(265\) 429.206 1.61965
\(266\) 73.7065 + 158.712i 0.277092 + 0.596663i
\(267\) 0 0
\(268\) −222.099 + 263.010i −0.828727 + 0.981381i
\(269\) 392.637i 1.45962i 0.683651 + 0.729809i \(0.260391\pi\)
−0.683651 + 0.729809i \(0.739609\pi\)
\(270\) 0 0
\(271\) 505.999i 1.86715i −0.358377 0.933577i \(-0.616670\pi\)
0.358377 0.933577i \(-0.383330\pi\)
\(272\) −61.1612 360.033i −0.224857 1.32365i
\(273\) 0 0
\(274\) 136.550 63.4140i 0.498356 0.231438i
\(275\) 155.444 0.565252
\(276\) 0 0
\(277\) 234.703i 0.847304i −0.905825 0.423652i \(-0.860748\pi\)
0.905825 0.423652i \(-0.139252\pi\)
\(278\) −404.001 + 187.619i −1.45324 + 0.674889i
\(279\) 0 0
\(280\) −33.1202 + 121.324i −0.118286 + 0.433300i
\(281\) 260.538 0.927182 0.463591 0.886049i \(-0.346561\pi\)
0.463591 + 0.886049i \(0.346561\pi\)
\(282\) 0 0
\(283\) 314.398 1.11095 0.555474 0.831534i \(-0.312537\pi\)
0.555474 + 0.831534i \(0.312537\pi\)
\(284\) −123.711 104.467i −0.435601 0.367843i
\(285\) 0 0
\(286\) −142.512 306.871i −0.498293 1.07298i
\(287\) 81.7339i 0.284787i
\(288\) 0 0
\(289\) 231.955 0.802612
\(290\) −312.259 + 145.014i −1.07675 + 0.500048i
\(291\) 0 0
\(292\) 73.7846 87.3759i 0.252687 0.299233i
\(293\) 54.0484i 0.184465i −0.995737 0.0922327i \(-0.970600\pi\)
0.995737 0.0922327i \(-0.0294004\pi\)
\(294\) 0 0
\(295\) 197.393i 0.669129i
\(296\) −415.106 113.320i −1.40239 0.382837i
\(297\) 0 0
\(298\) 146.061 + 314.513i 0.490136 + 1.05541i
\(299\) −18.9562 −0.0633988
\(300\) 0 0
\(301\) 117.136i 0.389155i
\(302\) −71.5511 154.071i −0.236924 0.510169i
\(303\) 0 0
\(304\) 88.6168 + 521.653i 0.291502 + 1.71597i
\(305\) −575.574 −1.88713
\(306\) 0 0
\(307\) −82.1306 −0.267526 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(308\) −121.972 102.999i −0.396014 0.334414i
\(309\) 0 0
\(310\) −266.468 + 123.749i −0.859574 + 0.399189i
\(311\) 83.2457i 0.267671i −0.991004 0.133835i \(-0.957271\pi\)
0.991004 0.133835i \(-0.0427294\pi\)
\(312\) 0 0
\(313\) 49.4110 0.157863 0.0789314 0.996880i \(-0.474849\pi\)
0.0789314 + 0.996880i \(0.474849\pi\)
\(314\) 48.5798 + 104.607i 0.154713 + 0.333144i
\(315\) 0 0
\(316\) 246.157 + 207.867i 0.778977 + 0.657807i
\(317\) 449.103i 1.41673i −0.705847 0.708364i \(-0.749434\pi\)
0.705847 0.708364i \(-0.250566\pi\)
\(318\) 0 0
\(319\) 437.038i 1.37003i
\(320\) −193.222 + 327.526i −0.603818 + 1.02352i
\(321\) 0 0
\(322\) −8.11207 + 3.76727i −0.0251928 + 0.0116996i
\(323\) −754.814 −2.33688
\(324\) 0 0
\(325\) 115.564i 0.355582i
\(326\) −19.6535 + 9.12716i −0.0602869 + 0.0279974i
\(327\) 0 0
\(328\) 65.0851 238.416i 0.198430 0.726877i
\(329\) 98.6413 0.299822
\(330\) 0 0
\(331\) −107.798 −0.325674 −0.162837 0.986653i \(-0.552064\pi\)
−0.162837 + 0.986653i \(0.552064\pi\)
\(332\) −93.5910 + 110.831i −0.281901 + 0.333828i
\(333\) 0 0
\(334\) 48.5089 + 104.454i 0.145236 + 0.312737i
\(335\) 511.351i 1.52642i
\(336\) 0 0
\(337\) −565.146 −1.67699 −0.838495 0.544909i \(-0.816564\pi\)
−0.838495 + 0.544909i \(0.816564\pi\)
\(338\) −78.4135 + 36.4154i −0.231993 + 0.107738i
\(339\) 0 0
\(340\) −414.462 349.993i −1.21901 1.02939i
\(341\) 372.949i 1.09369i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 93.2756 341.682i 0.271150 0.993261i
\(345\) 0 0
\(346\) 176.302 + 379.630i 0.509542 + 1.09720i
\(347\) 617.119 1.77844 0.889221 0.457478i \(-0.151247\pi\)
0.889221 + 0.457478i \(0.151247\pi\)
\(348\) 0 0
\(349\) 208.548i 0.597557i −0.954322 0.298779i \(-0.903421\pi\)
0.954322 0.298779i \(-0.0965792\pi\)
\(350\) 22.9667 + 49.4542i 0.0656190 + 0.141298i
\(351\) 0 0
\(352\) −273.771 397.574i −0.777759 1.12947i
\(353\) −93.3007 −0.264308 −0.132154 0.991229i \(-0.542189\pi\)
−0.132154 + 0.991229i \(0.542189\pi\)
\(354\) 0 0
\(355\) −240.521 −0.677525
\(356\) −35.9831 + 42.6113i −0.101076 + 0.119695i
\(357\) 0 0
\(358\) −415.302 + 192.868i −1.16006 + 0.538736i
\(359\) 319.598i 0.890246i −0.895469 0.445123i \(-0.853160\pi\)
0.895469 0.445123i \(-0.146840\pi\)
\(360\) 0 0
\(361\) 732.653 2.02951
\(362\) 109.945 + 236.746i 0.303716 + 0.653993i
\(363\) 0 0
\(364\) 76.5744 90.6796i 0.210369 0.249120i
\(365\) 169.878i 0.465420i
\(366\) 0 0
\(367\) 489.607i 1.33408i 0.745022 + 0.667040i \(0.232439\pi\)
−0.745022 + 0.667040i \(0.767561\pi\)
\(368\) −26.6626 + 4.52936i −0.0724528 + 0.0123080i
\(369\) 0 0
\(370\) −579.716 + 269.222i −1.56680 + 0.727626i
\(371\) −191.117 −0.515140
\(372\) 0 0
\(373\) 427.590i 1.14635i −0.819432 0.573177i \(-0.805711\pi\)
0.819432 0.573177i \(-0.194289\pi\)
\(374\) 624.547 290.041i 1.66991 0.775511i
\(375\) 0 0
\(376\) 287.734 + 78.5485i 0.765251 + 0.208906i
\(377\) 324.914 0.861840
\(378\) 0 0
\(379\) −441.475 −1.16484 −0.582421 0.812887i \(-0.697894\pi\)
−0.582421 + 0.812887i \(0.697894\pi\)
\(380\) 600.516 + 507.106i 1.58031 + 1.33449i
\(381\) 0 0
\(382\) −76.9109 165.612i −0.201337 0.433540i
\(383\) 392.842i 1.02570i 0.858479 + 0.512849i \(0.171410\pi\)
−0.858479 + 0.512849i \(0.828590\pi\)
\(384\) 0 0
\(385\) −237.141 −0.615952
\(386\) 227.949 105.860i 0.590540 0.274249i
\(387\) 0 0
\(388\) −170.405 + 201.794i −0.439188 + 0.520088i
\(389\) 539.166i 1.38603i 0.720923 + 0.693015i \(0.243718\pi\)
−0.720923 + 0.693015i \(0.756282\pi\)
\(390\) 0 0
\(391\) 38.5799i 0.0986698i
\(392\) 14.7478 54.0232i 0.0376219 0.137814i
\(393\) 0 0
\(394\) 62.7698 + 135.162i 0.159314 + 0.343052i
\(395\) 478.584 1.21161
\(396\) 0 0
\(397\) 439.822i 1.10786i −0.832562 0.553932i \(-0.813127\pi\)
0.832562 0.553932i \(-0.186873\pi\)
\(398\) −65.0955 140.170i −0.163557 0.352187i
\(399\) 0 0
\(400\) 27.6126 + 162.545i 0.0690316 + 0.406363i
\(401\) −256.316 −0.639191 −0.319596 0.947554i \(-0.603547\pi\)
−0.319596 + 0.947554i \(0.603547\pi\)
\(402\) 0 0
\(403\) 277.267 0.688008
\(404\) 484.198 + 408.881i 1.19851 + 1.01208i
\(405\) 0 0
\(406\) 139.043 64.5718i 0.342469 0.159044i
\(407\) 811.371i 1.99354i
\(408\) 0 0
\(409\) −401.361 −0.981322 −0.490661 0.871351i \(-0.663245\pi\)
−0.490661 + 0.871351i \(0.663245\pi\)
\(410\) −154.627 332.959i −0.377139 0.812095i
\(411\) 0 0
\(412\) 416.306 + 351.550i 1.01045 + 0.853276i
\(413\) 87.8951i 0.212821i
\(414\) 0 0
\(415\) 215.480i 0.519229i
\(416\) 295.574 203.534i 0.710515 0.489264i
\(417\) 0 0
\(418\) −904.908 + 420.242i −2.16485 + 1.00536i
\(419\) 185.720 0.443247 0.221623 0.975132i \(-0.428864\pi\)
0.221623 + 0.975132i \(0.428864\pi\)
\(420\) 0 0
\(421\) 361.664i 0.859060i 0.903053 + 0.429530i \(0.141321\pi\)
−0.903053 + 0.429530i \(0.858679\pi\)
\(422\) −515.147 + 239.236i −1.22073 + 0.566909i
\(423\) 0 0
\(424\) −557.484 152.187i −1.31482 0.358932i
\(425\) −235.197 −0.553405
\(426\) 0 0
\(427\) 256.292 0.600215
\(428\) −424.674 + 502.900i −0.992229 + 1.17500i
\(429\) 0 0
\(430\) −221.601 477.175i −0.515352 1.10971i
\(431\) 130.748i 0.303359i 0.988430 + 0.151679i \(0.0484681\pi\)
−0.988430 + 0.151679i \(0.951532\pi\)
\(432\) 0 0
\(433\) −450.084 −1.03945 −0.519727 0.854332i \(-0.673966\pi\)
−0.519727 + 0.854332i \(0.673966\pi\)
\(434\) 118.653 55.1028i 0.273394 0.126965i
\(435\) 0 0
\(436\) 56.8948 + 48.0448i 0.130493 + 0.110194i
\(437\) 55.8986i 0.127914i
\(438\) 0 0
\(439\) 107.851i 0.245674i −0.992427 0.122837i \(-0.960801\pi\)
0.992427 0.122837i \(-0.0391992\pi\)
\(440\) −691.736 188.837i −1.57213 0.429175i
\(441\) 0 0
\(442\) 215.630 + 464.316i 0.487850 + 1.05049i
\(443\) 79.9983 0.180583 0.0902915 0.995915i \(-0.471220\pi\)
0.0902915 + 0.995915i \(0.471220\pi\)
\(444\) 0 0
\(445\) 82.8459i 0.186171i
\(446\) −97.5256 210.002i −0.218667 0.470857i
\(447\) 0 0
\(448\) 86.0378 145.841i 0.192049 0.325537i
\(449\) −498.405 −1.11003 −0.555017 0.831839i \(-0.687288\pi\)
−0.555017 + 0.831839i \(0.687288\pi\)
\(450\) 0 0
\(451\) 466.010 1.03328
\(452\) −362.352 + 429.098i −0.801663 + 0.949331i
\(453\) 0 0
\(454\) 12.3897 5.75382i 0.0272901 0.0126736i
\(455\) 176.302i 0.387476i
\(456\) 0 0
\(457\) −469.124 −1.02653 −0.513264 0.858231i \(-0.671564\pi\)
−0.513264 + 0.858231i \(0.671564\pi\)
\(458\) −182.917 393.875i −0.399382 0.859990i
\(459\) 0 0
\(460\) −25.9191 + 30.6935i −0.0563458 + 0.0667249i
\(461\) 729.055i 1.58146i 0.612162 + 0.790732i \(0.290300\pi\)
−0.612162 + 0.790732i \(0.709700\pi\)
\(462\) 0 0
\(463\) 602.290i 1.30084i −0.759574 0.650421i \(-0.774593\pi\)
0.759574 0.650421i \(-0.225407\pi\)
\(464\) 457.003 77.6341i 0.984920 0.167315i
\(465\) 0 0
\(466\) 243.760 113.203i 0.523090 0.242925i
\(467\) 356.045 0.762409 0.381204 0.924491i \(-0.375509\pi\)
0.381204 + 0.924491i \(0.375509\pi\)
\(468\) 0 0
\(469\) 227.694i 0.485489i
\(470\) 401.835 186.613i 0.854968 0.397050i
\(471\) 0 0
\(472\) 69.9913 256.388i 0.148287 0.543195i
\(473\) 667.855 1.41196
\(474\) 0 0
\(475\) 340.778 0.717427
\(476\) 184.552 + 155.845i 0.387714 + 0.327405i
\(477\) 0 0
\(478\) 344.055 + 740.855i 0.719781 + 1.54991i
\(479\) 201.862i 0.421424i −0.977548 0.210712i \(-0.932422\pi\)
0.977548 0.210712i \(-0.0675782\pi\)
\(480\) 0 0
\(481\) 603.210 1.25407
\(482\) 430.439 199.897i 0.893027 0.414724i
\(483\) 0 0
\(484\) 274.988 325.642i 0.568158 0.672815i
\(485\) 392.333i 0.808934i
\(486\) 0 0
\(487\) 343.994i 0.706353i −0.935557 0.353177i \(-0.885102\pi\)
0.935557 0.353177i \(-0.114898\pi\)
\(488\) 747.597 + 204.086i 1.53196 + 0.418210i
\(489\) 0 0
\(490\) −35.0373 75.4459i −0.0715047 0.153971i
\(491\) −178.510 −0.363564 −0.181782 0.983339i \(-0.558187\pi\)
−0.181782 + 0.983339i \(0.558187\pi\)
\(492\) 0 0
\(493\) 661.267i 1.34131i
\(494\) −312.427 672.749i −0.632443 1.36184i
\(495\) 0 0
\(496\) 389.986 66.2496i 0.786263 0.133568i
\(497\) 107.099 0.215492
\(498\) 0 0
\(499\) 548.499 1.09920 0.549598 0.835429i \(-0.314781\pi\)
0.549598 + 0.835429i \(0.314781\pi\)
\(500\) −266.849 225.341i −0.533698 0.450681i
\(501\) 0 0
\(502\) 554.193 257.369i 1.10397 0.512687i
\(503\) 394.287i 0.783872i −0.919993 0.391936i \(-0.871806\pi\)
0.919993 0.391936i \(-0.128194\pi\)
\(504\) 0 0
\(505\) 941.389 1.86414
\(506\) −21.4793 46.2515i −0.0424492 0.0914061i
\(507\) 0 0
\(508\) −586.723 495.458i −1.15497 0.975310i
\(509\) 863.631i 1.69672i 0.529419 + 0.848360i \(0.322410\pi\)
−0.529419 + 0.848360i \(0.677590\pi\)
\(510\) 0 0
\(511\) 75.6435i 0.148030i
\(512\) 367.104 356.901i 0.717000 0.697073i
\(513\) 0 0
\(514\) −385.140 + 178.860i −0.749299 + 0.347977i
\(515\) 809.393 1.57164
\(516\) 0 0
\(517\) 562.409i 1.08783i
\(518\) 258.136 119.879i 0.498332 0.231427i
\(519\) 0 0
\(520\) 140.390 514.268i 0.269980 0.988976i
\(521\) −499.986 −0.959666 −0.479833 0.877360i \(-0.659303\pi\)
−0.479833 + 0.877360i \(0.659303\pi\)
\(522\) 0 0
\(523\) −80.9144 −0.154712 −0.0773561 0.997004i \(-0.524648\pi\)
−0.0773561 + 0.997004i \(0.524648\pi\)
\(524\) −35.0166 + 41.4668i −0.0668256 + 0.0791351i
\(525\) 0 0
\(526\) 47.0174 + 101.243i 0.0893868 + 0.192477i
\(527\) 564.296i 1.07077i
\(528\) 0 0
\(529\) 526.143 0.994599
\(530\) −778.552 + 361.562i −1.46897 + 0.682193i
\(531\) 0 0
\(532\) −267.398 225.804i −0.502628 0.424444i
\(533\) 346.453i 0.650006i
\(534\) 0 0
\(535\) 977.751i 1.82757i
\(536\) 181.314 664.179i 0.338273 1.23914i
\(537\) 0 0
\(538\) −330.757 712.219i −0.614789 1.32383i
\(539\) 105.594 0.195908
\(540\) 0 0
\(541\) 552.750i 1.02172i −0.859664 0.510860i \(-0.829327\pi\)
0.859664 0.510860i \(-0.170673\pi\)
\(542\) 426.252 + 917.850i 0.786443 + 1.69345i
\(543\) 0 0
\(544\) 414.233 + 601.555i 0.761459 + 1.10580i
\(545\) 110.616 0.202966
\(546\) 0 0
\(547\) −570.865 −1.04363 −0.521814 0.853059i \(-0.674745\pi\)
−0.521814 + 0.853059i \(0.674745\pi\)
\(548\) −194.272 + 230.058i −0.354512 + 0.419814i
\(549\) 0 0
\(550\) −281.966 + 130.946i −0.512665 + 0.238083i
\(551\) 958.112i 1.73886i
\(552\) 0 0
\(553\) −213.104 −0.385360
\(554\) 197.713 + 425.737i 0.356883 + 0.768478i
\(555\) 0 0
\(556\) 574.782 680.659i 1.03378 1.22421i
\(557\) 1107.30i 1.98797i −0.109496 0.993987i \(-0.534924\pi\)
0.109496 0.993987i \(-0.465076\pi\)
\(558\) 0 0
\(559\) 496.514i 0.888218i
\(560\) −42.1251 247.974i −0.0752234 0.442812i
\(561\) 0 0
\(562\) −472.600 + 219.477i −0.840924 + 0.390528i
\(563\) −32.2930 −0.0573587 −0.0286794 0.999589i \(-0.509130\pi\)
−0.0286794 + 0.999589i \(0.509130\pi\)
\(564\) 0 0
\(565\) 834.263i 1.47657i
\(566\) −570.298 + 264.848i −1.00759 + 0.467930i
\(567\) 0 0
\(568\) 312.406 + 85.2837i 0.550011 + 0.150147i
\(569\) −838.069 −1.47288 −0.736440 0.676503i \(-0.763495\pi\)
−0.736440 + 0.676503i \(0.763495\pi\)
\(570\) 0 0
\(571\) −590.149 −1.03354 −0.516768 0.856126i \(-0.672865\pi\)
−0.516768 + 0.856126i \(0.672865\pi\)
\(572\) 517.015 + 436.593i 0.903873 + 0.763275i
\(573\) 0 0
\(574\) 68.8524 + 148.260i 0.119952 + 0.258293i
\(575\) 17.4178i 0.0302918i
\(576\) 0 0
\(577\) 376.385 0.652314 0.326157 0.945316i \(-0.394246\pi\)
0.326157 + 0.945316i \(0.394246\pi\)
\(578\) −420.751 + 195.398i −0.727943 + 0.338059i
\(579\) 0 0
\(580\) 444.258 526.092i 0.765962 0.907055i
\(581\) 95.9489i 0.165144i
\(582\) 0 0
\(583\) 1089.66i 1.86906i
\(584\) −60.2353 + 220.650i −0.103143 + 0.377826i
\(585\) 0 0
\(586\) 45.5302 + 98.0404i 0.0776966 + 0.167304i
\(587\) 489.154 0.833311 0.416656 0.909064i \(-0.363202\pi\)
0.416656 + 0.909064i \(0.363202\pi\)
\(588\) 0 0
\(589\) 817.611i 1.38813i
\(590\) −166.283 358.058i −0.281836 0.606879i
\(591\) 0 0
\(592\) 848.436 144.130i 1.43317 0.243462i
\(593\) −180.522 −0.304421 −0.152211 0.988348i \(-0.548639\pi\)
−0.152211 + 0.988348i \(0.548639\pi\)
\(594\) 0 0
\(595\) 358.810 0.603042
\(596\) −529.889 447.465i −0.889076 0.750780i
\(597\) 0 0
\(598\) 34.3854 15.9687i 0.0575007 0.0267035i
\(599\) 16.6365i 0.0277738i −0.999904 0.0138869i \(-0.995580\pi\)
0.999904 0.0138869i \(-0.00442048\pi\)
\(600\) 0 0
\(601\) −763.074 −1.26967 −0.634837 0.772646i \(-0.718933\pi\)
−0.634837 + 0.772646i \(0.718933\pi\)
\(602\) 98.6747 + 212.477i 0.163912 + 0.352951i
\(603\) 0 0
\(604\) 259.578 + 219.201i 0.429765 + 0.362915i
\(605\) 633.122i 1.04648i
\(606\) 0 0
\(607\) 82.3314i 0.135637i 0.997698 + 0.0678183i \(0.0216038\pi\)
−0.997698 + 0.0678183i \(0.978396\pi\)
\(608\) −600.185 871.596i −0.987146 1.43355i
\(609\) 0 0
\(610\) 1044.06 484.862i 1.71157 0.794856i
\(611\) −418.120 −0.684321
\(612\) 0 0
\(613\) 522.712i 0.852712i 0.904556 + 0.426356i \(0.140203\pi\)
−0.904556 + 0.426356i \(0.859797\pi\)
\(614\) 148.980 69.1866i 0.242638 0.112682i
\(615\) 0 0
\(616\) 308.016 + 84.0853i 0.500026 + 0.136502i
\(617\) 1005.31 1.62935 0.814674 0.579920i \(-0.196916\pi\)
0.814674 + 0.579920i \(0.196916\pi\)
\(618\) 0 0
\(619\) 519.176 0.838734 0.419367 0.907817i \(-0.362252\pi\)
0.419367 + 0.907817i \(0.362252\pi\)
\(620\) 379.111 448.944i 0.611469 0.724103i
\(621\) 0 0
\(622\) 70.1259 + 151.002i 0.112743 + 0.242769i
\(623\) 36.8896i 0.0592129i
\(624\) 0 0
\(625\) −776.430 −1.24229
\(626\) −89.6285 + 41.6237i −0.143177 + 0.0664916i
\(627\) 0 0
\(628\) −176.241 148.827i −0.280639 0.236986i
\(629\) 1227.66i 1.95176i
\(630\) 0 0
\(631\) 62.6700i 0.0993185i 0.998766 + 0.0496592i \(0.0158135\pi\)
−0.998766 + 0.0496592i \(0.984186\pi\)
\(632\) −621.619 169.696i −0.983575 0.268506i
\(633\) 0 0
\(634\) 378.323 + 814.644i 0.596724 + 1.28493i
\(635\) −1140.72 −1.79641
\(636\) 0 0
\(637\) 78.5036i 0.123240i
\(638\) 368.160 + 792.759i 0.577053 + 1.24257i
\(639\) 0 0
\(640\) 74.5854 756.880i 0.116540 1.18263i
\(641\) −800.473 −1.24879 −0.624394 0.781110i \(-0.714654\pi\)
−0.624394 + 0.781110i \(0.714654\pi\)
\(642\) 0 0
\(643\) −818.686 −1.27323 −0.636614 0.771183i \(-0.719666\pi\)
−0.636614 + 0.771183i \(0.719666\pi\)
\(644\) 11.5412 13.6672i 0.0179212 0.0212223i
\(645\) 0 0
\(646\) 1369.18 635.853i 2.11948 0.984293i
\(647\) 509.102i 0.786866i 0.919353 + 0.393433i \(0.128713\pi\)
−0.919353 + 0.393433i \(0.871287\pi\)
\(648\) 0 0
\(649\) 501.139 0.772172
\(650\) −97.3510 209.626i −0.149771 0.322502i
\(651\) 0 0
\(652\) 27.9616 33.1122i 0.0428859 0.0507856i
\(653\) 997.554i 1.52765i −0.645424 0.763824i \(-0.723319\pi\)
0.645424 0.763824i \(-0.276681\pi\)
\(654\) 0 0
\(655\) 80.6208i 0.123085i
\(656\) 82.7807 + 487.299i 0.126190 + 0.742833i
\(657\) 0 0
\(658\) −178.929 + 83.0952i −0.271929 + 0.126284i
\(659\) −179.635 −0.272588 −0.136294 0.990668i \(-0.543519\pi\)
−0.136294 + 0.990668i \(0.543519\pi\)
\(660\) 0 0
\(661\) 155.299i 0.234946i 0.993076 + 0.117473i \(0.0374793\pi\)
−0.993076 + 0.117473i \(0.962521\pi\)
\(662\) 195.539 90.8088i 0.295376 0.137173i
\(663\) 0 0
\(664\) 76.4046 279.881i 0.115067 0.421507i
\(665\) −519.882 −0.781777
\(666\) 0 0
\(667\) 48.9708 0.0734195
\(668\) −175.984 148.610i −0.263449 0.222470i
\(669\) 0 0
\(670\) −430.761 927.558i −0.642927 1.38442i
\(671\) 1461.26i 2.17774i
\(672\) 0 0
\(673\) −1066.49 −1.58469 −0.792343 0.610076i \(-0.791139\pi\)
−0.792343 + 0.610076i \(0.791139\pi\)
\(674\) 1025.14 476.077i 1.52098 0.706346i
\(675\) 0 0
\(676\) 111.561 132.111i 0.165031 0.195430i
\(677\) 248.880i 0.367622i 0.982962 + 0.183811i \(0.0588434\pi\)
−0.982962 + 0.183811i \(0.941157\pi\)
\(678\) 0 0
\(679\) 174.698i 0.257287i
\(680\) 1046.64 + 285.722i 1.53918 + 0.420180i
\(681\) 0 0
\(682\) 314.172 + 676.506i 0.460662 + 0.991945i
\(683\) −465.842 −0.682053 −0.341026 0.940054i \(-0.610775\pi\)
−0.341026 + 0.940054i \(0.610775\pi\)
\(684\) 0 0
\(685\) 447.285i 0.652970i
\(686\) 15.6014 + 33.5946i 0.0227426 + 0.0489717i
\(687\) 0 0
\(688\) 118.636 + 698.364i 0.172436 + 1.01506i
\(689\) 810.105 1.17577
\(690\) 0 0
\(691\) −854.073 −1.23600 −0.617998 0.786180i \(-0.712056\pi\)
−0.617998 + 0.786180i \(0.712056\pi\)
\(692\) −639.600 540.110i −0.924277 0.780505i
\(693\) 0 0
\(694\) −1119.42 + 519.860i −1.61299 + 0.749077i
\(695\) 1323.35i 1.90411i
\(696\) 0 0
\(697\) −705.104 −1.01163
\(698\) 175.680 + 378.292i 0.251690 + 0.541966i
\(699\) 0 0
\(700\) −83.3202 70.3597i −0.119029 0.100514i
\(701\) 746.975i 1.06559i 0.846246 + 0.532793i \(0.178857\pi\)
−0.846246 + 0.532793i \(0.821143\pi\)
\(702\) 0 0
\(703\) 1778.76i 2.53024i
\(704\) 831.519 + 490.550i 1.18113 + 0.696804i
\(705\) 0 0
\(706\) 169.241 78.5962i 0.239719 0.111326i
\(707\) −419.182 −0.592902
\(708\) 0 0
\(709\) 939.270i 1.32478i 0.749158 + 0.662391i \(0.230458\pi\)
−0.749158 + 0.662391i \(0.769542\pi\)
\(710\) 436.290 202.615i 0.614494 0.285373i
\(711\) 0 0
\(712\) 29.3754 107.606i 0.0412576 0.151132i
\(713\) 41.7896 0.0586109
\(714\) 0 0
\(715\) 1005.19 1.40587
\(716\) 590.861 699.699i 0.825224 0.977233i
\(717\) 0 0
\(718\) 269.229 + 579.731i 0.374971 + 0.807425i
\(719\) 683.284i 0.950325i −0.879898 0.475163i \(-0.842389\pi\)
0.879898 0.475163i \(-0.157611\pi\)
\(720\) 0 0
\(721\) −360.407 −0.499870
\(722\) −1328.99 + 617.185i −1.84070 + 0.854827i
\(723\) 0 0
\(724\) −398.868 336.824i −0.550922 0.465226i
\(725\) 298.544i 0.411785i
\(726\) 0 0
\(727\) 77.6493i 0.106808i −0.998573 0.0534039i \(-0.982993\pi\)
0.998573 0.0534039i \(-0.0170071\pi\)
\(728\) −62.5128 + 228.993i −0.0858692 + 0.314551i
\(729\) 0 0
\(730\) 143.105 + 308.149i 0.196034 + 0.422121i
\(731\) −1010.51 −1.38236
\(732\) 0 0
\(733\) 829.362i 1.13146i 0.824590 + 0.565731i \(0.191406\pi\)
−0.824590 + 0.565731i \(0.808594\pi\)
\(734\) −412.444 888.116i −0.561913 1.20997i
\(735\) 0 0
\(736\) 44.5488 30.6765i 0.0605283 0.0416800i
\(737\) 1298.21 1.76148
\(738\) 0 0
\(739\) 961.998 1.30176 0.650878 0.759182i \(-0.274401\pi\)
0.650878 + 0.759182i \(0.274401\pi\)
\(740\) 824.776 976.702i 1.11456 1.31987i
\(741\) 0 0
\(742\) 346.674 160.996i 0.467216 0.216976i
\(743\) 1037.64i 1.39656i 0.715826 + 0.698279i \(0.246051\pi\)
−0.715826 + 0.698279i \(0.753949\pi\)
\(744\) 0 0
\(745\) −1030.22 −1.38285
\(746\) 360.201 + 775.621i 0.482843 + 1.03971i
\(747\) 0 0
\(748\) −888.558 + 1052.23i −1.18791 + 1.40673i
\(749\) 435.373i 0.581273i
\(750\) 0 0
\(751\) 988.651i 1.31645i −0.752823 0.658223i \(-0.771308\pi\)
0.752823 0.658223i \(-0.228692\pi\)
\(752\) −588.101 + 99.9047i −0.782049 + 0.132852i
\(753\) 0 0
\(754\) −589.373 + 273.707i −0.781662 + 0.363006i
\(755\) 504.679 0.668449
\(756\) 0 0
\(757\) 398.170i 0.525984i 0.964798 + 0.262992i \(0.0847093\pi\)
−0.964798 + 0.262992i \(0.915291\pi\)
\(758\) 800.808 371.898i 1.05647 0.490630i
\(759\) 0 0
\(760\) −1516.48 413.984i −1.99537 0.544716i
\(761\) −573.007 −0.752966 −0.376483 0.926424i \(-0.622867\pi\)
−0.376483 + 0.926424i \(0.622867\pi\)
\(762\) 0 0
\(763\) −49.2552 −0.0645547
\(764\) 279.023 + 235.621i 0.365213 + 0.308404i
\(765\) 0 0
\(766\) −330.929 712.591i −0.432023 0.930275i
\(767\) 372.569i 0.485749i
\(768\) 0 0
\(769\) 1317.67 1.71349 0.856743 0.515743i \(-0.172484\pi\)
0.856743 + 0.515743i \(0.172484\pi\)
\(770\) 430.160 199.767i 0.558649 0.259438i
\(771\) 0 0
\(772\) −324.308 + 384.047i −0.420088 + 0.497470i
\(773\) 753.284i 0.974495i 0.873264 + 0.487247i \(0.161999\pi\)
−0.873264 + 0.487247i \(0.838001\pi\)
\(774\) 0 0
\(775\) 254.765i 0.328728i
\(776\) 139.113 509.590i 0.179269 0.656689i
\(777\) 0 0
\(778\) −454.192 978.013i −0.583794 1.25709i
\(779\) 1021.63 1.31146
\(780\) 0 0
\(781\) 610.633i 0.781861i
\(782\) 32.4996 + 69.9814i 0.0415596 + 0.0894903i
\(783\) 0 0
\(784\) 18.7575 + 110.418i 0.0239253 + 0.140839i
\(785\) −342.653 −0.436501
\(786\) 0 0
\(787\) −77.2279 −0.0981295 −0.0490648 0.998796i \(-0.515624\pi\)
−0.0490648 + 0.998796i \(0.515624\pi\)
\(788\) −227.721 192.299i −0.288986 0.244034i
\(789\) 0 0
\(790\) −868.121 + 403.158i −1.09889 + 0.510327i
\(791\) 371.481i 0.469634i
\(792\) 0 0
\(793\) −1086.37 −1.36995
\(794\) 370.505 + 797.809i 0.466631 + 1.00480i
\(795\) 0 0
\(796\) 236.158 + 199.424i 0.296681 + 0.250532i
\(797\) 509.008i 0.638655i 0.947644 + 0.319327i \(0.103457\pi\)
−0.947644 + 0.319327i \(0.896543\pi\)
\(798\) 0 0
\(799\) 850.961i 1.06503i
\(800\) −187.015 271.586i −0.233769 0.339482i
\(801\) 0 0
\(802\) 464.940 215.920i 0.579726 0.269227i
\(803\) −431.286 −0.537093
\(804\) 0 0
\(805\) 26.5721i 0.0330088i
\(806\) −502.945 + 233.569i −0.624002 + 0.289788i
\(807\) 0 0
\(808\) −1222.74 333.797i −1.51330 0.413115i
\(809\) −692.461 −0.855946 −0.427973 0.903791i \(-0.640772\pi\)
−0.427973 + 0.903791i \(0.640772\pi\)
\(810\) 0 0
\(811\) 1496.99 1.84585 0.922926 0.384978i \(-0.125791\pi\)
0.922926 + 0.384978i \(0.125791\pi\)
\(812\) −197.819 + 234.258i −0.243620 + 0.288495i
\(813\) 0 0
\(814\) 683.497 + 1471.78i 0.839677 + 1.80808i
\(815\) 64.3775i 0.0789909i
\(816\) 0 0
\(817\) 1464.13 1.79208
\(818\) 728.043 338.105i 0.890028 0.413332i
\(819\) 0 0
\(820\) 560.968 + 473.709i 0.684107 + 0.577694i
\(821\) 1081.65i 1.31748i 0.752371 + 0.658740i \(0.228910\pi\)
−0.752371 + 0.658740i \(0.771090\pi\)
\(822\) 0 0
\(823\) 684.571i 0.831799i 0.909410 + 0.415900i \(0.136533\pi\)
−0.909410 + 0.415900i \(0.863467\pi\)
\(824\) −1051.30 286.993i −1.27585 0.348293i
\(825\) 0 0
\(826\) 74.0427 + 159.436i 0.0896400 + 0.193022i
\(827\) −526.172 −0.636242 −0.318121 0.948050i \(-0.603052\pi\)
−0.318121 + 0.948050i \(0.603052\pi\)
\(828\) 0 0
\(829\) 1255.76i 1.51479i −0.652959 0.757393i \(-0.726473\pi\)
0.652959 0.757393i \(-0.273527\pi\)
\(830\) −181.520 390.867i −0.218699 0.470924i
\(831\) 0 0
\(832\) −364.697 + 618.189i −0.438337 + 0.743015i
\(833\) −159.771 −0.191802
\(834\) 0 0
\(835\) −342.153 −0.409764
\(836\) 1287.44 1524.59i 1.53999 1.82367i
\(837\) 0 0
\(838\) −336.885 + 156.450i −0.402011 + 0.186695i
\(839\) 93.1019i 0.110968i 0.998460 + 0.0554839i \(0.0176701\pi\)
−0.998460 + 0.0554839i \(0.982330\pi\)
\(840\) 0 0
\(841\) 1.63019 0.00193840
\(842\) −304.665 656.036i −0.361835 0.779141i
\(843\) 0 0
\(844\) 732.912 867.917i 0.868379 1.02834i
\(845\) 256.853i 0.303968i
\(846\) 0 0
\(847\) 281.917i 0.332841i
\(848\) 1139.44 193.565i 1.34368 0.228260i
\(849\) 0 0
\(850\) 426.633 198.129i 0.501921 0.233093i
\(851\) 90.9155 0.106834
\(852\) 0 0
\(853\) 1226.85i 1.43828i 0.694867 + 0.719138i \(0.255463\pi\)
−0.694867 + 0.719138i \(0.744537\pi\)
\(854\) −464.897 + 215.900i −0.544376 + 0.252810i
\(855\) 0 0
\(856\) 346.690 1269.97i 0.405011 1.48361i
\(857\) −201.847 −0.235528 −0.117764 0.993042i \(-0.537573\pi\)
−0.117764 + 0.993042i \(0.537573\pi\)
\(858\) 0 0
\(859\) −1493.93 −1.73915 −0.869574 0.493802i \(-0.835607\pi\)
−0.869574 + 0.493802i \(0.835607\pi\)
\(860\) 803.942 + 678.889i 0.934816 + 0.789405i
\(861\) 0 0
\(862\) −110.141 237.168i −0.127774 0.275137i
\(863\) 453.506i 0.525499i 0.964864 + 0.262750i \(0.0846294\pi\)
−0.964864 + 0.262750i \(0.915371\pi\)
\(864\) 0 0
\(865\) −1243.53 −1.43760
\(866\) 816.424 379.150i 0.942753 0.437817i
\(867\) 0 0
\(868\) −168.810 + 199.906i −0.194482 + 0.230306i
\(869\) 1215.02i 1.39819i
\(870\) 0 0
\(871\) 965.150i 1.10809i
\(872\) −143.676 39.2222i −0.164766 0.0449796i
\(873\) 0 0
\(874\) −47.0888 101.396i −0.0538774 0.116014i
\(875\) 231.018 0.264020
\(876\) 0 0
\(877\) 75.4930i 0.0860809i 0.999073 + 0.0430405i \(0.0137044\pi\)
−0.999073 + 0.0430405i \(0.986296\pi\)
\(878\) 90.8533 + 195.635i 0.103478 + 0.222819i
\(879\) 0 0
\(880\) 1413.84 240.179i 1.60664 0.272930i
\(881\) 1065.89 1.20986 0.604931 0.796278i \(-0.293201\pi\)
0.604931 + 0.796278i \(0.293201\pi\)
\(882\) 0 0
\(883\) −956.369 −1.08309 −0.541545 0.840672i \(-0.682161\pi\)
−0.541545 + 0.840672i \(0.682161\pi\)
\(884\) −782.277 660.594i −0.884929 0.747278i
\(885\) 0 0
\(886\) −145.112 + 67.3904i −0.163783 + 0.0760614i
\(887\) 158.851i 0.179088i 0.995983 + 0.0895440i \(0.0285410\pi\)
−0.995983 + 0.0895440i \(0.971459\pi\)
\(888\) 0 0
\(889\) 507.940 0.571361
\(890\) −69.7892 150.277i −0.0784148 0.168851i
\(891\) 0 0
\(892\) 353.811 + 298.775i 0.396649 + 0.334950i
\(893\) 1232.96i 1.38070i
\(894\) 0 0
\(895\) 1360.37i 1.51997i
\(896\) −33.2114 + 337.024i −0.0370663 + 0.376143i
\(897\) 0 0
\(898\) 904.075 419.855i 1.00676 0.467545i
\(899\) −716.282 −0.796754
\(900\) 0 0
\(901\) 1648.73i 1.82989i
\(902\) −845.313 + 392.566i −0.937155 + 0.435217i
\(903\) 0 0
\(904\) 295.812 1083.60i 0.327225 1.19867i
\(905\) −775.489 −0.856894
\(906\) 0 0
\(907\) 1106.62 1.22008 0.610042 0.792369i \(-0.291152\pi\)
0.610042 + 0.792369i \(0.291152\pi\)
\(908\) −17.6271 + 20.8741i −0.0194132 + 0.0229891i
\(909\) 0 0
\(910\) 148.516 + 319.800i 0.163204 + 0.351428i
\(911\) 950.439i 1.04329i 0.853162 + 0.521646i \(0.174682\pi\)
−0.853162 + 0.521646i \(0.825318\pi\)
\(912\) 0 0
\(913\) 547.059 0.599188
\(914\) 850.961 395.189i 0.931029 0.432373i
\(915\) 0 0
\(916\) 663.599 + 560.376i 0.724453 + 0.611764i
\(917\) 35.8988i 0.0391481i
\(918\) 0 0
\(919\) 609.662i 0.663397i −0.943385 0.331698i \(-0.892378\pi\)
0.943385 0.331698i \(-0.107622\pi\)
\(920\) 21.1595 77.5101i 0.0229994 0.0842502i
\(921\) 0 0
\(922\) −614.154 1322.46i −0.666111 1.43434i
\(923\) −453.972 −0.491844
\(924\) 0 0
\(925\) 554.254i 0.599194i
\(926\) 507.367 + 1092.52i 0.547913 + 1.17982i
\(927\) 0 0
\(928\) −763.575 + 525.801i −0.822818 + 0.566596i
\(929\) 306.485 0.329909 0.164954 0.986301i \(-0.447252\pi\)
0.164954 + 0.986301i \(0.447252\pi\)
\(930\) 0 0
\(931\) 231.493 0.248650
\(932\) −346.804 + 410.686i −0.372107 + 0.440650i
\(933\) 0 0
\(934\) −645.843 + 299.931i −0.691481 + 0.321126i
\(935\) 2045.78i 2.18800i
\(936\) 0 0
\(937\) 885.867 0.945429 0.472715 0.881216i \(-0.343274\pi\)
0.472715 + 0.881216i \(0.343274\pi\)
\(938\) 191.809 + 413.023i 0.204487 + 0.440323i
\(939\) 0 0
\(940\) −571.700 + 677.009i −0.608192 + 0.720223i
\(941\) 1527.11i 1.62285i −0.584454 0.811427i \(-0.698691\pi\)
0.584454 0.811427i \(-0.301309\pi\)
\(942\) 0 0
\(943\) 52.2172i 0.0553735i
\(944\) 89.0209 + 524.032i 0.0943018 + 0.555119i
\(945\) 0 0
\(946\) −1211.45 + 562.600i −1.28060 + 0.594714i
\(947\) 43.0382 0.0454468 0.0227234 0.999742i \(-0.492766\pi\)
0.0227234 + 0.999742i \(0.492766\pi\)
\(948\) 0 0
\(949\) 320.637i 0.337868i
\(950\) −618.150 + 287.071i −0.650684 + 0.302180i
\(951\) 0 0
\(952\) −466.048 127.226i −0.489547 0.133641i
\(953\) −701.454 −0.736048 −0.368024 0.929816i \(-0.619966\pi\)
−0.368024 + 0.929816i \(0.619966\pi\)
\(954\) 0 0
\(955\) 542.483 0.568045
\(956\) −1248.19 1054.03i −1.30564 1.10254i
\(957\) 0 0
\(958\) 170.048 + 366.165i 0.177503 + 0.382218i
\(959\) 199.167i 0.207682i
\(960\) 0 0
\(961\) 349.756 0.363950
\(962\) −1094.18 + 508.143i −1.13741 + 0.528215i
\(963\) 0 0
\(964\) −612.396 + 725.202i −0.635266 + 0.752284i
\(965\) 746.673i 0.773755i
\(966\) 0 0
\(967\) 1078.20i 1.11500i 0.830178 + 0.557499i \(0.188239\pi\)
−0.830178 + 0.557499i \(0.811761\pi\)
\(968\) −224.491 + 822.344i −0.231913 + 0.849529i
\(969\) 0 0
\(970\) −330.500 711.668i −0.340722 0.733678i
\(971\) −68.6986 −0.0707504 −0.0353752 0.999374i \(-0.511263\pi\)
−0.0353752 + 0.999374i \(0.511263\pi\)
\(972\) 0 0
\(973\) 589.263i 0.605615i
\(974\) 289.780 + 623.983i 0.297515 + 0.640640i
\(975\) 0 0
\(976\) −1528.02 + 259.574i −1.56559 + 0.265957i
\(977\) −785.845 −0.804345 −0.402172 0.915564i \(-0.631745\pi\)
−0.402172 + 0.915564i \(0.631745\pi\)
\(978\) 0 0
\(979\) 210.328 0.214840
\(980\) 127.111 + 107.339i 0.129705 + 0.109529i
\(981\) 0 0
\(982\) 323.806 150.376i 0.329741 0.153133i
\(983\) 14.8697i 0.0151269i −0.999971 0.00756345i \(-0.997592\pi\)
0.999971 0.00756345i \(-0.00240754\pi\)
\(984\) 0 0
\(985\) −442.741 −0.449483
\(986\) −557.049 1199.50i −0.564959 1.21653i
\(987\) 0 0
\(988\) 1133.44 + 957.137i 1.14721 + 0.968762i
\(989\) 74.8343i 0.0756666i
\(990\) 0 0
\(991\) 1163.67i 1.17424i 0.809499 + 0.587121i \(0.199739\pi\)
−0.809499 + 0.587121i \(0.800261\pi\)
\(992\) −651.602 + 448.696i −0.656857 + 0.452315i
\(993\) 0 0
\(994\) −194.271 + 90.2202i −0.195444 + 0.0907648i
\(995\) 459.145 0.461452
\(996\) 0 0
\(997\) 1235.53i 1.23925i −0.784898 0.619625i \(-0.787285\pi\)
0.784898 0.619625i \(-0.212715\pi\)
\(998\) −994.942 + 462.054i −0.996936 + 0.462980i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.g.d.379.6 24
3.2 odd 2 168.3.g.a.43.19 24
4.3 odd 2 2016.3.g.d.1135.5 24
8.3 odd 2 inner 504.3.g.d.379.5 24
8.5 even 2 2016.3.g.d.1135.20 24
12.11 even 2 672.3.g.a.463.9 24
24.5 odd 2 672.3.g.a.463.4 24
24.11 even 2 168.3.g.a.43.20 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.g.a.43.19 24 3.2 odd 2
168.3.g.a.43.20 yes 24 24.11 even 2
504.3.g.d.379.5 24 8.3 odd 2 inner
504.3.g.d.379.6 24 1.1 even 1 trivial
672.3.g.a.463.4 24 24.5 odd 2
672.3.g.a.463.9 24 12.11 even 2
2016.3.g.d.1135.5 24 4.3 odd 2
2016.3.g.d.1135.20 24 8.5 even 2